
the association for computational heresy

presents

a record of the proceedings of

SIGBOVIK 2022

the sixteenth annual intercalary robot dance party in celebration

of workshop on symposium about 26th birthdays; in particular,
that of harry q. bovik

cover art by someone probably

carnegie mellon university

pittsburgh, pa

april 8, 2022

i

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2022

ISSN 2155-0166

April 8, 2022

Copyright is maintained by the individual authors, though obviously this all gets posted to the
Internet and stuff, because it’s 2022.

Permission to make digital or hard copies of portions of this work for personal use is granted;
permission to make digital or hard copies of portions of this work for classroom use is also granted,
but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems
difficult.

Additional copies of this work may be ordered from Lulu; refer to http://sigbovik.org for
details.

ii

SIGBOVIK 2022

Message from the Organizing Committee

\Message2020{16}{uenchiest}{$2ˆ6$}

iii

iv

TODO: Tell next year’s committee that they should

probably avoid further milking the blindsight joke

: Programming Languages 5

1 Modernized Python . 6

2 Grand Challenges in Programming Languages Position Paper: What, if any-
thing, does multiplication even mean? . 13

3 A Type-and-Affect System for Semisignificant Whitespace 16

4 brainfuck++: a much needed extension to brainfuck 23

: Other Languages 33

5 Tironiculum: Latin Speech Recognition via Latin Text-to-Speech 34

6 Abecedarial Acrostic, Alphabetized Amusingly Because Beings Blissfully
Cause Celebratory Centennials... (Note: Full Title is Longer) 40

7 On “Ra-men, Ra-men ramen ramen” . 41

8 ACTION: A Catchy Title Is all yOu Need! 42

9 A Deep Learning Approach for Deeply Inaccurate Wordle Solving 43

: Systems 45

10 Edward, edMUnD & Edwin: Line-Based Text Editing for the 21st Century 46

11 A Free Computer Vision Lesson for Car Manufacturers or It is Time to Retire
the Erlkönig . 52

12 Redundant Coupling . 54

: Theory 57

13 Destructive Logic . 58

14 Overlap-Maximal Graph Labelings: Graph Labelings with Non-Disjoint Ver-
tex and Edge Sets (and how they can be used for encryption, poetry, and
breaking mathematics) . 62

15 Neo-classical Logic: Une Logique non classique 69

16 A Patriotic Analysis of Programming Paradigms 76

17 On Ruinment: Ruination Theory and its Consequents 84

: Astrophysics 91

18 Method and Tool for Estimating the Mass of the Black Hole Located in the
Office of Immigration, Refugees and Citizenship Canada Causing a Supermas-
sive Time Dilation in the Visa Extension Process 92

19 Black Hole Computation . 102

20 Schrödinger’s SAT: Generalizing Quantum Bogosort to Prove P = NP Under
Many-Worlds Quantum Mechanics . 109

21 Solving Double Execution of Java’s paint() Method by Counting Down to
the Heat Death of the Universe (plus language compendium) 111

1

: Climate Science 139

22 Towards Cloud Computing . 140

23 Ecological Memory Management: Beyond Garbage Collection 144

24 Infrastructure-as-PowerPoint: A No-Code Approach to Cloud Infrastructure
Management . 166

25 On the Possibilities and Challenges of Organic UAV-Assisted MEC 172

: A Brief Musical Interlude 177

26 Baby Sharks are More than Sharks . They are Earworms Sung More than
Happy Birthday Perhaps . 178

27 Everybody Clap Your Hands: The Cha Cha Slide is Turing Complete 184

28 Exhaustive Survey of Rickrolling in Academic Literature 189

: Best Practices 201

29 Quadruple-Blind Peer Review . 202

30 Optimal degeneracy through OwO based variable names 206

31 Multiplication by repeated addition, with fraction handling. 208

32 Objective Correlation Metrics for Quality of Code Estimation 209

: Algorithmic Advances 215

33 Functorial wrappers for high-dimensional classification algorithms 216

34 (Un)helper functions . 220

35 A sometimes-accurate O(1) search algorithm 223

: Mathematic Retreats 225

36 Improved Data and Instruction Locality in Long Division 226

37 The New New Math: using sentiment analysis of mathematics word problems
to gauge children’s reactions to teaching 8-bit floating point arithmetic for the
new California public school math curriculum 229

38 Infix Modifiers for Flexible Multiplication 236

: Aesthetics 239

39 Real-Time Foliage Simulation . 240

40 Using deep CNNs to prove that I look better than Tom Cruise and Shah
Rukh Khan combined . 241

41 EBMP: Efficient Bitmap Encodings on Ethereum Virtual Machines 243

42 A Machine Learning Approach To Classifying Cuteness 251

43 Attractiveness Learning: A General Solution for the Cold-Start Problem . . 253

: Hardware 257

44 Correct-It-Yourself Paper Updater . 258

45 Harder Drive: Hard drives we didn’t want or need 259

46 Just a Regular Paper . 278

47 Wearable RF-shield repositories . 279

2

: Black Boxes 281

48 A 23 MW data centre is all you need . 282
49 When Pull Comes To Shove... Do Both! . 293
50 man exorcism . 338
51 2x a fake submission . 340

: SIGBOVIK 343

52 Analysis of A New Error Calculation Technique 344
53 A Third Thorough Investigation of the Degree to which the COVID-19 Pan-

demic has Enabled Subpar-Quality Papers to Make it into SIGBOVIK, by
Reducing the Supply of Authors Willing to Invest the Necessary Effort to
Produce High-Quality Papers . 345

54 this is not a review . 346

3

4

Programming Languages

1 Modernized Python

Daniel Ng

Keywords:programming languages, type theory, python, sml

2 Grand Challenges in Programming Languages Position Paper:
What, if anything, does multiplication even mean?

Jim McCann

multiplication, punctuation: *, punctuation: x, punctuation: .,
grand challenges

3 A Type-and-Affect System for Semisignificant Whitespace

Stefan Muller

Keywords: whitespace, white space, white
nspace

4 brainfuck++: a much needed extension to brainfuck

Cédric Ho Thanh

Keywords: Programing langage, brainfuck, concurrency, machine
learning

5

Modernized Python

Daniel Ng

March 25, 2022

Abstract

The popular Python programming language is generally heralded for its usability and learn-
ability. However, this often comes at the cost of efficiency. Solutions to this problem have
emerged over the last few years to impose static type systems onto Python without intruding
on the underlying syntax. This paper deviates from the norm of building on the existing
language, and instead looks to completely overhaul the concrete syntax while maintaining
its beloved semantics.

Introduction

Python has recently surged in popularity, largely for two reasons. Firstly, it is an easy
language for beginners to learn, especially because its array of modules allows for relatively
complex projects to be built up relatively quickly. Additionally, these modules are often
used in fields such as artificial intelligence and machine learning as a reliable and easy-to-
use language. However, concerns from type theorists have emerged, largely regarding its
inefficiency and unsafety.

The approach of overlaying a type system onto the existing concrete syntax is one that has
been considered in several places previously. Type theorists claim that this could speed up the
language and allow for fewer runtime errors. However, this approach has a negative impact
in certain edge cases. Certain scripts may wait for Python programs to terminate, causing
processor cycles to be wasted. Additionally, speeding up Python gives programmers less time
to slack off while their code is running, the social drawbacks of which are immense.

It is thus only natural to look into ways to make the Python programming language more
palatable for functional programmers. Current approaches focus on keeping Python’s con-
crete syntax while overhauling the abstract syntax to better match that of functional lan-
guages. In contrast, we try a revolutionary new approach in this paper and try to improve
the concrete syntax make it more palatable for functional programmers. In the spirit of
Harper [1], we therefore propose a Modernized Python, which seeks to eliminate the issues

1

6

with Python at the level of concrete syntax, while maintaining both the speed and mem-
ory usage of original Python. Any resemblance to real languages, living or dead, is purely
coincidental1.

Problems

Concrete Syntax

While the concrete syntax of Python seems both easy to learn and easy to write, its actual
nature is really not like that at all. Consider the behaviour of the following program:

1 def fact(x):

2 if (x == 0):

3 return 1

4 return x * fact(x - 1)

5 print(fact (10))

At first glance, this appears to be a perfectly legal2 program that computes the factorial of a
given positive number. However, upon actually attempting to interpret this code, it returns
IndentError rather than printing 3628800. Some might argue that this has to do with the
use of a three-space indent for some awful reason. However, the same problem exists for
users of the much more popular two-space indent. It follows from these strict indentation
requirements that handwritten Python code on paper3 is extremely unlikely to run, much to
the dismay of many exam-takers.

The additional requirement that all lines be terminated with a newline adds further com-
plications to the concrete syntax, especially when trying to write long commands and avoid
confusion. The indentation issue is also exascerbated when determining where a loop ends
or begins. Marking the end of code blocks in general is therefore another concern that we
will attempt to address when modernizing Python.

One feature that must be preserved through this is Python’s acceptance of generally ques-
tionable code. For example, the following function would be rejected by most sensible type
systems, yet is allowed by Python:

1 def f(_):

2 return f(f)

Python will attempt to execute f(3) in vain, eventually reaching a RecursionError, gener-
ating thousands of call stack frames in the process before Python realizes what is going on

1I promise.
2Except in the state of California, where this code is known to cause cancer, birth defects, or other

reproductive harm. And only in the state of California.
3Or on whiteboards, cuneiform tablets, The Fence, or any other non-digital media.

7

and averts the impending memory disaster.4 Python’s willingness to try once again leads to
run-time errors, but it gets an A+ for effort. This characteristic tenacity is preserved even
when fixing the above problems, at the cost of efficiency.

Statics and Dynamics

We now look to the statics and dynamics of Python to better understand how it be-
haves.

Statics:

Γ ` x : PyObject

Everything is a PyObject, so this is just stating the obvious. There are no further statics,
because no other types exist anyway.

Dynamics:

x final TypeError final f(x) 7−→ TypeError
(With high probability)

The first dynamic just states that if we have an established PyObject, then there is nothing
further to be done to it, so we just leave it alone. Likewise, if we have managed to reach
a TypeError, there is nowhere further we can go, as the program has reached an erroneous
state.

The third rule states that most expressions will result in a TypeError. This is evidenced by
the fact that many PyObjects are functions, however, the probability that the argument x
has the correct type to be input to f without causing a TypeError is rather low, since the
number of total PyObjects is quite large and the set of valid inputs S is likely significantly
smaller5. Rudimentary calculations show that the probability of a TypeError can exceed
99%, which sounds like quite a high probability.

We now carry out the time-honoured tradition of proving progress and preservation.

Progress: If Γ ` x : τ , then either x final or x 7−→ x′ for some x′. For this, we need a

canonical forms lemma6. Fortunately, we can note that every PyObjectconsists of either no
function applications or at least one function application, so if x : PyObject then either x = y

for some non-function application y or x = f(z) for appropriate f and z. The first case uses
the first dynamic to conclude that x final. The third rule indicates that f(z) 7−→ TypeError.

�

4For dealing with this, the author recommends downloadmoreram.com.
5If there are |S| = k valid inputs, there are also at least kk invalid ones, all functions mapping S to itself.
6Or Canadian Football League.

8

Preservation: If Γ ` x : τ and x 7−→ x′, then Γ ` x′ : τ . Consider that τ = PyObject since

PyObject is the only possible type. Additionally note that the only possible rule that could
produce the judgement is the third dynamic, which implies that x′ = TypeError. Finally,
note Γ ` TypeError : PyObject by the statics. �

The rules for Python are therefore not particularly complex. This is mostly evidenced by
the fact that the lines in the middle of the rules are not particularly long – more detailed
languages tend to use rules with lines spanning nearly the width of the page. The restrictions
that these simplistic rules create are, according to Harper [1], what makes Python such a
powerful language7.

Basic Changes

We begin this section with a snippet of Python code which takes the digital root of an
integer.

1 """

2 Find the digital root of the number.

3 """

4 def dr(x):

5 res = 0

6 while(x > 0):

7 res += x % 10

8 x = x // 10

9 if(res >= 10):

10 return dr(res)

11 return res

We begin with the most important part of the code: the arithmetic control flow comments.
Nesting comments can be somewhat cumbersome, as trying to comment out the entire func-
tion can lead to uncommenting parts of the code. Comments therefore now start and end
with (* *) to create clear start and finish markers for a comment.

To make it apparent that dr is a function and res is a variable, we can rewrite them with
keywords that indicate what they are, while still not forcing them to take on certain types.
We also use braces in place of indentations to keep code blocks organized as the program
evolves. Finally, we make arithmetic more readable by using words to describe what is going
on.

1 (* Find the digital root of the number. *)

2 fun dr(x) {

3 val res = 0

7In terms of both computational power and energy usage – the technique of using Python scripts as
space-heater extensions for laptops has become increasingly prevalent.

9

4 while(x > 0) {

5 res += x mod 10

6 x = x div 10

7 }

8 if (res >= 10) return dr(res)

9 return res

10 }

At this ‘point’, the code is not exactly sure what it wants to look like. Some of the Python has
been stripped away from the concrete syntax while maintaining the same underlying inter-
preter. We therefore introduce the following loop construct for a while loop. Notice how this
looks functional since the “mutable state” is hidden away in the function arguments.

fun while (x, state) guard body = if guard x

then while (body (x, state))

guard body

else state

Additionally, the braces have been stripped away for clarity reasons, now that our code is
organized again. The if/then/else and let/in/end constructs replace them when needed
to keep code organized.

1 (* Find the digital root of the number. *)

2 fun dr(x) = let

3 fun body (a, b) = (a div 10, b + (a mod 10))

4 val res = while (x, 0) (fn x => x > 0) body

5 in

6 if res >= 10 then dr(res) else res

7 end

Notice the arrow =>, which looks like an elongated musical accent and is therefore used to
add emphasis to the loop guard. Eliminating unnecessary whitespace allows us to compress
our code further, attaining the goal of the Single Massive Line (SML)8.

1 fun dr x=let fun body(a,b)=(a div 10, b+(a mod 10))val res=

while(x,0)(fn x=>x>0) body in if res >=10 then dr res else res

end

Further Changes

Here are some further constructs that can be added to the language to allow for easier
compilation from SML-like constructs to Python, in order to maintain the same efficiency
associated with Python compilation.

8Whitespace-equivalence is not a well-studied topic, likely due to people attempting to read code.

10

1 filter p L ==> [x for x in L if p(x)]

2 map f L ==> [f(x) for x in L]

3 foldl f acc L ==> x = acc

4 for y in L:

5 x = f(acc , x)

6 return x

The widespread importing of Python modules is closely related to SML’s module system,
though some might argue it is in name only. A syntax similar to that of the SML module
system is therefore used in Modernized Python. However, the conversion of many type-
checking failures to run-time errors eliminates the need for signatures, which are replaced by
the user’s choice between reading documentation and trial-and-error.

This error conversion also enables the user to write programs such as:

1 fun f () = if random () > 0.5 then 15 else "potato"

2 fun g _ = 3 + (f ())

The user is therefore able to gamble the stability of a currently running program by at-
tempting to use the result of a call to f, for no apparent reward at all. Use cases for this
seem extremely limited and further research is necessary. At the very least, allowing this
sort of ‘compilation’ to Python allows well-typed portions of programs to be tested before
the remainder of the program is written in full.

Pedagogy

The following introductory computer science courses at CMU were surveyed about their
opinions on Modernized Python.

• 15-122: Honk honk honk honk honk? (Translation: Does it include contracts?)

• 15-150: My code speed has gotten slower, but maybe converting it to CPS will somehow
help.

• 15-210: Modernized Python could go pretty quickly on multiple processors with the
right libraries if we put it on Diderot.

• 15-2139: Do not SIGBOVIK 213.

• 15-251: Not what we meant when we said to perform a reduction.

15-112 did not need to be surveyed, since they already used Python before its moderniza-
tion.

9https://www.google.com/search?q=15213

11

Conclusion

By restructuring the concrete syntax, we have therefore managed to translate code written in
a functional style to Python. In doing so, users are now able to run a subset of SML in a much
slower manner. This thrilling discovery allows us to combine the dynamic type-checking and
general permissibility of Python with SML’s tidy syntax. By taking the opposite approach
to the popular literature, we are therefore able to develop a revolutionary new system which
makes the Python language Slightly More Likeable.

References

[1] Robert Harper. 2016. Practical Foundations for Programming Languages (2nd. ed.).
Cambridge University Press, USA.

12

Grand Challenges in Programming Languages Position Paper:

What, if anything, does multiplication even mean?

Jim McCann
Programming Studies Institute
Cranberry Lemon University

Pittsburgh, PA 15213
ix@tchow.com

Abstract

What, if anything, does multiplication even mean? Current programming languages
answer the question in quirky and overly specific ways, which – like being forced
to wear socks only on your feet – seems fine until you encounter a situation
where it does not. In this position paper, I will describe the ambiguity implicit in
“multiplication,” how the scope of defining a proper multiplication is so broad that it
is inconceivable that within any ten lifetimes of good work it could be solved, and
conclude that – therefore – defining a sufficiently flexible multiplication operator is
pretty much impossible.

1 Introduction

What, if anything, does multiplication even mean? While the definition of addition is abundantly clear,
like Crystal Pepsi; the proper definition of multiplication is terribly muddy, like Pepsi. Multiplication
has so many possible meanings (Section the next section) that I cannot begin to imagine a world
where programming languages have a uniform, sensible, interpretation of the operation, just like I
can’t begin to imagine golf negative trait § couch the.

Therefore, I claim for the throne of the SIGBOVIK Grand Challenges in Programming Languages
Position Paper Grand Challenges List (Appendix A) the challenge of defining and implementing a
consistent and flexible multiplication semantics in any modern programming language.

the next section Background

What, if anything, does multiplication even mean? Nobody really knows, but a lot of people have tried
to do something smart anyway and got it sort of wrong but not wrong enough to really matter, just
like you did when you pretended to understand how to use the salad bar at a Ponderosa steakhouse.

Just a few options:

1.1 Addition in the Log Domain

Slide rule users may attempt to use the so-called identity:

a ∗ b := exp(log(a) + log(b)) (1)

But any savvy numerical methodist will realize that the exp and log functions are simply shorthand
for a near-infinite amount of multiplication:

exp(x) := 1 +
x

1
∗
�

1 +
x

2
∗
�

1 +
x

3
∗ (1 + . . .)

��

(2)

Meaning that the “definition” in (1) is clearly circular.

-1st Annual Symposium on Harry Q. Bovik (SIGBOVIK 2022), Pittsburgh, PA.

2

13

1.2 Replication

Some languages decide that multiplying a number by a string should replicate the string:

>>> 5 * ’x’
’xxxxx’

But this definition is inconsistent, since numbers aren’t properly promoted to strings:

>>> 5 * 5
25
#expected: ’55555’

and, further, the operator is broken for fractions:

>>> 5.5 * ’x’
TypeError: can’t multiply sequence by non-int of type ’float’
#expected: ’xxxxxx’

1.3 Linear Algebra

Working in a vector space V over field F exposes one to a wide variety of multiplications.

By definition, every vector space allows scalar-vector multiplication ∗ : F×V→ V. For example, in
R3,

a ∗ (b1, b2, b3) := (a ∗ b1, a ∗ b2, a ∗ b3) (3)

But many vector spaces also have an inner product ∗ : V× V→ F. In R3,

(x, y, z) ∗ (s, t, r) := x ∗ s+ y ∗ t+ z ∗ r (4)

And some vector spaces – like R3 have a cross product ∗ : V× V→ V,

(a1, a2, a3) ∗ (b1, b2, b3) := (a2 ∗ b3 − a3 ∗ b2,
a3 ∗ b1 − a1 ∗ b3,
a1 ∗ b2 − a2 ∗ b1)

(5)

Not to mention the element-wise product ∗ : V× V→ V,

(a1, a2, a3) ∗ (b1, b2, b3) := (a1 ∗ b1, a2 ∗ b2, a3 ∗ b3) (6)

And vector spaces may have an associated space of linear transformations, which in finite-dimensional
vector spaces may be notated using matrices A ∈ Fm×n that tabulate the action of the transformation
in some basis:

A =







a11 · · · a1n
...

. . .
...

am1 · · · amn






(7)

Meaning that linear transformations A ∈ Fr×m and B ∈ Fm×c can be composed by multiplication
∗ : Fr×m × Fm×c → Fr×c:

A ∗B := C

where cij :=
m
�

k=1

aik ∗ bkj
(8)

And, further, these linear transformations can be applied to vectors with multiplication ∗ :

LaTeX Gold Warning: MathBBFree per-document usage limit exceeded; upgrade to remove this limitation. Fm×n×

Fn → Fm:
A ∗ b := c

where ci =
n
�

k=1

biAik

(9)

14

Further, it is often useful to be able to compose scalar multiplication with linear transformations
using multiplication ∗ : F × F r×c → F r×c:

a ∗B := C

where cij = a ∗ bij
(10)

Which is seven different definitions of ∗, all of which depend on each-other as well as some unstated
∗’s that came along with the definition of F and the vector field.

1.4 Unary Multiplication

Of course, there is no rule that ∗ must be a binary operator. Some programming languages, like C++,
provide unary ∗ operators which – like unary + – appear to do nothing:

int x();
assert(+x == x); //unary addition is identity
assert(*x == x); //unary multiplication is identity
//assert(++x == x); //compile error?!
assert(**x == x); //still the identity

2 Potential Approaches

What, if anything, does multiplication even mean? My editor suggests that I should provide some
approaches to this seemingly insurmountable problem but, honestly, I just can’t think of any possible
ideas. I suppose we could stick with the status quo – multiplication meaning something which is
right in some circumstances and not right in others – but I can’t see this quo, well, status-ing.

I think the revolution is coming, like a rising tide, and I’m both apprehensive and elated by the
prospect of what may lie on the other side, like the things the rising tide casts upon the beach; but I
sure as heck don’t want to step in some of the things. So I’ll be walking carefully, and so should you.

3 Conclusions

What, if anything, does multiplication even mean? We may never know, and perhaps it’s for the best
that we do not. Like when your parents come home drunk and confess their love to your dog and you
realize as it’s happening that you don’t have a dog and it’s you who are drunk. And you just said it all
out loud.

Current programming languages seem to want to make the decision for you, but they certainly don’t
know best. We are all grown up and they can’t make us go to bed early.

Acknowledgments and Disclosure of Funding

This paper was produced with the help of a fictitious bribe from several shady treeacters, which are
like characters, but also trees. Ent it just the way!

A The SIGBOVIK Grand Challenges in Programming Languages Position

Paper Grand Challenges List

1. Defining a sensible notion of multiplication in any modern programming language.

2. Et cetera.

15

A Type-and-A�ect System for Semisignificant Whitespace

Stefan Muller
Illinois Institute of Technology

if (p != NULL) {

printf("%d\n", *p)

}

if (p != NULL)

{

printf("%d\n", *p)

}

Figure 1: If you’re a C programmer, one of these looks beau-

tiful and one of them makes you want to vomit.

if (p != None):

print("p␣is␣" + p + "␣and␣oh␣no␣I'm␣getting␣close␣to␣the␣end␣of␣the␣line␣can␣I␣put␣a␣linebreak␣here?␣I␣don't␣know")

Figure 2: Python syntax terri�es me.

ABSTRACT

Whitespace characters are generally ignored by compilers for most

languages. But for something ignored by the compiler, programmers

sure do spend a lot of time arguing about the use of whitespace

in programs. In this paper, we show whitespace some (tough?)

love and enforce some of your favorite pedantic style conventions

statically. Oh, you asked if this is like a linter or something? Not

exactly...

1 INTRODUCTION

Most languages (with the notable exception of Whitespace [3])

treat whitespace characters as insigni�cant other than as delim-

iters between tokens, and discard them during lexing. That’s right,

whitespace characters don’t even make it to the parser, that’s how

overlooked they are. And yet, whitespace is related to so many of

the features that many programmers and programming instruc-

tors spend so much time lecturing and/or arguing about: every

programming course, company, book author, and pedant in gen-

eral has a style guide for their preferred language. Many of these

style guides give advice on line length, indentation, when to start

a new line before and after delimiters, and other features directly

or indirectly related to whitespace (newlines, spaces, and, if you’re

a terrible person, tabs), as seen in Figure 1. Some provide good

advice on creating reasonable code, others harp on pet peeves, and

many are contradictory (e.g., [2, 4]). Few languages make these

guidelines standard or enforceable, and some languages even make

good style di�cult. It is an irony of programming languages that

languages which do not have “signi�cant whitespace” have no way

of enforcing good style. Meanwhile, languages in which whitespace

characters are sign�cant can enforce some stylistic conventions

(e.g., indentation in Python), but the very fact that whitespace is

signi�cant makes it di�cult to achieve other elements of good style

(who knows when you can break a long line in a Python program

without wreaking havoc?, Figure 2).

SIGBOVIK 2022,

2022.

Ä ::= int | bool | Ä × Ä | Ä → Ä

¿ ::= ¦ | § | I | | ∅

e ::= n | true | false | fun␣x ␣−> e | e␣e | (e, e)

| let (x , ␣y) = e in e | let␣x ␣ = e␣in e | if e␣then e␣else e
| ␣e | e␣ | \ne | e\n

Figure 3: The syntax of Pedant

In this paper, we begin by presenting a type system Pedant

that enforces good coding style with regard to whitespace, drawing

on the best of the signi�cant and insigni�cant whitespace worlds.

In a normal paper introduction, we would now go on to describe

how we do this and the results we achieve, but as a result, most

academic papers are very uniform as to narrative style. It would be

like if every novel took the approach of beginning the �rst chapter

with the protagonists re�ecting back on the events that are to be

described in the novel. This can be a good storytelling technique,

but it doesn’t work well if overused. Instead, I’ll start with a more

traditional narrative style that builds a higher degree of suspense.

And so we set o� on this adventure together.

2 PEDANT: A SYNTAX AND TYPE SYSTEM

FOR ENFORCING PEDANTIC STYLE RULES

In this section, we begin to develop Pedant, a language equipped

with a type system to enforce the pedantic style rules we discussed

in the introduction. Figure 3 gives the syntax of Pedant, an ML-

style calculus extended with visible whitespace (␣, \n). The calculus

consists of integers, Booleans, lambdas, pairs, and the relevant

elimination forms (including let-binding for pairs).

The typing judgment for Pedant is Γ ¢ e :
m
Ä
¿

n
, meaning that

under variable context Γ, the expression e has type Ä , starts withm

columns of whitespace, and is at most n columns wide. The type

also includes a description ¿ of e’s newlines, which can be ¦ (“top”,

starts with a newline), § (“bottom”, ends with a newline), I (“both”,

starts and ends with a newline), (“internal”, does not start or end

with a newline but is not all on one line), and ∅ (“none”, is all on

one line).

Figure 4 gives the typing rules for Pedant. The variable rule T-

Var looks x up in the context and types x with the given type.

Its width is |x |, the number of characters in the variable name.

We assume variable names do not contain whitespace, so the left

is 0 and the newline description is ∅. The introduction rules for

integers and booleans are straightforward as well. The remaining

rules are standard as far as the introduction and elimination of

types Ä goes, but the whitespace-relevant parts of the rules are

somewhat1 nonstandard, and so we’ll describe them very brie�y

before going way too quickly on to the next section of the paper. As

an example, there are three rules for “if”. Rule bool-E1 assumes that

1I’m hoping there will be an award for “biggest understatement” this year

3

16

SIGBOVIK 2022, Stefan Muller

Γ,x :Ä ¢ x :
0
Ä
∅

|x |

(Var)

Γ ¢ n :
0
int

∅

|n |

(int-I)

Γ ¢ true :
0
bool

∅

4

(bool-I1)
Γ ¢ false :

0
bool

∅

5

(bool-I2)

Γ,x :Ä1 ¢ e :
m+1

Ä2
∅

n

Γ ¢ fun␣x ␣−> e :
0
Ä1 → Ä2

∅

4+ |x |+4+m+n

(→-I1)
Γ,x :Ä1 ¢ e :

m+1
Ä2

¦

n

Γ ¢ fun␣x ␣−> e :
0
Ä1 → Ä2

max(m+1+n,4+ |x |+4)

(→-I2)

Γ ¢ e1 :
m
Ä1 → Ä2

∅

n
Γ ¢ e2 :

j
Ä1

∅

k

Γ ¢ e1␣e2 :
m
Ä2

∅

n+1+j+k

(→-E1)
Γ ¢ e1 :

m
Ä1 → Ä2

§

n+1
Γ ¢ e2 :

m+1
Ä1

n

Γ ¢ e1␣e2 :
m
Ä2

n+1

(→-E2)

Γ ¢ e1 :
m
Ä1 → Ä2lΦ

n+1
Γ ¢ e2 :

m+1
Ä1

¦

n

Γ ¢ e1␣e2 :
m
Ä2

n+1

(→-E3)

Γ ¢ e1 :
m
Ä1

∅

n
Γ ¢ e2 :

j
Ä2

∅

k

Γ ¢ (e1, e2)0Ä1 × Ä2
∅

m+n+j+k+3
:
(×-I1)

Γ ¢ e1 :
m
Ä1

n
Γ ¢ e2 :

m+1
Ä2

¦

n

Γ ¢ true :
0
Ä1 × Ä2

m+n+1

(×-I2)

Γ ¢ e1 :
m
Ä1 × Ä2

∅

n
Γ,x :Ä1,y :Ä2 ¢ e2 :

j+1
Ä ′

∅

k

Γ ¢ let (x , ␣y) = e1 in e2 :
0
Ä ′

∅

5+ |x |+2+ |y |+3+m+n+3+j+1+k

(×-E1)
Γ ¢ e1 :

m
Ä1 × Ä2

∅

n
Γ,x :Ä1,y :Ä2 ¢ e2 :

j+1
Ä ′

I
k

Γ ¢ let (x , ␣y) = e1 in e2 :
0
Ä ′

max(5+ |x |+2+ |y |+3+m+n+3, j+1+k)

(×-E2)

Γ ¢ e1 :
m+1

Ä1 × Ä2
I
n

Γ,x :Ä1,y :Ä2 ¢ e2 :
m+1

Ä ′
I
n

Γ ¢ let (x , ␣y) = e1 in e2 :
0
Ä ′

max(5+ |x |+2+ |y |+3,m+1+n)

(×-E3)
Γ ¢ e1 :

m+1
bool

∅

n
Γ ¢ e2 :

j+1
Ä
∅

k
Γ ¢ e3 :

i+1
Ä
∅

l

Γ ¢ if e1␣then e2␣else e3 :
0
Ä
∅

2+m+1+n+5+j+1+k+5+i+1+l

(bool-E1)

Γ ¢ e1 :
m+1

bool
∅

n
Γ ¢ e2 :

j+1
Ä

I
k

Γ ¢ e3 :
j+1

Ä
¦

k

Γ ¢ if e1␣then e2␣else e3 :
0
Ä

max(2+m+1+n, j+1+k)

(bool-E2)
Γ ¢ e1 :

m+1
bool

I
n

Γ ¢ e2 :
m+1

Ä
I
n

Γ ¢ e3 :
m+1

Ä
¦

n

Γ ¢ if e1␣then e2␣else e3 :
0
Ä

max(4,m+1+n)

(bool-E3)

Γ ¢ e1 :
m
Ä1

∅

n
Γ,x :Ä1 ¢ e2 :

j+1
Ä2

∅

k

Γ ¢ let␣x ␣ = e1␣in e2 :
0
Ä ′

∅

4+ |x |+2+m+n+3+j+1+k

(Let1)

Γ ¢ e1 :
m
Ä1

∅

n
Γ,x :Ä1 ¢ e2 :

j+1
Ä2

I
k

Γ ¢ let␣x ␣ = e1␣in e2 :
0
Ä ′

max(4+ |x |+2+m+n+3, j+1+k)

(Let2)

Γ ¢ e1 :
m+1

Ä1
I
n

Γ,x :Ä1 ¢ e2 :
m+1

Ä2
I
n

Γ ¢ let␣x ␣ = e1␣in e2 :
0
Ä ′

max(4+ |x |+2,m+1+n)

(Let3)
Γ ¢ e :

m
Ä
∅

n

Γ ¢ ␣e :
m+1

Ä
∅

n

(Space1)
Γ ¢ e :

m
Ä
∅

n

Γ ¢ e␣ :
m
Ä
∅

n+1

(Space2)
Γ ¢ e :

m
Ä

n

Γ ¢ \ne :
m
Ä
¦

n

(Newline1)

Γ ¢ e :
m
Ä
§

n

Γ ¢ \ne :
m
Ä

I
n

(Newline2)
Γ ¢ e :

m
Ä

n

Γ ¢ e\n :
m
Ä
§

n

(Newline3)
Γ ¢ e :

m
Ä
¦

n

Γ ¢ e\n :
m
Ä

I
n

(Newline2)
Γ ¢ e :

m
Ä
¿

n1
n1 f n2

Γ ¢ e :
m
Ä
¿

n2

(Sub1)

Γ ¢ e :
m
Ä
∅

n

Γ ¢ e :
m
Ä

n

(Sub2)

Figure 4: Statics of Pedant

none of the three subexpressions contain newlines, and therefore

the entire if statement appears on one line:

if b then f () else g ()

All three subexpressions must begin with at least one space,

in order to separate the expression from the preceding keyword.

This is enforced with the +1 on the left component of the type

of each subexpression. Rule bool-E2 assumes that the condition

has no newlines, but requires the “then” branch to have starting

and ending newlines and the “else” branch to have a top newline.

As before, all subexpressions must begin with whitespace. Now,

however, this results in requiring at least one space of indentation

for the two branches, as both are required to begin with a newline.

if b then

f ()

else

g ()

Finally, rule bool-E3 additionally assumes that the condition has

starting and ending newlines.

17

A Type-and-A�ect System for Semisignificant Whitespace SIGBOVIK 2022,

if b then f ()

else g ()

if b then

f ()

else g ()

if

b then

f ()

else g ()

Figure 5: Badly formatted expressions that can’t typecheck

in Pedant.

if

b

then

f ()

else

g ()

Note that because these are the only three typing rules for “if”,

none of the abominations in Figure 5 can typecheck.

In all cases, the left column of the if expression is 0, because the

expression does not start with whitespace. The width is calculated

appropriately from the widths of the subexpressions and keywords.

For multiline expressions, we take the maximum width. Note that

in bool-E2, for example, both branches are assigned the same width.

To make this work, we allow for a form of subtyping (Sub1) which

we call width subtyping, a name so well-suited to this concept

that I won’t bother Googling for whether or not it’s already used

for a di�erent concept. This allows a narrower expression to be

assigned a wider type for the purposes of taking the maximum

width of several subexpressions. We also allow for another form

of subtyping on line breaks (Sub2) in which “none” is considered a

subtype of “internal”. For this, we will use the similarly well-suited

term depth subtyping.

At this point in a type systems paper, we would normally de�ne

a dynamic semantics for the language, prove progress and preser-

vation and declare success. The astute reader may notice, however,

that the type system we have de�ned fails at even the most basic

aspects of being a type system. In fact, not only would preservation

be false for any reasonable dynamic semantics, but we can’t even

prove a reasonable substitution lemma:

x : int ¢ x :
0
int

∅

1

[42/x]x = 42

· ¢ 42 :
0
int

∅

2

At this point, we have several options:

(1) We could admit that this whole idea is a farce and these are

entirely syntactic properties that we have no business trying

to enforce semantically, and scrap this idea altogether.

(2) We could quietly admit the above but recognize that this

whole conference is a farce and decide that it doesn’t matter.

(3) We could double down and go to even more ridiculous

lengths to try to make this idea at least seem reasonable.

For maximum comedic e�ect, we will, of course, proceed with

Option 3.

let c = "SIGBOVIK␣2022" in

let how = "really␣really␣really␣" in

let what = "bad␣idea" in

"This␣" ^ c ^ "␣paper␣is␣a␣" ^ how ^ what

let how = "really␣really␣really␣" in

let what = "bad␣idea" in

"This␣" ^ "SIGBOVIK␣2022" ^ "␣paper␣is␣a␣" ^ how ^ what

let what = "bad␣idea" in

"This␣" ^ "SIGBOVIK␣2022" ^ "␣paper␣is␣a␣" ^ "really␣really␣really␣" ^

...

Figure 6: A single-step execution of an OCaml expression.

3 THE LANGUAGE PRETTYPRINT

Before attempting to make the ideas of the previous section kinda

sorta work, we need a �imsy justi�cation for doing so. Most func-

tional languages are presented with an operational semantics that

involves transforming expressions (e.g. applying substitutions, re-

ducing “if” statements when the condition is evaluated), as opposed

to imperative languages, which are generally presented as static

code with a program counter that captures the runtime control

�ow. This poses a problem for debuggers for functional languages:

while debuggers for imperative languages can easily show the line

of source code corresponding to the point of execution and dis-

play the values of variables, debuggers for functional languages are

generally not able to do something immediately analogous. Part of

the problem is that functional languages are generally not actually

evaluated in a way that closely resembles the abstract operational

semantics presentation: they are either changed heavily during

compilation or interpreted using more e�cient techniques. How-

ever, one could imagine building an educational debugger for a

functional language that allows novice functional programmers to

single-step programs in a way that follows the formal operational

semantics they learned for the language. This then presents the

problem of displaying the program at any point during execution.

One option would be to maintain the AST of the program as it is

transformed by execution, and pretty-print it when needed. How-

ever, this would obscure many of the transformations. Statements

that had been spread across many lines might now be condensed

into one or vice versa, and it would be di�cult for novices to follow

how the code moves across the screen. It would be preferable for

this contrived example if the line breaks in the original code were

maintained, so the steps were clear. But then, with no restrictions

on input programs, it would be possible for some of these interme-

diate expressions to be too wide to properly display. Consider the

example in Figure 6.

This �imsy justi�cation gives us a new, and actually less ridicu-

lous, interpretation for the types of expressions: the type should

describe the maximum width that an expression will have during

execution, rather than simply the width of the source expression.

This now begins to more closely resemble an e�ect or type-and-e�ect

system. As with most e�ect systems, this requires us to annotate

more types. For example, it is now no longer su�cient to describe

a function type by its input and output base types, its left column

and its width. E�ect systems for call-by-value languages would

18

SIGBOVIK 2022, Stefan Muller

a�ect

verb tr.

(1) (of things) to tend toward habitually or naturally.

(2) to assume arti�cially, pretentiously, or for e�ect:

to a�ect a Southern accent.

Figure 7: De�nitions of a�ect, paraphrased from Dictio-

nary.com [1]

generally annotate the function type (or possibly the return type,

depending on the desired notation) with the e�ects that might occur

during execution of the function. We could similarly annotate the

return type of a function with a left, width and newline description,

indicating the behavior of the function as it executes. However,

this will depend on the width and line breaks of the substituted

arguments. Consider the following function:

fun x -> "Is␣this␣too␣long?␣It␣depends␣on␣" ^ x

So we must also annotate the domains of functions with their

width and line breaks (it will turn out not to be necessary to anno-

tate the left of domains because of how we design the dynamics).

This is not generally the case in e�ect systems for call-by-value

languages because passed arguments will be values, which will by

de�nition have no e�ects. We observe, however that the width of an

expression is not really an e�ect, but rather an innate property of the

expression which we must consider for both values and non-value

expressions. Because of this, we refer to our novel construction as

a type-and-a�ect system (see Figure 7).

In keeping with our new motivation, we will call this language

PrettyPrint. The revised statics appear in Figure 8. For the most

part, the rules are similar to those for Pedant. In addition to an-

notating the types of codomains and domains of functions (and

the components of product types), we now annotate variables in

the context with their width and newlines. The variable rule then

assigns a variable x the maximum of |x | and the width from the

context. The function application rules ensure that function argu-

ments match the function’s expected width and newlines, with the

caveat that because of depth subtyping, arguments with no line

breaks, i.e., arguments written in one row of text, can be passed to

functions expecting multi-row “internal” arguments, allowing us a

form of row polymorphism (again, no Googling necessary).

Finally, we present the dynamics of PrettyPrint in Figure 9.

The dynamics depend on two auxiliary de�nitions, strip(e) and ←−e ,

de�ned in Figure 10. The function strip(e) strips leading and trailing

whitespace from an expression. The function ←−e removes indenta-

tion from e . It is de�ned in terms of Indentation(e), which calculates

the indentation level of e . We remove indentation and trailing and

leading whitespace before performing substitution. We must also

look past whitespace to perform reductions. Otherwise, the seman-

tics are standard.

We will now state, without any attempt at proof, several facts

about the correctness of these operations that are probably at least

close to true.

Lemma 1. If Γ ¢ e :
m
Ä
¿

n
then Γ ¢ ←−e :

0
Ä
¿

n−Indentation(e)
.

Lemma 2. If Γ ¢ e :
m
Ä
¿

n
then Γ ¢ strip(e) :

m
Ä

n
. If Γ ¢ e :

m
Ä
∅

n

then Γ ¢ strip(e) :
m
Ä
∅

n
.

Lemma 3 (Substitution). If Γ,v :Ä1
¿ 1

k
¢ e :

m
Ä2
¿ 2
n

and Γ ¢ v :

j
Ä1
¿ 1

k
, then Γ ¢ e[strip(←−v)/x] :

m
Ä2
¿ 2
n
.

Finally, we can state and not attempt to prove type safety.

Theorem 1 (Preservation). If • ¢ e :
m
Ä
¿

n
and e → e ′ then • ¢

e ′ :
m
Ä
¿

n
.

Of course, the canonical forms lemma now becomes interesting

because irreducible values may have leading or trailing whitespace.

Lemma 4 (Canonical Forms).

(1) If • ¢ v :
m
int

¿

n
, then strip(v) = n for some n.

(2) If • ¢ v :
m
bool

¿

n
, then strip(v) = true or strip(v) = false.

(3) If • ¢ v :
m
Ä1 → Ä2

¿

n
, then strip(v) = fun x −> e .

(4) If • ¢ v :
lm

Ä1
¿ 1
n

×
j
Ä2
¿ 2

k

¿

w
then strip(v) = (v1,v2).

Theorem 2 (Progress). If • ¢ e :
m
Ä
¿

n
then e is a value or there

exists e ′ such that e → e ′.

4 IMPLEMENTATION

Yes, you read that section header correctly. This paper is not a joke.

Well, it is. But it’s a joke to which the author is deeply, deeply

committed for reasons that are not clear in the slightest. So yeah,

we implemented a mostly2-working parser, type checker and single-

step interpreter for PrettyPrint.

Type inference is about as awful as you’d expect. The type sys-

tem is too weird for standard uni�cation algorithms, so instead, the

implementation traverses the program and generates a set of con-

straints on the width, left and newline behavior of each expression.

At the end, a constraint is added restricting the overall width of

the expression to be, of course, 80. We then solve these constraints

using Z3 [5]. Note that the constraints on the width and left form

an integer linear program (ILP). We leave it to future work to de-

termine whether arbitrary ILPs can be encoded as PrettyPrint

programs, making typechecking NP-complete.

After the program is rejected, revised, rejected again, and revised

a few more times, and �nally typechecked, the completed program

is displayed and the user given the option to step the program one

step at a time or to completion, as shown in Figure 11. This paper

has already gone on too long, so rather than further bore you with

details of the implementation, we’ll give a few observations about

our experience doing the implementation in a nice, easy-to-digest

list:

• As the name of the language suggests, pretty-printing, which,

frankly, I’ve always found to be the most di�cult part of

language implementation, is now trivial.

• Lexing, typically the most trivial part of language implemen-

tation, is now even more trivial as you don’t even need to

�gure out how to skip over whitespace.

2well, somewhat

19

A Type-and-A�ect System for Semisignificant Whitespace SIGBOVIK 2022,

Γ,x :Ä
¿

n
¢ x :

0
Ä
¿

max(n, |x |)

(Var)
Γ ¢ n :

0
int

∅

|n |

(int-I)

Γ ¢ true :
0
bool

∅

4

(bool-I1)
Γ ¢ false :

0
bool

∅

5

(bool-I2)

Γ,x :Ä1 ¢ e :
m+1

Ä2
∅

n

Γ ¢ fun␣x ␣−> e :
0
Ä1 → Ä2

∅

4+ |x |+4+m+n

(→-I1)
Γ,x :Ä1 ¢ e :

m+1
Ä2

¦

n

Γ ¢ fun␣x ␣−> e :
0
Ä1 → Ä2

max(m+1+n,4+ |x |+4)

(→-I2)

Γ ¢ e1 :
m
Ä1

∅

k
→ Ä2

∅

n
Γ ¢ e2 :

j
Ä1

∅

k

Γ ¢ e1␣e2 :
m
Ä2
¿

n+1+j+k

(→-E1)
Γ ¢ e1 :

m
Ä1

n
→ Ä2

§

n+1
Γ ¢ e2 :

m+1
Ä1

n

Γ ¢ e1␣e2 :
m
Ä2

n+1

(→-E2)

Γ ¢ e1 :
m
Ä1

n
→ Ä2

n+1
Γ ¢ e2 :

m+1
Ä1

¦

n

Γ ¢ e1␣e2 :
m
Ä2

n+1

(→-E3)

Γ ¢ e1 :
m
Ä1

∅

n
Γ ¢ e2 :

j
Ä2

∅

k

Γ ¢ (e1, e2) :
0
Ä1 × Ä2

∅

m+n+j+k+3

(×-I1)
Γ ¢ e1 :

m
Ä1

n
Γ ¢ e2 :

m+1
Ä2

¦

n

Γ ¢ (e1, e2) :
0
Ä1 × Ä2

m+n+1

(×-I2)

Γ ¢ e1 :
m

�

Ä1
¿ 1
w1

× Ä2
¿ 2
w2

�

∅

n
Γ,x :Ä1

¿ 1
w1
,y :Ä2

¿ 2
w2

¢ e2 :
j+1

Ä ′
∅

k

Γ ¢ let (x , ␣y) = e1 in e2 :
0
Ä ′

∅

5+ |x |+2+ |y |+3+m+n+3+j+1+k

(×-E1)

Γ ¢ e1 :
m

�

Ä1
¿ 1
w1

× Ä2
¿ 2
w2

�

∅

n
Γ,x :Ä1

¿ 1
w1
,y :Ä2

¿ 2
w2

¢ e2 :
j+1

Ä ′
I
k

Γ ¢ let (x , ␣y) = e1 in e2 :
0
Ä ′

max(5+ |x |+2+ |y |+3+m+n+3, j+1+k)

(×-E2)

Γ ¢ e1 :
m+1

�

Ä1
¿ 1
w1

× Ä2
¿ 2
w2

�

I
n

Γ,x :Ä1
¿ 1
w1
,y :Ä2

¿ 2
w2

¢ e2 :
m+1

Ä ′
I
n

Γ ¢ let (x , ␣y) = e1 in e2 :
0
Ä ′

max(5+ |x |+2+ |y |+3,m+1+n)

(×-E3)

Γ ¢ e1 :
m+1

bool
∅

n
Γ ¢ e2 :

j+1
Ä
∅

k
Γ ¢ e3 :

i+1
Ä
∅

l

Γ ¢ if e1␣then e2␣else e3 :
0
Ä
∅

2+m+1+n+5+j+1+k+5+i+1+l

(bool-E1)
Γ ¢ e1 :

m+1
bool

∅

n
Γ ¢ e2 :

j+1
Ä

I
k

Γ ¢ e3 :
j+1

Ä
¦

k

Γ ¢ if e1␣then e2␣else e3 :
0
Ä

max(2+m+1+n, j+1+k)

(bool-E2)

Γ ¢ e1 :
m+1

bool
I
n

Γ ¢ e2 :
m+1

Ä
I
n

Γ ¢ e3 :
m+1

Ä

n

Γ ¢ if e1␣then e2␣else e3 :
0
Ä

max(4,m+1+n)

(bool-E3)
Γ ¢ e1 :

m
Ä1

∅

n
Γ,x :Ä1

∅

n
¢ e2 :

j+1
Ä2

∅

k

Γ ¢ let␣x ␣ = e1␣in e2 :
0
Ä ′

∅

4+ |x |+2+m+n+3+j+1+k

(Let1)

Γ ¢ e1 :
m
Ä1

∅

n
Γ,x :Ä1

∅

n
¢ e2 :

j+1
Ä2

I
k

Γ ¢ let␣x ␣ = e1␣in e2 :
0
Ä ′

max(4+ |x |+2+m+n+3, j+1+k)

(Let2)
Γ ¢ e1 :

m+1
Ä1

I
n

Γ,x :Ä1
I
n
¢ e2 :

m+1
Ä2

I
n

Γ ¢ let␣x ␣ = e1␣in e2 :
0
Ä ′

max(4+ |x |+2,m+1+n)

(Let3)

Γ ¢ e :
m
Ä
∅

n

Γ ¢ ␣e :
m+1

Ä
∅

n

(Space1)
Γ ¢ e :

m
Ä
∅

n

Γ ¢ e␣ :
m
Ä
∅

n+1

(Space2)
Γ ¢ e :

m
Ä

n

Γ ¢ \ne :
m
Ä
¦

n

(Newline1)
Γ ¢ e :

m
Ä
§

n

Γ ¢ \ne :
m
Ä

I
n

(Newline2)

Γ ¢ e :
m
Ä

n

Γ ¢ e\n :
m
Ä
§

n

(Newline3)
Γ ¢ e :

m
Ä
¦

n

Γ ¢ e\n :
m
Ä

I
n

(Newline2)
Γ ¢ e :

m
Ä
¿

n1
n1 f n2

Γ ¢ e :
m
Ä
¿

n2

(Sub1)
Γ ¢ e :

m
Ä
∅

n

Γ ¢ e :
m
Ä

n

(Sub2)

Figure 8: Statics of PrettyPrint

• Producing reasonable type error messages, possibly the sec-

ond most di�cult part of language implementation behind

pretty printing, is actually a little less painful than you might

expect for this language. We associate semantic and posi-

tion information with each constraint passed to Z3. If the

constraints are unsatis�able, we look up this information for

20

SIGBOVIK 2022, Stefan Muller

e1 → e ′1

e1␣e2 → e ′1␣e2

e ′2 → e ′2

v1␣e2 → v1␣e ′2

strip(v1) = fun␣x ␣−> e

v1␣v2 → e[strip(←−v2)/x]

e1 → e ′1

(e1, e2) → (e ′1, e2)

e ′2 → e ′2

(v1, e2) → (v1, e
′
2)

e1 → e ′1

let (x , ␣y) = e1 in e2 → let (x , ␣y) = e ′1 in e2 let (x , ␣y) = (v1,v2) in e2 → e2[strip(
←−v1)/x][strip(

←−v2)/y]

e1 → e ′1

let␣x ␣ = e1␣in e2 → let␣x ␣ = e ′1␣in e2 let␣x ␣ = v␣in e2 → e2[strip(
←−v)/x]

e1 → e ′1

if e1␣then e2␣else e3 → if e ′1␣then e2␣else e3

strip(v) = true

if v␣then e2␣else e3 → e2

strip(v) = false

if v␣then e2␣else e3 → e3

e → e ′

␣e → ␣e ′
e → e ′

e␣ → e ′␣

e → e ′

\ne → \ne ′

e → e ′

e\n → e ′\n

Figure 9: Dynamics of PrettyPrint

each constraint in the unsat core and convert it to halfway-

decent error messages.

5 CONCLUSION

I �rst had the idea for this paper right after SIGBOVIK 2020 (right

after SIGBOVIK is, of course, when I have all of my best SIGBOVIK

paper ideas). At least, I thought, I had a year to make it actually work

out. Of course, I forgot all about this until January 2021 and �gured

I still had enough time to throw something together. Unfortunately,

making this really work, which I was determined to do, took quite

a bit more time than that. So, I missed the deadline and �gured,

well, now I have another whole year.

And forgot about it until January 2022. But this time, I managed

to scrape it together and submit.

Two years, two core calculi and way too much implementation

e�ort later, we have a dumb language that enforces pedantic white-

space constraints during type checking. Was it worth it? That’s for

you to decide.

REFERENCES
[1] [n. d.]. A�ect. https://www.dictionary.com/browse/a�ect. Accessed: 3/21/2021.
[2] [n. d.]. Style Guide for C. https://cs50.readthedocs.io/style/c/. Accessed: 3/21/2021.
[3] [n. d.]. Whitespace .NET. Accessed: 3/24/2022.
[4] L.W. Cannon, R.A. Elliott, L.W. Kirchho�, et al. [n. d.]. Recommended C Style and

Coding Standards.
[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In Pro-

ceedings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340.

21

A Type-and-A�ect System for Semisignificant Whitespace SIGBOVIK 2022,

strip(fun␣x ␣−> e) = fun␣x ␣−> rstrip(e)

strip(e1␣e2) = lstrip(e1)␣rstrip(e2)

strip(let (x , ␣y) = e1 in e2) = let (x , ␣y) = e1 in rstrip(e2)

strip(let␣x ␣ = e1␣in e2) = let␣x ␣ = e1␣in rstrip(e2)

strip(if e1␣then e2␣else e3) = if e1␣then e2␣else rstrip(e3)

strip(␣e) = strip(e)

strip(e␣) = strip(e)

strip(\ne) = strip(e)

strip(e\n) = strip(e)

lstrip(e1␣e2) = lstrip(e1)␣e2

lstrip(␣e) = lstrip(e)

lstrip(e␣) = lstrip(e)␣

lstrip(\ne) = lstrip(e)

lstrip(e\n) = lstrip(e)\n

rstrip(fun␣x ␣−> e) = fun␣x ␣−> rstrip(e)

rstrip(e1␣e2) = e1␣rstrip(e2)

rstrip(let (x , ␣y) = e1 in e2) = let (x , ␣y) = e1 in rstrip(e2)

rstrip(let␣x ␣ = e1␣in e2) = let␣x ␣ = e1␣in rstrip(e2)

rstrip(if e1␣then e2␣else e3) = if e1␣then e2␣else rstrip(e3)

rstrip(␣e) = ␣rstrip(e)

rstrip(e␣) = rstrip(e)

rstrip(\ne) = \nrstrip(e)

rstrip(e\n) = rstrip(e)

Indentation(v) = 0

Indentation(␣e) = 1 + Indentation(e)

Indentation(e␣) = Indentation(e)

Indentation(\ne) = Indentation(e)

Indentation(e\n) = Indentation(e)

←−␣e (m+1,n)
=

←−e (m,n)

←−e␣ (m,n)
=

←−e (m,n)␣
←−−
\ne(m,n)

= \n
←−e (n,n)

←−−
e\n(m,n)

=
←−e (m,n)\n

←−e =
←−e (Indentation(e), Indentation(e))

Figure 10: Auxiliary de�nitions for dynamics.

$./pdb prog.prp

Loading prog.prp...

Type checking...

Done.

let x = "I can't believe" in

let y = "this works" in

(x, y)

s

let y = "this works" in

("I can't believe", y)

s

("I can't believe", "this works")

s

Execution is complete.

("I can't believe", "this works")

q

Figure 11: Example run of the PrettyPrint interpreter.

22

br++: A MUCH NEEDED EXTENSION TO brainfuck

CÉDRIC HO THANH

Abstract. TODO: Write the abstract.

1. Introduction

In the year of the lord 2022, Urban Müller’s celebrated brainfuck langage is
used in numerous industries. For example, my net banking app is written in
brainfuck so it’s super dooper fast and reliable. It is no surprise then that
brainfuck developers are highly sought after in all branches of the software devel-
opment industry, with an normalized average median income of $0.5.

Nonetheless, after almost 30 years of continued use, brainfuck starts to show
its age. Many trendy paradigms and buzzwords are absent from the langage, such
as “fullstack”, “noSQL”, “blockchain”, and even “equal pay”. In this paper, we
introduce brainfuck++ (hereafter br++ for short), an extension that adds modern
constructs to brainfuck. While we do not claim to address all the selling points
above, we are con昀椀dent this update lays some robust foundations to tackle them
efficiently in ulterior works. Just like we tackle this segway to our sponsors.

Acknowledgments. Thank you to HardBoiledEgg for sponsoring this episode of
UNIX Tech Tips. HardBoiledEgg retails all your favorite tech goodies, from old
CPUs to faulty motherboards, and o昀昀ers a premium 24/7 egg yolk-based customer
support. They amazing return policy makes sure to call you out when you return
a defective product, and even when you don’t. So what are you waiting for? Don’t
let your government have all the fun and start getting egg-screwed today with
HardBoiledEgg. Check them out with the link in the description below. You’ve
been reading this entire spot with Linus’s voice stop lying.

2. Vanilla extract brainfuck

brainfuck is a surprisingly simple langage. The execution environment (or
BVM) consists of an in昀椀nite array of 8-bits bytes1 A called the tape, and a data
pointer p ∈ N. The data pointer and the cells of A are initialized to 0. The langage
consists of 8 keywords, echoing the bit size of bytes (8) in a heavenly synergy only
fathomable by the most neurologically endowed individuals.

Date: March 2022.
Key words and phrases. Programing langage, brainfuck, concurrency, machine learning.
1historically, a 昀椀xed 30 000-cell array, but memory is cheap nowadays eh?

1

4

23

2 C. HO THANH

Keyword Semantics
> p← p+ 1
< p← p− 1
+ Ap ← Ap + 1
- Ap ← Ap − 1
. Outputs Ap

, Inputs 1 byte into Ap

[Noop woop woop
] If Ap ̸= 0, then jump to the matching [, skip o.w.

If at any point in the execution, the data pointer p becomes negative and < 0,
then a DataPointerUnderflowError exception is raised. Likewise, if p ≥ ∞, then
a DataPointerOuttaHereError exception is raised. It is common practice to raise
these twice, in case the 昀椀rst one is lost. For convenience, white spaces, carriage
returns and tabulations are accepted by the interpreter, but have a noop woop
woop semantics. Technically, non-well bracketed programs are valid, but if a]
incurs a jump to a non-existing [, a generic kernel panic is initiated (twice).

Here is a simple brainfuck program that prompts for 2 bytes (or reads them
from STDIN) and outputs their sum:

1 , > , [- > + <] > .

Theorem 2.1. brainfuck is Turing-complete.

Proof. The following program writes Turing on the tape so we should be good.
1 +
2 +
3 + + + + + + + + + + > +
4 +
5 +
6 + + + + + + + + + + + + + + + + + > + + + + + + + + + + + + + + + + + + +
7 +
8 +
9 + > + + + + + + + + + + + + + + +

10 +
11 +
12 + + + + + + + + + + + + + + + + > +
13 +
14 +
15 + + + + + + + + + + + + + + + + > +
16 +
17 +
18 + + + + + + + + +

□

3. brainfuck++

We now build upon section 2 and provide a complete speci昀椀cation of br++.
Buckle up pleb.

3.1. Headers. A br++ program may start with a header, which is just a sequence
of keywords specifying various properties and runtime parameters.

24

br++: A MUCH NEEDED EXTENSION TO brainfuck 3

• Bigbyte. The B header keyword speci昀椀es that the tape cells are bigbytes
instead of traditional 8-bits bytes. A bigbyte is 9-bits big. 2

• Root privileges. The R header keyword indicates that the program should
run with root privileges. The BVM escalates using standard tools such
as dirtyc0w, Pegasus, Dirty pipe, phishing the system administrator, $5
wrench, etc.

• Archlinux support. If A is speci昀椀ed in the header, the program will
output the string I use arch btw. (with a newline) everytime the code
pointer moves.

• Non-horizontal semantics. Instead of being a horizontal array, the |
transforms the tape into a vertical one. The keywords > and < are replaced
by ^ and v respectively.

• Unicode support. Classically, brainfuck program 昀椀les are encoded in
ASCII. The 8 directive informs the BVM that the 昀椀le is encoded in UTF8.

• Online assistance. The H header enables the online assistance facilities.
When an exception is raised, the BVM opens StackOver昀氀ow and queries
the exception type and any accompanying error message.

• True concurrency. The C header enables true concurrency. See sec-
tion 3.14.

3.2. Comments. Readability is key to write readable code. For that reason, this
speci昀椀cation carefully speci昀椀es what comments are: they’re like in Python. Adition-
ally, because readability is so crucial to producing high-quality code, the br++ in-
terpreter will reject programs that do not include at least one helpful comment3,
raising a CodeUnreadableError exception.

3.3. Cell packing. Even with the vast possibilities o昀昀ered by the potent bigbyte
construct, br++ o昀昀ers a paradigm to manipulate large data values. This is called cell
packing. Cell packing is accomplished with the p keyword. When the code pointer
encounters p, the integer value x of the current cell is read, and the following x
cells are considered packed.

The values of a packed cell is the binary concatenation of all values of all packed
cells to its left (or underneath if the tape is vertical). The following example is
fairly self-explanatory:

1 + + + # | 3 | 0 | 0 | 0 | 0 |
2 # ^
3 p # | 3 | 0 : 0 : 0 | 0 |
4 # ^ The next 3 cells are packed
5 > > > # | 3 | 0 : 0 : 0 | 0 |
6 # ^
7 - # | 3 | 255 : 255 : 255 | 0 |
8 # ^
9 . # Outputs 2^24 - 1 = 16777215

10 < # | 3 | 255 : 255 : 255 | 0 |
11 # ^
12 . # Outputs 2^16 - 1 = 65535
13 - # | 3 | 255 : 254 : 255 | 0 |

2A bigbite in my bigmac is about 25% of the burger, meaning I can eat it in about 4 bigbites.
Comment down below with your high score!

3The precise semantic of helpful is left at the discretion of the implementation.

25

4 C. HO THANH

14 # ^
15 . # Outputs 2^16 - 2 = 65534
16 < # | 3 | 255 : 254 : 255 | 0 |
17 # ^
18 . # Outputs 255

If a 0-cell packing is attempted, a PackingEmptyOniichanNoBakaError excep-
tion is raised.

3.4. Convention: 昀氀oating point numbers. In br++, single precision 昀氀oating
point numbers are simply sequences of 4 packed cells. For better buoyancy, when
working with bigbytes, the high 4 bits of the 昀椀rst cell are considered as padding. For
example, the Nice constant on tape would look like this | 66 : 139 : 97 : 72 |.

3.5. String literals. A string literal starts and ends with the keyword " and can
contain any ASCII character verbatim. The character ", however, must be escaped
as \", and the backslash \ by \\. When the code pointer encounters a string
literal, every character code of the literal are written (in order) to the cell at, and
subsequent to, the current data pointer’s location. Additionally, a null-terminator
is added. The data pointer does not move.

1 # Initial tape:
2 # | 1 | 2 | 3 | 4 | 5 | 6 |
3 # ^
4 "A\"
5 b" # A " \n b
6 # | 65 | 34 | 13 | 100 | 0 | 6 |
7 # ^

If the program is UTF8 empowered™, UTF8 strings are accepted. Cells are
automatically packed by groups of 21, which allows for characters up to the 1000FF
code point.

3.6. Heap-hop and dynamic mallocation. With this construct, we aim to
mimic the common use of explicitely allocated memory and the heap, as is done
with other (inferior) langages such as C.

Dynamic allocation is done with the malloc keyword m. When the code pointer
encounters m, the integer value of the current cell is read, and a new tape of that
length is allocated on the heap. 4

3.7. Program e x p a n s i o n. A program (and indeed, any 昀椀nite sequence of
integers) can be encoded into a single integer using the following procedure. First,
write p1, p2, p3, . . . for the sequence of prime numbers 2, 3, 5, Then, a sequence
x1, x2, x3, . . . , xn ∈ N (in our case, ASCII character codes) can be encoded as

x =
n
∏

i=1

pxi

i ,

which is oftentimes a big boy number5. For example, the sequence 1, 2, 3 is encoded
by 21× 32× 53 = 2250, while the string Hello world! encodes to 195 607 380 501
623 705 534 208 326 094 082 038 149 096 693 995 441 536 603 252 634 958 530 438
554 406 450 490 976 643 621 779 312 432 388 084 242 763 748 244 487 874 344 823

4There is no way to access this new tape or free it.
5also called Gödel’s number by the mathematical community.

26

br++: A MUCH NEEDED EXTENSION TO brainfuck 5

747 974 447 174 082 236 430 459 615 458 978 818 247 973 956 107 539 906 109 369
893 401 173 401 516 997 038 330 150 975 937 285 576 171 852 276 655 063 337 197
226 656 523 237 039 666 508 189 810 223 186 619 820 864 165 434 550 339 911 005
751 544 052 505 591 487 270 778 943 545 799 041 992 230 193 245 034 335 791 651
468 414 607 612 958 810 178 942 795 751 471 227 443 645 921 363 074 110 065 531
215 193 103 128 761 541 211 211 476 319 680 954 901 952 215 014 935 430 435 115
302 455 079 990 811 992 543 403 660 063 804 034 991 262 105 254 957 044 042 231
119 234 784 858 876 374 100 885 283 188 659 170 598 777 349 768 521 363 820 242
235 142 780 890 208 200 255 888 601 216 401 804 150 071 098 331 031 946 232 951
229 284 503 169 196 409 012 301 120 797 494 377 679 005 968 502 505 964 768 810
320 478 250 053 565 749 756 760 163 748 589 560 141 220 013 934 749 208 175 929
238 871 907 913 478 615 045 908 922 992 707 349 525 331 334 708 779 423 469 086
418 674 434 586 265 480 097 791 064 257 314 816 771 165 209 849 320 015 628 002
193 854 527 444 945 885 431 678 843 218 561 565 116 147 760 578 584 267 191 138
303 463 674 130 036 052 448 832 551 754 215 761 591 855 818 729 203 425 917 432
460 982 047 791 080 335 919 245 709 584 281 926 468 086 157 915 818 734 190 653
529 367 409 646 511 077 880 859 375 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 reversed: xi is the greatest
integer such that x is divisible by pxi

i .
Any ASCII string can be encoded and decoded using these methods, and in

particular, so can br++ programs. The æ keyword does exactly that. When en-
countered, the value of the current cell is decoded into a br++ program. The data
pointer is incremented, and the decoded program is executed. When it terminates,
the execution of the current program resumes.

Here is an example. Remember that the following concise br++ program adds
the values of the 昀椀rst two cells and writes the result to the second cell:

1 [- > + <]

Removing spaces, the encoding of this program is 4 167 109 678 750 440 801 834
791 326 555 089 952 769 865 994 828 551 024 009 245 204 715 556 129 614 039 321
687 018 746 602 136 184 526 862 195 689 060 760 391 695 350 607 989 014 685 486
097 422 187 110 755 435 087 977 407 298 280 835 543 147 132 224 053 643 001 830
439 539 087 674 077 039 427 632 653 926 400 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000. Now, if one wants to compute 1 + 1
in a distinguished manner, here is a way:

1 # We first pack 123 cells
2 "{"p # | 123 | 0 : 0 : 0 : 0 : ...
3 # ^
4 + + + ... # We then write 41671... in the next 123 packed cells
5 # | 123 | 6 : 134 : 81 : 96 : ... : 0 |
6 # ^
7 > + > + # We now write the program 's inputs
8 < < # | 123 | 6 : 134 : 81 : 96 : ... : 0 | 1 | 1 |
9 # ^

10 æ # | 123 | 6 : 134 : 81 : 96 : ... : 0 | 0 | 2 |
11 # ^

3.8. Strong typing. 6

6I don’t think so.

27

6 C. HO THANH

3.9. File handling. Reading a 昀椀le is accomplished using the r keyword. When
the code pointers encounters it, the BVM reads a null-terminated 昀椀lepath string
from the tape (starting at the data pointer’s current position). Then, the content of
the 昀椀le is written to the tape (after the null-terminator of the 昀椀lepath string). The
content is itself null-terminated. Finally, the data pointer is moved to the begining
of the 昀椀le. For example, the following prints the content of the 昀椀le foo:

1 "foo" # | 102 | 111 | 111 | 0 |
2 # ^
3 o # | 102 | 111 | 111 | 0 | ??? | ??? | ...
4 # ^
5 [. >]

The value of the “???” cells of course depend on the content of the 昀椀le.
The semantics of the write keyword w is similar. When encountered, a null-

terminated 昀椀lepath string from the tape (starting at the data pointer’s current
position). The data pointer is moved to the cell following the null-terminator, and
a second 昀椀le content string is read. Then, the content is written in the 昀椀le. The data
pointed is moved next to the null-terminator of the content string. For example,
the following program (over)writes the string "bar" in the 昀椀le foo:

1 "foo" > > > > # | 102 | 111 | 111 | 0 | 0 |
2 # ^
3 "bar" < < < < # | 102 | 111 | 111 | 0 | 98 | 97 | 114 | 0 |
4 # ^
5 w # | 102 | 111 | 111 | 0 | 98 | 97 | 114 | 0 | 0 |
6 # ^

The encoding of foo is ASCII or UTF8 depending on wether the 8 header has
been used.

3.10. Corollary: modular programming. With 昀椀le reading capabilities, it is
now easy to adopt a modular programming methodology, one where a program is
split into reusable chunks, each written in a separate 昀椀le. First, the content of the
module is read and written to tape using r. Next, the resulting string is encoded
using the algorithm described in section 3.7 (don’t forget to pack enough cells!).
Lastly, the program is expanded and executed using æ.

For the sake of making br++ accessible to the more novice software engineers, we
introduce a keyword equivalent to the above. A module is simply a 昀椀le containing
br++ code and having the .bpp, .b++, .bfpp, or .bf++ extension. The name of a
module is the 昀椀lename without the extension. Importing a module is accomplished
using the i keyword. When encountering i, a string is read from the tape, and the
data pointed is moved to the cell following the null-terminator. Then, the content
of the module (whose 昀椀lename stem is the string that has just been read) is read and
executed. Once the imported program terminates, the current program is resumed.
For example, the following imports and executes the test module:

1 "test" # | 116 | 101 | 115 | 116 | 0 |
2 # ^
3 i # Module "test" starts with the following tape
4 # | 116 | 101 | 115 | 116 | 0 | 0 |
5 # ^

28

br++: A MUCH NEEDED EXTENSION TO brainfuck 7

Figure 1. FS capabilities comparison chart

If many competing 昀椀les are present, e.g. test.bpp and test.b++, one is chosen
at random. A ModuleNotFoundError exception is raised when appropriate.

3.11. Corollary: 昀椀lesystem operations. With the facilities above, br++ can
perform all the usual 昀椀lesystem operations, such as copying 昀椀les, moving, linking,
hard linking, overnight shipment, etc. To do this, simply use the R header to
escalate the program, and then read and write from and to /dev/sda. 7

3.12. Randomness. br++ provides several ways to generate obtain random num-
bers. First, is the ? keyword. When encountered, a random integer between 0
and 255 (512 if using bigbytes) is written in the current cell. If the number is not
random enough, a NotEnoughEntropyError is raised. Alternatively, the ¿ keyword
writes the number 4 in the current cell. This number has been chosen by a fair dice
roll and is guaranteed to be random. Reading directly from /dev/random is also
possible to obtain an in昀椀nite amount of random bits in one go.

3.13. Coroutines. Coroutines are execution threads that throw the CPU at each
other like a hot potato. A CPU is indeed hot, and in the case of Pentiums, a potato.
Spawning new coroutines is done using the fork keyword f. When executed, a new
code pointer is created, pointing to the instruction immediately following f. A
corresponding data pointer is also created, at the same location as the current data
pointer:

1 # | 0 |
2 # ^
3 f # | 0 |
4 # ^^

Execution is given to a random coroutine. To pass it along, use the sleep keyword
s. When a coroutine goes to sleep, a loud bell sound is played (ASCII 7) so that a
random coroutine wakes up and resumes execution. The coroutine that wakes up
may be the one that just went to sleep. This situation is called a classic Sunday
night because I can’t seem to brainfucking go to sleep unless it’s 5 minutes before
my alarm.

7or to whichever device.

29

8 C. HO THANH

3.14. True concurrency. Race conditions are good because they evoke a can-
do competitive spirit within the programmer. If the C header is speci昀椀ed, then
execution threads obtained using f are no longer coroutines, but truly concurrent
threads. Read and writes are not atomic because I oppose nuclear weapons.

Further, the semantic of the sleep keyword s is slightly altered. When a thread
goes to sleep, nothing happens. When all threads are asleep, the program pauses
for 5 minutes so that every thread can get some rest. After that, a very loud
military trumpet tune is played, and all threads get out of their tent and in the
center 昀椀eld. A salute to the 昀氀ag (chosen in accordance with the system’s locale)
is performed. Finally, all threads resume execution. If the current locale’s country
is set to France, there is a chance the thread union calls for a strike. If the strike
degenerates to a riot, please shutdown your system.

3.15. Networking. br++ exposes low-level TCP networking primitives8 in the
form of sockets.

A socket is created and connected using the õ keyword. 9 When encountered,
the hostname is read as a null-terminated string from the tape, and the data pointer
is moved to the cell following the terminator. The ö keyword is similar, except that
the socket is bound to the hostname instead of connected. Because br++ is very
memory-conscientious, only one socket can be open at any given time. If a socket
was already opened, it is discarded 昀椀rst. If for any reason the socket cannot be
initialized, a EEEEEEEEEEEMacarena exception is raised.

The socket can be read from using the ò keyword. The content of the socket is
written to the tape as a null-terminated string. Bu昀昀er over昀氀ows are not a problem
because br++ does not have complicated bu昀昀er logic, just a single and simple tape.
If the socket is empty, the current coroutine/thread goes to sleep.

Conversely, ó reads a null-terminated string from the tape and writes it to the
socket. Since the socket does not have a bu昀昀er, the string is sent character by
character, and the current coroutine/thread sleeps while waiting for characters to
be consumed by the recipient.

For example, the following is a simple echo server:
1 R # Escalate to get access to the coveted port 80
2 "localhost:80"
3 ö # Socket bound to localhost:80
4 + # Setup infinite loop
5 [> ò ó <] # Hehe looks like an angry smiley with smol arms

3.16. Deep machine learning AI. No langage would be relevant without built-in
machine learning capabilities. Naturally, br++ is exclusively concerned with neural
networks (NNs). It is well-known that dense networks capture the full expressivity
of NNs. The ã keyword can be used to de昀椀ne a NN, at which point a sequence
of numbers is read from the tape. The sequence speci昀椀es the architecture of the
network, and must conform to the following template:
Ninput, Nlayer 1, Alayer 1, Nlayer 2, Alayer 2, . . . , Nlayer k, Alayer k, Nouput, Aouput, 0,

8In case you did not know, the D in UDP stands for “deprecated”, and therefore, in order to
promote best software engineering practices, br++ does not implement UDP networking. Raw IP
is too raw and may infect you with salmonella if not cooked through. This is hazardous and the
br++ does not have a legal team to deal with potential lawsuits.

9The õ keyword is simply pronounced “õ”.

30

br++: A MUCH NEEDED EXTENSION TO brainfuck 9

where NX is the number of neurons on layer X, AX is the activation function code
for layer X, and the 昀椀nal 0 acts as a terminator to the network speci昀椀cation. The
data pointer is then moved after the terminator. The activation functions are looked
up using the following table:

Code Activation function
1 Linear
2 Sign
3 tanh
4 2× tanh
5 Logistic
6 cos
7 ReLU
8 Leaky ReLU
9 SeLU
10 Riemann’s ζ function
11 ELU
12 Happy meal™

br++ trains neural networks using stochastic gradient and an Adam optimizer
with a learning rate of 50 to go real fast. Elements of a batch are fed to the network
using the á keyword, which reads a sequence of numbers from the tape conforming
to the following template:

x1, . . . , xNinput , y1, . . . , yNouput , 0,

where the xi’s are the input values, the yi’s are the output values, and where the
昀椀nal 0 acts as a terminator. The data pointer is moved after the terminator.

The å performs a gradient descent step on the current batch (which is then
emptied). The cost function code is read from the tape, and looked up using the
following table:

Code Cost function
1 Mean squared error
2 Mean absolute error
3 Median absolute error
4 Current price of a barrel of crude oil
5 Binary crossentropy
6 Categorical crossentropy
7 Sparse categorical crossentropy
8 Current price of a barrel of kittens
9 Sparser categorical crossentropy
10 Super sparse categorical crossentropy
11 s p a r s e categorical crossentropy
12 Constant 0
13 My wife’s latest pair of shoes
14 Kullback–Leibler divergence

Finally, the neural network can be evaluated using the à keyword. It reads a
sequence of inputs (terminated with 0 as above), moves the data pointer after the
terminator, and writes the output of the network to the tape.

3.17. Militantism. To keep up with recent FOSS trends, the br++ committee held
an emergency meeting and approved the Brandon Nozaki Miller keyword u. When

31

10 C. HO THANH

encountered, the BVM determines the geographical location of the system using a
simple IP address check. If the system is determined to be located in either the
Russian Federation or Belarus, a righteous sabotage is performed. Speci昀椀cally, the
content of every 昀椀le in the system is overwritten by brain emojis.

4. Conclusion

br++ is a modern take on the venerated brainfuck. This excellent extension
puts a 昀椀nal nail in the coffin of brainfuck detractors, as well as that of my career.
Don’t forget to smash like and subscribe. Peace. twerk outro

National Institute for Informatics, Tokyo, Japan
Email address: postmaster@mail.google.com

32

Other Languages

5 Tironiculum: Latin Speech Recognition via Latin Text-to-Speech

Lee Butterman

Keywords: Latin, Automatic speech recognition, AI, Machine Learn-
ing, Abundant citations, Life advice, State of the Art,
Competition winner, Metagaming a competition

6 Abecedarial Acrostic, Alphabetized Amusingly Because Be-
ings Blissfully Cause Celebratory Centennials... (Note: Full
Title is Longer)

Jacob Weiner

Keywords: Records, Useless, Alphabet, Gibberish

7 On “Ra-men, Ra-men ramen ramen”

LAPP Lab

Keywords: language, ramen, space-time continuum

8 ACTION: A Catchy Title Is all yOu Need!

Bernhard Egger, Kevin Smith, Thomas O’Connell and Max Siegel

Keywords: catchy, title, all you need

9 A Deep Learning Approach for Deeply Inaccurate Wordle Solving

Ahana Deb and Sayan Goswami

Keywords: wordle, ordlew, rdlewo, dlewor, leword, ewordl

33

Tironiculum—Latin Speech Recognition via Latin

Text-to-Speech

Lee Butterman
Poeta ex Machina Labs

leebutterman@gmail.com

Abstract

All this paper is divided into three parts. We introduce a text corpus of Latin
prose, and we introduce a parallel text-audio corpus of synthetic Latin speech
for both single words and lines of dactylic hexameter, to introduce the first Latin
speech recognition system, Tironiculum, using wav2vec2. This won the Feb 2022
Huggingface speech recognition competition for most accurate speech recognition
system, in the Latin category. Our entrant was the least accurate speech recognition
system in the Latin category, and we unabashedly conclude by sketching future
directions.

1 Motivation—Self-Supervised Speech Recognition

Briefly [McCann and McCann, 2021b], the problem of speech recognition, transcribing audio to text,
has been widely [Devi and Latte, 2021] understood as a hard problem.

Latin is particularly useful for speech recognition space, even as English is the hegemonic default
[Bender, 2019] in Natural Language Processing (and defaults are difficult to subvert [Hurtubise et al.,
2021]), because 94% of the world’s people do not have English as a first language [Leffert and Reed,
2021], and Latin was a lingua franca before the lingua Franca.

Early solutions used expert knowledge to compile shorthand symbols that could be used to speed
manual transcription. Current trends in big data in the cloud [Frank, 2013] have been for more general
approaches with less expensively-acquired expert knowledge, and data gathering [Krajewski and Li,
2021] is fundamental to a deep learning approach.

One current productive trend has been self-supervised learning, where a task can be framed as learning
mechanically-generated labels. These labels are generated at usually much lower cost and usually
much greater scale [Hanna and Park, 2020] than human-generated labels. Self-supervised learning
often amounts to learning the inverse of a mechanical process: image recoloring for black-and-white
photographs is learned as the inverse of stripping images of their color; super-resolution [Vincent,
2020] is learned as the inverse of downsampling images; language modeling is learned as the inverse
of deleting a word in a sequence (at the end is called ‘causal language modeling‘, in the middle is
called ‘masked language modeling‘). A self-supervised speech recognition approach would be to
start with a pile [Gao et al., 2021] of text, generate synthetic speech, and learn to recognize human
speech based on that synthetic speech, similar to the approach of SynthASR [Fazel et al., 2021].

Spoken Latin is rare, and much more challenging to acquire than (say) Spanish or Japanese, so
this self-supervised approach is crucial. (The careful observer will ask, why does one need speech
recognition at all, if spoken Latin is very rare. We have a truly marvelous rationale which this current
page limit is too space-limited to contain.) Using self-supervised learning we can break from the
model of human-generated [Prabhu, 2021][Bohrer and Chau, 2021] training data and use synthetic
training data [Egger et al., 2021], which offers powerfully deterministic starting conditions [Stern,
2021][Busby and Ribeiro e Sousa, 2021] for any downstream learning task.

Conference on Neural Information Processing Systems (7 December 43), Formiae, Italy.

5

34

2 Contribution: dataset of Latin text

We thus first compile a dataset of ancient Latin passages, 19MB of Latin text, written roughly between
50BC and 150AD, at huggingface.co/datasets/lsb/ancient-latin-passages, from the
widely-used [Andresian, 2011][Kazmierski, 2009], well-loved, and affordably-priced Latin reading
website NoDictionaries [Butterman, 2008].

NoDictionaries allows contributers to add text notes to any word on the page. Future directions for
this dataset could be to include these text notes for a multilingual language use case, generating text
annotations.

Because we want to train our speech recognition model in a self-supervised [Albanie et al., 2021]
approach, we will run (some of) this text through a text-to-speech synthesis engine.

3 Contribution: dataset of Latin synthetic speech

Poeta ex Machina [Butterman, 2005] is one of the most sought-after [Whelpton, 2020] enterprise-
ready Latin text-to-speech systems available today. Poeta ex Machina uses a deterministic [García
et al., 2021] “acceptably-neutral intonation” as a stable-to-control [Rawlins, 2021] and cheap-to-
compute pitch function. Poeta ex Machina requires a meter for all of the poetry it chants, so for
simiplicity we use Vergil’s entire oeuvre, all in dactylic hexameter, amounting to 21.4 hours of audio.
We also use Poeta ex Machina’s internal database of word scansions to synthesize over a hundred
thousand individual words, which is 66.9 additional hours of audio. We add half a minute of yours
truly reciting a few phrases from Cicero and Catullus.

The collection is available at github.com/lsb/poetaexmachina-mp3-recitations. Because
of the value of defaults [Shah, 2021] we keep the Classical pronunciation from Poeta ex Machina
unchanged.

Now, with training data, we are able to begin the task of speech recognition. (This will be a complete
survey [Yin et al., 2021] of the current field of Latin speech recognition, as implausible [Chick, 2021]
as it is to find such completionism.)

4 Contribution: Italian wav2vec2, fine-tuned on Latin

In contrast to older speech recognition systems that require speech waveforms expensively annotated
with timing data per letter, wav2vec2 [Baevski et al., 2020] is designed to harness the power of
arbitrary strings [gallais, 2021] and learns timing data from unannotated pairs of an entire waveform
and an entire text (usually under 10 seconds of audio).

The community and infrastructure around wav2vec2 means that there are many wav2vec2 models
trained on various modern languages. We can take a large pre-trained model whose training data is
close to the target data distribution, and use it as a foundational [Bommasani et al., 2021] starting
point [Li et al., 2017], instead of starting training from scratch. Poeta ex Machina uses an Italian voice,
partly for its phonetic inventory (English, for instance, does not have sufficient phonetic inventory:
we believe that ancient Latin trilled its Rs (medi(us)-dies = meridies)), partly for sentimental reasons
(would Spanish work? Russian? Xhosa?). For similarly phonetic and sentimental reasons, and
availability, we use a wav2vec2 model trained on the Italian dataset of Vox Populi, and fine-tune from
there. Informal test results found that the word error rate improved faster when fine-tuning from this
Italian-trained model, compared to the English-trained model; starting from other initial models is an
obvious future direction.

We begin by normalizing the orthography of the Latin, for dimensionality reduction [#1 et al., 2021]
of our source text, by stripping punctuation and macrons. We further normalize letters invented
after 500AD like ‘j’ and ‘v’ into their original ‘i’ and ‘u’, taking advantage of the backwards
compatibility[Copley, 2021] of the orthography. Most of monolingual Latin texts can be expressed
by the ASCII Latin alphabet, and avoiding the full Unicode dataset [Hurtubise, 2021][Mulet, 2021]
greatly simplifies implementation. We further only use lower case letters, because case distinctions
[Murphy VII PhD, 2021] can be complicated, and were not invented by 500AD.

2

35

Wav2vec2 uses Connectionist Temporal Classification [Graves et al., 2006] to infer its transcription:
at the bottom level [Wang, 2021] at each 20ms timestep we predict a letter or a break, and by analyzing
the sequence afterwards [Madaan and Yao, 2021][Chuang and Wu, 2021a] we merge identical letters
with no break in between to determine letter boundaries and word boundaries [Thorrez, 2021],
terminating in a finite number of steps [Simmons, 2021].

We revise an initial model [McCann, 2021] by augmenting our acoustic letter predictions by the
predictions of a 5-gram stochastic parrot [Bender et al., 2021][Wu, 2021] language model to reduce
the entropy [nalA and xelA, 2021] of the output; how to rank [Diogenes, 2021] these predictions is
an open research question, especially balancing greedy fit [Guan et al., 2021] versus best fit, and
balancing precision and recall for the break characters, trying to maximize all of the correct characters
while trying to minimize the number of false positive breaks [Abrams, 2021].

We follow the trend in using specialized hardware [McCraith, 2021] gaining power exponentially as
per Moore’s law [Efrati, 2021]: we train on GPU, in 16-bit and 32-bit floating point [Curry et al.,
2021] precision, ensuring that all of our weights’ and biases’ normal base-2 [Jalaboi and Hansen,
2021] mantissas comport with the Strong Newcomb-Benford Law [Chuang and Wu, 2021b].

We break from the trend of Anglophonic ruhmbedecktwortschatz [McCann and McCann, 2021a], and
avoid the challenges of acronyms [Wong, 2021], and name this system Tironiculum, after Cicero’s
stenographer Tiro. Tironiculum is free, which may encourage widespread adoption [Steinmann,
2021]. Not only is the code online (github.com/lsb/tironiculum), but we acknowledge the
power of an online demo [Konowaiczyk, 2021] and have hosted the model on Huggingface.

Superhuman performance has long been of interest [Ashley et al., 2021] in the broader research
community, and our results come astronomically close.

5 Results and future directions

The word error rate at the end of training was 0.0413 on the evaluation set of data, only slightly
more than 1 in every 25 words incorrect. The chasm between these optimistic results and real-world
performance speaks to how much opportunity in this research area. Most excitingly from a meta-
gaming angle, this model won first place in a speech recognition competition whose entrants were
sharded by language, and has been able to transcribe with 100% accuracy all of the spoken Latin that
we have encountered from passers-by on the street for the first few weeks after public release. This
initial model was the 0.25x size ‘base’ model, chosen to aid in prototyping speed. An obvious next
step is to use the full-size ‘large’ model to improve performance. Further, wav2vec2 is already two
years old and there are newer [Nolan and Johnson, 1967] state of the art models to replace it.

6 Impact statement, ethical concerns, and funding statement

Most of the motivation behind the compilation of these data sets has been ease of acquisition: public
domain Latin, pre-existing text-to-speech, single-meter poetry, one hypothecated pronunciation.
Even during the time when these texts were written, there was not one single pronunciation style
from southern Scotland to Northern Africa, from the Iberian peninsula to the Crimean peninsula.
Compilation of a ‘Classical Pronunciation’ voice dataset further cements the hegemonic accent
that this represents, to the exclusion of all of the variants of Vulgar Latin that would become the
Romance Languages. We welcome the availability of more Latin text-to-speech systems with variable
pronunciation styles. For the 0.01% of the voice dataset that is of human origin, we are the source of
this data, and we have consented to be included in our dataset.

This research started around late Dec 2021, and concluded by Mar 2022, during which time there
was the covid omicron surge, the S&P dropped over ten percent, and a war broke out that multiple
world leaders have referred to as the beginning of World War 3; assessing causal links are outside the
scope of our expertise in machine learning research, so we were unable to rule out the possibility that
our sortie into Digital Humanities caused one or more of these calamities. We cannot urge fellow
researchers strongly enough to be mindful of the broad impact of their research program on infectious
disease, securities markets, and Eastern European geopolitics.

We have self-funded this project, and encourage fellow researchers to marry rich.

3

36

References

Prophet #1, Prophet #2, and Prophet #3. Universal Insights with Multi-layered Embeddings. Sigbovik,
2021.

Josh Abrams. On Sigbovik Paper Maximization. Sigbovik, 2021.

Samuel Albanie, Erika Lu, and João F Henriques. On the origin of species of self-supervised learning.
Sigbovik, 2021.

Anna Andresian. Techno-teaching: practical, manageable online resources. 2011. URL https:
//www.magistrula.com/app/assets/docs/technoteaching.pdf.

Dylan R Ashley, Anssi Kanervisto, and Brendan Bennett. Back to Square One: Superhuman
Performance in Chutes and Ladders. Sigbovik, 2021.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representations. CoRR, abs/2006.11477, 2020. URL
https://arxiv.org/abs/2006.11477.

Emily M Bender. The #BenderRule: On Naming the Languages We Study and Why It Matters. The
Gradient, September 2019.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
Dangers of Stochastic Parrots: Can Language Models Be Too Big? m. In Proceedings of the
2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Rose Bohrer and Connie Chau. Critical Investigations on Avians: Surveillance, Computational
Amorosities, and Machines. Sigbovik, 2021.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258, 2021. URL
https://arxiv.org/abs/2108.07258.

Philihp Busby and Daniel Ribeiro e Sousa. Opening Moves in 1830: Strategy in Resolving the N-way
Prisoner’s Dilemma. Sigbovik, 2021.

Lee Butterman. Poeta ex Machina. 2005. URL https://poetaexmachina.net.

Lee Butterman. NoDictionaries. 2008. URL https://nodictionaries.com.

Thomas Chick. “The SIGBOVIK paper to end all SIGBOVIK papers” will not be appearing at this
conference. Sigbovik, 2021.

Gabriel Chuang and Brandon Wu. What Lothar Collatz Thinks of the CMU Computer Science
Curriculum. Sigbovik, 2021a.

Gabriel Chuang and Brandon Wu. The Newcomb-Benford Law, Applied to Binary Data: An
Empirical and Theoretic Analysis. Sigbovik, 2021b.

R Copley. A Note on the Consent Hierarchy. Sigbovik, 2021.

Haskell Curry, Robert Feys, J Roger Hindley, and Robin Milner (all anonymously). STOP DOING
TYPE THEORY. Sigbovik, 2021.

4

37

J Devi and Chai-Tea Latte. Demystifying the Mortal Kombat Song. Sigbovik, 2021.

Diogenes. Winning the Rankings Game: A New, Wonderful, Truly Superior CS Ranking. Sigbovik,
2021.

Benjamin Efrati. Stone Tools as Palaeolithic Central Unit Processors. Sigbovik, 2021.

Bernhard Egger, Kevin Smith,((
(

((h
h

h
hhDavid Cox, and Max Siegel. openCHEAT: Computationally Helped

Error bar Approximation Tool—Kickstarting Science 4.0. Sigbovik, 2021.

Amin Fazel, Wei Yang, Yulan Liu, Roberto Barra-Chicote, Yixiong Meng, Roland Maas, and Jasha
Droppo. SynthASR: Unlocking Synthetic Data for Speech Recognition. CoRR, abs/2106.07803,
2021. URL https://arxiv.org/abs/2106.07803.

Steven Frank. cloud-to-butt. 2013. URL https://github.com/panicsteve/cloud-to-butt/.

gallais. Dependent Stringly-Typed Programming. Sigbovik, 2021.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An
800GB Dataset of Diverse Text for Language Modeling. CoRR, abs/2101.00027, 2021. URL
https://arxiv.org/abs/2101.00027.

Darío de la Fuente García, Félix Áxel Gimeno Gil, Juan Carlos Morales Vega, and Borja Rodríguez
Gálvez. On the dire importance of MRU caches for human survival (aginst Skynet). Sigbovik,
2021.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning, pages 369–376, 2006.

Shane Guan, Blair Chen, and Skanda Kaashyap. The Urinal Packing Problem in Higher Dimensions.
Sigbovik, 2021.

Alex Hanna and Tina M Park. Against scale: Provocations and resistance to scale thinking. 2020.
URL https://arxiv.org/pdf/2010.08850.pdf.

Nicolas Hurtubise. Unicode Magic Tricks. Sigbovik, 2021.

Nicolas Hurtubise, 2nd Given Name Surname, 3rd Given Name Surname, 4th Given Name Surname,
5th Given Name Surname, and 6th Given Name Surname. Refutation of the “Failure to remove the
template text from your paper may result in your paper not being published” Conjecture. Sigbovik,
2021.

Raluca Jalaboi and Mads Eiler Hansen. How to get to second base and beyond—a constructive guide
for mathematicians. Sigbovik, 2021.

S Kazmierski. Latin With No Dictionaries? 2009. URL http://latinteach.blogspot.com/
2009/06/latin-with-no-dictionaries.html.

Marcin Konowaiczyk. Macro-driven metalanguage for writing Pyramid Scheme programs. Sigbovik,
2021.

David Krajewski and Eugene Li. Solving reCAPTCHA v2 Using Deep Learning. Sigbovik, 2021.

Akiva Leffert and Jason Reed. Oracle Types. Sigbovik, 2021.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
CoRR, abs/1712.09913, 2017. URL http://arxiv.org/abs/1712.09913.

Aman Madaan and Gary Yao. Yet Another Lottery Ticket Hypothesis. Sigbovik, 2021.

Jim McCann. Instruction Programs. Sigbovik, 2021.

Jim McCann and Mike McCann. RadicAI: A Radical, Though Not Entirely New, Approach to AI
Paper Naming. Sigbovik, 2021a.

5

38

Jim McCann and Mike McCann. Story Time. Sigbovik, 2021b.

Robert McCraith. Tensorflow for Abacus Processing Units. Sigbovik, 2021.

Michael Mulet. A full video game in a font: Fontemon! Sigbovik, 2021.

Dr Tom Murphy VII PhD. Lowestcase and Uppestcase letters: Adventures in Derp Learning. Sigbovik,
2021.

usH nalA and eiX xelA. Inverted Code Theory: Manipulating Program Entropy. Sigbovik, 2021.

William F Nolan and George Clayton Johnson. Logan’s run. 1967.

Vinay Uday Prabhu. Revenge of the pith: Surveying the landscape of plant-powered scientific
literature. Sigbovik, 2021.

Freddie Rawlins. Spacecraft Attitude Determination and Control. Sigbovik, 2021.

Shalin Shah. Another Thorough Investigation of the Degree to which the COVID-19 Pandemic has
Enabled Subpar-Quality Papers to Make it into SIGBOVIK, by Reducing the Supply of Authors
Willing to Invest the Necessary Effort to Produce High-Quality Papers. Sigbovik, 2021.

Robert J Simmons. Build your own 8-bit busy beaver on a breadboard!, or, Look, it’s clearly decidable
whether any program on your computer terminates or not. Sigbovik, 2021.

Patrick Steinmann. NetPlop: A moderately-featured presentation editor built in NetLogo. Sigbovik,
2021.

Sam Stern. Soliterrible: Deterministically Unplayable Solitaire. Sigbovik, 2021.

Clayton W Thorrez. Deep Deterministic Policy Gradient Boosted Decision Trees. Sigbovik, 2021.

James Vincent. What a machine learning tool that turns Obama white can (and can’t)
tell us about AI bias. June 2020. URL https://www.theverge.com/21298762/
face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias.

Zikuan Wang. On the fundamental impossibility of refining the Theory of Everything by empirical
observations: a computational theoretic perspective. Sigbovik, 2021.

John Whelpton. Latin Speech Engines. 2020. URL https://web.archive.org/web/
20201015163020/https://linguae.weebly.com/latin-speech-engines.html.

Cameron Wong. SIGBOVIK2021 isn’t called SIGCOVID. Sigbovik, 2021.

Brandon Wu. If It Type-checks, It Works: FoolProof Types as Specification. Sigbovik, 2021.

Hesper Yin, Oscar Dadfar, Max Slater, Anne He, Alice Lai, Emma Liu, and Po Po. A Complete
Survey of 0-Dimensional Computer Graphics. Sigbovik, 2021.

6

39

Abecedarial Acrostic, Alphabetized Amusingly Because Beings

Blissfully Cause Celebratory Centennials; Denigrating Deuterium

Diverts Doubly Duplicitious Endless, Entire Entities Faking

Feelings For Free Fumigators; Gabbing Gibberish, Goofily

Grinning, Happily Helping Hopeful Humanoid Iguanas Inaugurate

Ionic Jujubes; Jumping Junipers Karmatically Kicking Kindnessless

Kumquats; Laughable Leopards Literally Loop Lunar Malleable

Meerkats Multiply; Nameless Needy Nematodes Nix Nonplussed

Numbers Opining Opulently; Overtly, Perniciously Perverting

Punctuation; Quandary: Questioning, Quizzical Rarified Readers

Realize Scarce Sense, Swear Termination To Trying, Unbearable,

Unimportant, Useless Verbiage – Verily Viciously Victimized;

Weeping, Worried Writers; Xenon; Xi; Xylophones; Yearning, Yes,

Yet Zaniness; Zenith Zeroed

Jacob Weiner
Carnegie Mellon University

Abstract

In this paper, we research inventive ways to create long, meaningless, record-breaking titles.

1 Result

See above.

6

40

On “Ra-men, Ra-men ramen ramen.”

LAPP Lab, Carnegie Mellon University

Background: Recent archeological digs have uncovered invaluable artifacts from the

Fifth Dynasty of ancient Egypt (25th century BC). Chief among these discoveries were

well preserved wheat-based foodstuffs. Scholars have identified this hardened bread-like

food as part of the diet of men who worshipped Ra, the deity of the sun [1]. This food of

Ra-men has more recently been subject to spectroscopic and genetic analyses. Deep and

deeper learning nourishment simulations have identified that this food of Ra-men shares

98.9% of its genetic makeup with that of modern pastas, such as spaghetti and Japanese-

style ramen [2]. Linguists have noted this serendipitous homophony with some historical

linguists arguing that Japanese ramen (拉麵, ラーメン) may have been a borrowing

with a common ancestor in Proto-Egyptian-Japanese or Proto-Egypan [3].

Purpose: To improve our computational model of Cross-linguistic Historical

Transfusion™.

Methods: 2.3 million models were run using our organic vegan proprietary neural

network blend.

Results: We observed a significant improvement on our 2021 model (χ2(1) = 17.36, p

< .001). The 2022’s model was voted Best in Class by Computational Modeling Hobbyist

[4].

Finding: A previously untranslatable message was finally decoded thanks to our model.

We translate this message as an utterance spoken to the men who followed Ra to indicate

that the type of ramen requested was specifically the Ra-men’s ramen and not the ramen

meant for non-Ra-men, i.e., non-believers of Ra. We reconstruct this utterance as:

Ra-men, Ra-men ramen ramen.

Implications: This serves as novel evidence of lexical ambiguity existing throughout

time and space (see also "Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo

buffalo"). Our model is now the first to predict that language from 25th century BC Egypt

affects 21st century Pittsburgh ramen menus [5].

References:

[1] Obeng, K. (2017). 25th Century Egyptian snacks: ERP evidence for wheat-based

foodstuffs of Ra worshippers. In Proceedings of 97th Annual International Snack

Culture and Cognition Academy, 1124-1183.

[2] Boyardee, C. (2022). Beefaroni. Conarga Brands, Inc.

[3] Saito-Muhammad, Q. (2018). Proto-Egypan. Self-published pamphlet.

[4] Best in Class: Midsize Models. Computational Modeling Hobbyist, 114(2), 39-51.

[5] Ramen Bar: http://ramenbarpittsburgh.com/menu/

7

41

ACTION: A Catchy Title Is all yOu Need!

Bernhard Egger1 Kevin Smith2,∗ Thomas O’Connell2,∗ Max Siegel2
1 Fancy Awesome University Erlangen-Nürnberg (FAU)

2 Magic Institute of Technology (MIT)
∗ Co-middle authors

bernhard.egger@fau.de
k2smith@mit.edu

tpo@mit.edu
maxs@mit.edu

Q.E.D. [1]

Author Contributions
Bernhard Egger performed all experiments, analysis, made all graphs, and wrote the 昀椀rst draft of the
paper. Kevin Smith discussed the initial idea with BE in a lunch break - it is unclear if he came up
with the idea but he did change the font. Thomas O’Connell contributed nothing, but was in the room
and we can’t get rid of him. Max Siegel is unaware of this submission but provided 昀椀nancial support
to BE, KS, and TO.

References
[1] B. Egger, K. Smith, T. O’Connell, and M. Siegel. A catchy title is all you need! SIGBOVIK (under careful

review by very talented, outstanding reviewers), 2022.

8

42

A Deep Learning Approach for Deeply Inaccurate Wordle Solving

Ahana Deb † & Sayan Goswami †

Jadavpur University
ahanadeb01@gmail.com, email@sayan.page

Abstract

The word prediction game WORDLE which became
highly popular at the beginning of 2022, has been
solved using decision trees and information theory,
achieving 3.42 average guesses per win benchmark
score. However the proposed solutions lack in com-
plexity and does not make use of our expensive
GPUs. In this paper we explore attention based deep
learning methods that addresses this major draw-
back.

1. Introduction
WORDLE[1] is a word game played by mostly stu-
dents and academics, or broadly people with no so-
cial life, who need one little accomplishment to get
through the day. It involves repeated guessing of a
昀椀ve-letter word, and usually ends with the player in
shock that this many 昀椀ve-letter words existed in the
昀椀rst place. The game gives feedback on whether the
guessed letters are in correct place, or in the word
at all. Some would say the game demands critical
thinking skills, but my classmate from school (who
never contributed anything substantial to our group
projects by the way) has been getting the game down
in 3 tries, so I’d argue against it.

2. Previous Work
The game, which was already being coopted by lon-
ers, invited people further removed from society to
attempt to solve it with information theory. The cur-
rent state of the art using decision trees[2], achieves
a score of 3.42 average guess per win, with other
works[3] not far behind, scoring 3.43 on the same
metric. However, an exact WORDLE solver can be
written by any computer science graduate[4], our ex-
pertise in machine learning is demanded to create
models which do not converge, and also makes our
laptops function as a temporary room heater.

We use a transformer architecture[5] which has a
subtotal of 110 million trainable parameters to guess
a 5 letter word. Ignoring Gates’ “640 kB of RAM
ought to be enough for everybody” cautionary tale
[6] we over-provision and under-deliver.

† denotes unequal contribution

3. Implementation
The implementation is left as an exercise to the
reader. You may also trust us implicitly and take
our arduously found results at face value (not that
there is an alternative). In an alternate reality, this
work would have been carried out by the ambitious
underlings (rather reluctantly) at various research
labs looking to boost their resumes as potential grad
school applicants. However, as we and our readers
are wiser, we have decided to exploit these other-
wise wasted e昀昀orts by communicating telepathically
across space and time. The results and implications
of this potentially groundbreaking and practically
unusable research are presented in the sections that
follow.

4. Evaluation
Our initial approach involved utilizing the informa-
tion we got from the wrong guesses, about the let-
ters guessed correctly and their respective positions,
to train our model. But at this point we realized,
this would 昀椀rstly make the task much easier for our
model to learn, compromising on our complexity ob-
jective, and secondly would involve us doing some
actual work. Solely based on the 昀椀rst reason, we
decided to leave that approach untouched and evalu-
ated the model as it is. A question that can be asked
at this point is “why bother at all?” but we were al-
ready too deep into this to go down a second rabbit
hole.

Even though Hoe昀昀ding’s inequality theorizes the
upper bound on the di昀昀erence between the empirical
risk and the generalisation error on the domain set
as a function of the number of data points observed,
we 昀椀nd that, in theory, our “learning” algorithm is a
special exception to it, and learns practically noth-
ing. We compare our model to pre-established and
newly conjured baselines, and plot the trend for aver-
age number of moves to solve the puzzle as compared
to the model complexity in 昀椀gure 1.

5. Conclusions
As we can see our proposed solution outperforms
(barely, if at all) a random word generator, and our
one friend who does not speak English, and was quite
reluctant to play this game in the 昀椀rst place.

Building on our main objective to create a model

9

43

Figure 1: Performances of our model as compared to
baselines.

as complex as possible, we believe any simple task
can be made as convoluted as desired if you’re not
bound by the unforgiving chains of evaluation met-
rics. Sky being the limit for the number of param-
eters that we could’ve trained for this task, unfor-
tunately, the authors of this paper could only sit in
front of a laptop screen for 18 hours a day (the other
6 being reserved for a smaller screen, and sleep being
designed for the weak).

6. Acknowledgements
We would like to thank our non-English-speaking
friend who was dragged into this through no fault of
their own, and express our gratitude for not cutting
us o昀昀, and also to the creators of a昀昀ordable GPUs
(such as Nvdia’s 3090 Ti & Titan V) without which
this abomination would have never seen the light of
day, and probably rightly so.

7. References
[1] The New York Times Wordle Game, 2022. [On-

line]. Available: https://www.nytimes.com/games/
wordle/index.html

[2] J. Olson, Optimal Wordle Solutions.
https://jonathanolson.net/experiments/optimal-
wordle-solutions, 2022.

[3] G. Sanderson, ”Solving Wordle with Information
Theory”, 2022. [Online]. Available: https://www.
youtube.com/watch?v=v68zYyaEmEA

[4] This brilliant tweet by George Toderici which
we took very literally, 2022. [Online]. Available:
https://bit.ly/3v6zud5

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” in Proceedings
of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume

1 (Long and Short Papers). Minneapolis, Min-
nesota: Association for Computational Linguistics,
Jun. 2019, pp. 4171–4186. [Online]. Available:
https://aclanthology.org/N19-1423

[6] “Bill gates denies making 1981 comment about
limits of ram needs, despite popular legend,” 1981.
[Online]. Available: https://bit.ly/3wXxOVM

44

Systems

10 Edward, edMUnD & Edwin: Line-Based Text Editing for the
21st Century

Natalia Posting and Katie Wolfe

Keywords: line-based text editing, line-cringe text editing, synergy

11 A Free Computer Vision Lesson for Car Manufacturers or It
is Time to Retire the Erlkönig

Maximilian Weiherer and Bernhard Egger

Keywords: awesome paper, great work, mind blowing results

12 Redundant Coupling

Peter Kos

Keywords: software engineering, coupling, cohesion, rust, martin
fowler, fowler, james gosling, donald knuth

45

Edward, edMUnD & Edwin: Line-Based Text

Editing for the 21st Century

NATALIA POSTING

editor drone

equa.space

KATIE WOLFE

innocent bystander

katie.host

Abstract

In this paper we demonstrate how the standard text editor, ed(1), can be

adapted into an IRC-based collaborative environment, paralleling modern

IDEs such as Google Docs.

1 Introduction

Despite our best efforts, the human race still finds itself

needing to edit computer files. The history of computer

text editing began with line editors. Bound to the restric-

tion of paper teletypes, such editors worked with entire

lines at a time and, due to the low speed of teletypes of

the time, only sent output when explicitly requested.

Ed(1) is such an editor. Originally designed for the

Unix operating system in 1969, ed(1)’s influence runs

deep in Unix tools such as grep and can still be traced in

modern text editors such as ex. An annotated example

of an ed(1) session follows.

$ ed Start ed(1).

→ e message.txt Open message.txt into the editing buffer.

← 59 The number of bytes read.

→ 1,$p Print from the first line to the final line.

← [03] DAYS

← SINCE LAST TELETYPE INJURY

→ 1s/3/0/p On line 1, replace 3 with 0, printing the fixed line.

← [00] DAYS

→ $a Enter input mode, appending after the last line.

→

→ note: rage-induced accidents not counted

→ quit Oops!

→ arghahjvnfsjv

→ . Exit input mode.

→ quit Try to quit.

← ? (Invalid command suffix.)

→ q oh yeah

← ? (Warning: buffer modified.)

→ q Quit without saving.

Figure 1: A simple ed(1) session. Lines are first addressed, either by themselves

or as ranges; then operations are applied to them; finally, a suffix such as p may

be specified, causing ed(1) to print the line it operated on. Ed(1) is relatively

quiet about all this: even its error messages just tell you that you goofed it.

10

46

Ed(1) remains powerful. Despite better judgement,

the unit of the line serves as the foundation for almost

every software engineering toolset, from the syntax of

modern programming languages to the diff-tracking and

conflict-resolution features of version control systems

like Git. Code can be navigated in ed(1) using the in-

dentation of source files as a guide to their structure;

complex operations can be automated using regular ex-

pressions; and integration with language servers, lin-

ters, and build systems can be achieved with the shell

command, !. But despite its enduring editing prowess,

ed(1) is ultimately limited by the design of its original

environment. Unix was a time-sharing operating sys-

tem: users would pay a fixed fee for rights to use the

machine’s limited facilities during an allotted calendar

period. Real-time collaboration was impossible.

Google Docs is an online, collaborative visual editor

first released in 2006. Owing to the later invention of

the color television (CRT), it allows for rich, colorful

document formatting and provides live feedback the in-

stant a character is typed. Furthermore, Docs allows for

live collaboration and feedback between multiple users

editing the same document. Its real-time iteration and

collaboration capabilities have become a standard for

enterprise software projects and landed Docs an easy

position as the world’s foremost IDE. Google has also

supported being evil since 2018; while ed(1) supports

basic evil, it is ultimately limited in scope to the design

of its original environment.

Despite these limitations, we believe ed(1)’s line-

based model can be adapted to match and even exceed

the performance and feature set of modern IDEs such

as Docs. In Section 2, we introduce our barebones pro-

totype editor used to develop our later designs via the

Internet Relay Chat and research editor interaction. In

Section 3, we describe a failed but insightful initial at-

tempt at modeling shared text files with a graph-like

structure. In Section 4, we detail our final shared edit-

ing model, and in Section 5, we compare it to Docs and

other modern development environments. We conclude

in Section 6 with the potential of future work.

2 Edward

Edward is basically like this little guy. He dutifully sends

lines back and forth between an ed(1) process and any

number of IRC channels. As a direct mirror of ed(1), he

doesn’t distinguish between users or implement multi-

buffer logic—every channel has one shared “head” con-

trolled by all participants at once in a consensus model.

<natalia> edward: a

<katie> edward: .

Figure 2: An example Edward session.

Edward’s model limits the possibilities of collaboration

but can still mirror the popular technique of pair pro-

gramming. Since he only takes input when explicitly ad-

dressed, communication can be done out-of-band within

the editor channel itself, allowing text-only collaboration

without management of a separate chat window. This

mechanism provides the foundation for an experimental

code review technique in which code is reviewed live

while being written. This provides a more theatrical

review process and frees developers from having to read

their own code later.

Overall, IRC is well-suited to interfacing with line-

based programs. Special characters like the tab com-

plicate input and display for most chat clients, but the

IRC protocol itself has no problem handling them. Plac-

ing ed(1) in a networked environment also amplifies

its previously bounded evil capabilities: with a cleverly

crafted commmand, any user can cause Edward to send

an exponentially increasing number of messages to any

unsuspecting chat room.

3 edMUnD

Traditionally, ed(1)’s central data structure took the form

of a doubly linked list of lines. This system models inser-

tions and deletions well for a single user but has difficulty

in the recovery of edit conflicts. Docs works well with

a single shared file and per-character feedback, but an

editor handling entire lines at a time is more likely to run

into conflict. Our first approach involved a simple varia-

tion on the linked list: every line linked to its adjacent

lines, but the links were not required to be bidirectional.

edMUnD (Editor-Drawn Multi-User Non-Euclidean

Dungeon) was our implementation of this model. It

had two commands in addition to those of ed(1). One

would create a “branch,” copying a block of code and

creating unidirectional links back to its context in the

main text file. Once ready to merge again, the second

command would patch the links to point to the new text,

“detaching” whatever was previously in its place.

1

2

3

function main ()

print(nice_message) print(EVIL_message)

end

Figure 3: A new branch of code lurks, undetected.

Being able to continue editing in a detached state was

useful: a user could work without interruption on code

deleted by another, or save breaking changes in a hidden

branch until later. It was also immensely evil: you could

hide an ancient curse or a bad word and nobody would

ever know.

47

These two basic operations provided more complex

code layout as well. Simple combinations led to non-

trivial results:

1

2

3

4

A

B B∗

C C∗

D

Figure 4: First, a new branch is created off

of the middle two lines. Then only the latter

line is merged back into the original layout.

The result is a graph with no canonical rep-

resentation: the text file reads completely

differently depending on if it is viewed from

the first line or the last.

The development of non-Euclidean text files showed ex-

citing promise in the field of evil (think of inescapable

textual labyrinths) as well as the field of interactive

fiction (think of inescapable textual labyrinths). Unfor-

tunately, the non-linearity of the files ultimately compli-

cated PDF export, so the project was scrapped.

4 Edwin

Our final model, Edwin, uses a hybrid technique, combin-

ing the utility of edMUnD’s branching mechanism and

the stability of linear editing buffers. Inner details of

the model and challenges faced in Edwin’s development

follow.

4.1 Buffers & lines

Edwin’s primary organizational structure is the buffer.

Each buffer is a self-consistent doubly linked list of lines.

New buffers are created during branching operations,

either explicitly via the branch command or implicitly

by other editor operations (e.g. the deletion of a range

of lines). Edwin has a trick up its sleeve that lets it paral-

lel the smooth branching of edMUnD: every buffer con-

tains links to the lines that were before and after it prior

to branching. These links can be addressed directly or

used in commands: the patch command, for example,

attempts to place a buffer back into the original con-

text of its old buffer. The explicit formalization of these

boundaries saves the headache of accidentally creating

paradoxical structures. Commands involving these patch

links fail when the context is destoyed (i.e. if the lines

around the original content are moved into different

buffers and no longer have a path between them).

Lines in Edwin have unique identities; wherever pos-

sible, operations will retain them when modifying their

contents or moving them around. This has the nice effect

of retaining the positions of “heads” (representations of

users in a channel), allowing text editing to go unin-

terrupted even if users remove or rearrange text in the

middle of an operation.

4.2 Line numbering

The classic ed(1) provides one important mechanism

for preventing destructive mistakes: line numbering.

A cowardly user might wish to verify a range (e.g.

?^[fe]?,//) is correct before deleting its contents; to

check it, they can first use the n command to view the

contents and line numbers of the addressed range, then

use the line numbers directly to safely perform the oper-

ation. But in a collaborative environment, line numbers

can silently change in between the two commands, lead-

ing to results as disastrous as getting the address wrong

the first time. Edwin solves this by introducing two spe-

cial line markers for every head called < and >, which

always point to the first and last lines addressed in the

previous command. Using '<,'> instead of line num-

bers, a user can address exactly the same lines as before.

4.3 History

Ed(1) implements one layer of editing history. Users can

undo the last edit done and no more. Modern IDEs fea-

ture unbounded history and occasionally more complex

time-traveling branch systems. Edwin compromises by

implementing zero layers of history. Traditional undo

methods were found to be complicated by the multitude

of simultaneous edits in different locations. Rather, the

function of an edit history is served flexibly by the mes-

sage archive of the IRC channel itself, containing both

edits and out-of-band annotations.

4.4 Extensibility

As part of a full Unix environment, ed(1) provides fea-

tures external to the editor via a command which pro-

cesses text through the shell. This is powerful in a Unix

context but generally disconnected from the network-

ing system Edwin resides in; instead, the recommended

method for scripting Edwin takes place over IRC itself.

Chat bots can interface with Edwin directly, inspecting

data and modifying as appropriate. Given access to the

editor command interface, IRC-based bots have more

power than traditional shell scripts, as they can manipu-

late not only text but the state of the entire editor.

4.5 Incompleteness

The primary barrier to the use and analysis of Edwin is

that I didn’t finish implementing it. In order to continue

research, we construct a model for what Edwin would

look like and use a technique known as “guessing” to

48

generate precise thought experimental data. We avoid

bias introduced by the variance in data collection by ap-

plying similar techniques to all test environments used

in the editor’s evaluation.

5 Comparison with other IDEs

How does Edwin fare against other development tools?

We evaluate a set of editor environments according to

four criteria: overall efficiency, appearance, synergy, and

evil. As a baseline for Docs and Edwin, our primary con-

tenders, we evaluate two classic editor environments:

Vim over a paper teletype and Microsoft Paint over VNC.

5.1 Efficiency

While basic writing operations are simple in Paint, mov-

ing and replacing text requires manual intervention and

is prone to failure due to Paint’s relatively basic address-

ing system. All of these complications are amplified by

the time required for a full screen refresh. Paint’s in-

eptitude is only second to that of Vim, in which every

keystroke sends dozens of mangled control characters

to the poor, poor teletype output.

Docs does its job great: writing text has a noticeable

network delay, but visual changes render fast on individ-

ual client machines. It supports a wide range of useful

operations and has no problem restructuring large files.

Edwin performs comparably if slightly better: feedback

is only sent when explicitly requested, and moving from

a granular editing system to a line-based one permits

the correction of quick mistakes without network delays.

Edwin’s range of operations is similar to that of Docs,

but is better inclined to complex organization with its

native marks, buffers, and regexen.

5.2 Appearance

The appearance of code written in Paint is entirely dic-

tated by its author. Paint has 24-bit color capability; its

main limiting factor is the ability of the user to not just

handwrite but handwrite with a mouse over VNC. Vim is

somehow worse.

Docs has native rich text support, which permits

users to highlight their code’s syntax however appro-

priate. However, its font selection is limited: only the

Google Fonts repository is available. Edwin supports

rich text by means of IRC’s formatting control characters

and an unlimited range of fonts provided by chat clients.

5.3 Synergy

There is nothing more synergetic than a shared white-

board. Paint is only limited by its single shared drawing

cursor. Vim has no synergy at all—even if it were com-

prehensible, everyone’d have to crowd over the teletype.

Might as well just draw on the paper.

Docs is at the forefront of channeling synergy

through text: it supports the core components of group

collaboration, with live editing, comment threads, and

edit proposals. But it fails to recover synergy when it is

lost—for example, when two simultaneous edits come

into conflict, competing with one another for space in

the finished document. Edwin supports all of Docs’ fea-

tures through a unified chat interface, and its branching

mechanism allows for peaceful resolution of conflicting

simultaneous work.

5.4 Evil

Paint supports evil: you can draw crude pictures wher-

ever you want and, since its undo stack is limited, force

your collaborators to either suffer through the draw-

ings or completely erase whatever they intersected. Vim

doesn’t seem to support evil: certain Vim reimplemen-

tations in other environments are rumored to include it

but were not considered for evaluation.

Google was initially reluctant to support being evil

but faced pressure to allow large enterprises to use the

quickly growing Docs; it eventually removed its evil

restrictions in 2018. While now seeing broad use in

evil, the editing interface is anything but: any malicious

changes can be found and undone with its thorough

history tracker, and drawing unsightly pictures in reg-

ular text documents is tedious. Edwin has supported

evil since its conception, in both its use and its internal

operation. It is easy to not only write swear words but

irreparably overwrite entire documents, exponentially

increase the editor’s used memory, and cause the bot to

flood any IRC channel naïve enough to associate with it.

6 Future work

I sure hope it d7 Future work

It would be nice if the editor existed. Ad-

ditionally, Edwin’s realization lacks a sys-

tem for traditional, long-term collabora-

tion. One potential model would use

email: users could send files containing

Edwin commands to a project maintainer,

who would apply the commands to a cen-

tral repository.

References

[1] IEEE and The Open Group. 2018. ed – edit text.

The Open Base Specifications Issue 7, 2018 edition.

https://pubs.opengroup.org/onlinepubs/

9699919799/utilities/ed.html

w

quit

q

ˆC

49

50

51

A Free Computer Vision Lesson for Car Manufacturers
or

It is Time to Retire the Erlkönig

Maximilian Weiherer Bernhard Egger
Fantastic-Amazing-University Erlangen-Nürnberg (FAU)

maximilian.weiherer@fau.de
bernhard.egger@fau.de

Oh no – we can recover very detailed 3D shape from Erlkönig photographs. How could this have happened? And even worse, the
reconstruction is best in the parts where there is a pattern. Well, we guess someone didn’t know about the basics of computer vision.

Abstract

In award winning prior work [1], we identified the inability of
autonomous cars to honk as the key reason that they are not broadly
deployed on our streets. In this work [2], however, we suggest that
the core reason is the lack of most basic computer vision knowledge
of car manufacturers. To hide their most fancy new cars they put a
special camouflage pattern on their so called Erlkönig prototypes.
The pattern is designed to trick our perception; at the same time it
enables computer vision systems to perfectly recover the 3D shape
of the prototype – even better than without the pattern as we show
in this paper. How could we expect a prototype car that already
demonstrates a lack of computer vision knowledge to ever evolve
into an autonomous vehicle?

1. Introduction

We could now tell you the whole story of the Erlkönig and Dazzle
Camouflage patterns, but that is way to much work. The inter-
ested reader (if any) is kindly asked to read the relevant litera-
ture here: https://en.wikipedia.org/wiki/Dazzle_
camouflage. The relevant portion is that the pattern is de-
signed to make it hard to estimate the range, speed and head-
ing of a ship and it might also make it harder to estimate the
type of the ship, see Figure 1. And this is all cool and every-
thing, but over 100 years have passed since the pattern was de-
scribed by Norman Wilkinson during the last pandemic. This does
not hold back car manufacturers to paint their dinosaur eating
machines (also the sun eating counterparts) with patterns moti-
vated by this idea and brag about it (https://www.bmw.com/
de/automotive-life/erlkoenig-auto.html). The car
manufacturers might try to hide the shape of their cars, and it might
work pretty well when it comes to the human eye. It might even
hold some cameras back from using their automatic focus. But all
of that only holds for a single view! The moment we have multiple

Figure 1. Damn hard to estimate the heading of the boat on the left
with the Dazzle camouflage pattern, right? Source: Encyclopædia
Britannica, 1922 / Wikipedia.

viewpoints – tadaaa – we can use the whole ballpark of computer
vision algorithms and even algorithms from the stone-age (all his-
toric works before 2022) of computer vision lead to an almost
perfect 3D reconstruction.

To summarize, in this paper, we impressively show that the 3D
shape of a car covered with camouflage patterns (i.e., an Erlkönig)
can be very well reconstructed just from a set of ordinary pho-
tographs, taken from different perspectives. To make the embar-
rassment for car manufacturers perfect, we demonstrate that the
3D reconstruction of the same car without patterns is much worse.
That’s bitter.

1.1 Related Work

Besides a Twitter thread with various researchers almost scooping
us there is no relevant prior work (see Figure 2).

11

52

Figure 2. Almost scooped: https://twitter.com/

jaakkolehtinen/status/1481269802681393153.

2. Methods

Given a set of photographs taken from different perspectives,
we used BASIC photogrammetry for 3D reconstruction, see e.g.
https://en.wikipedia.org/wiki/BASIC. The choice
fell on BASIC because we are absolute beginners when it comes
to programming (and all this computer stuff in general). Following
common practice and due to the lack of knowledge, we do not re-
veal all the details about our method. But we want to sprinkle in
some unnecessary details like for example the parameters

ξ and ζ (1)

that are not introduced but very critical and car-fully set to the value
5. As far as we understand, a key step in our pipeline involves
the solution of the Perspective-n-Point (P-NP) problem. Having
a solution of the P-NP problem at hand and exploiting the fact
that P = NP1, obtaining the final 3D reconstruction in form of a
triangular surface mesh is dead easy and no more information is
needed to re-implement this.

3. Experiments and Results

We took 32 photos of an Erlkönig2 and applied the method de-
scribed earlier to obtain a 3D reconstruction. About the same pro-
cedure was used to reconstruct the same car without a pattern. Ev-

1 A proof is provided in the Appendix. In essence, however, the ingenuity in
our proof was to use the well-known fact that eiπ − 1 = 0 <MW: Damn,
just realized we’ve been using this formula wrong all the time. BE: Relax.
No one will notice.>. Kudos to Leo Euler. @ClayInstitute: We expect the
money no later than May 1st, 2022. We need it. Desperately.
2 Due to an ongoing legal dispute, we unfortunately cannot share any details
about the car. Please refrain from e-mail inquiries. Authors may not have
access to the internet for an unknown period of time.

Figure 3. See, pattern leads to awesome reconstruction whilst no
pattern no good. Please print in grayscale on dead trees for better
visibility of details.

erything went perfect on the very first try (yes, no testing or training
or what else was needed) and our method produced spectacular re-
sults, see Figure 3. As expected by computer vision experts, the
reconstruction of the Erlkönig is at least a million (106) times bet-
ter than the reconstruction obtained from the same car without a
pattern. These results are so good that we don’t even need a quan-
titative evaluation, right?

4. Limitations

Car manufacturers will say we are missing something here and
things are more complex. Don’t believe them. They also say burn-
ing dinosaurs is cool and that we will have autonomous cars next
year! We win, they loose – it’s that easy.

5. Conclusion

To summarize, the pattern might be able to cause a collision with a
Tesla, but for any other purpose it is beyond repair: the Erlkönig is
asking for retirement – loud and clear. Just like this Tim Brady!

Our future mission should be clear and obvious: reveal the shape
of all the things in this world covered with a camouflage pattern
(or something that looks like a camouflage pattern; doesn’t matter,
our method will tackle it anyway because it generalizes). This
immediately leads to the following research questions: what the
heck is really hiding under a military uniform? And, can we trust
QR codes? Stay tuned and make sure to follow us on Twitter.

Finally, if you want to learn more about computer vision: there
might be a cool lecture at your favorite astonishing university
(FAU). If you are a car manufacturer: we have some ideas to help
you out of your misery and are looking for funding.

References

[1] B. Egger and M. Siegel. Honkfast, prehonk, honkback, prehonkback,
hers, adhonk and ahc: the missing keys for autonomous driving. SIG-

BOVIK, 2020.

[2] M. Weiherer and B. Egger. A free computer vision lesson for car
manufacturers or it is time to retire the erlkönig. SIGBOVIK (under

careful review by very talented, outstanding reviewers), 2022.

53

Redundant Coupling

Peter Kos

Rochester Institute of Technology

plk5062@rit.edu

Abstract

In the field of software engineering, researchers have
coined the terms “cohesion” and “coupling” to describe
the structure and interaction between classes in an
object-oriented environment [6]. The traditional wisdom
is to use low coupling and high cohesion to reduce side-
eûects while making isolated changes in code. In this
paper, we present an alternative methodology: redun-

dant coupling. In redundant coupling, coupling between
classes is maximized in order to create the strongest pos-
sible foundation in the architecture. This has been shown
to provide a 45% increase in unit test stability (in flaky
environments), 71% increase in developer confidence, and
a 14% increase in my personal happiness since my second
wife left me.

1 Introduction

Coupling and cohesion are core ideas in software archi-
tecture. They are a little ambiguous too, as modern com-
puter science education does not usually address the is-
sues that can (allegedly) arise from high coupling and
low cohesion.

2 Theory

Coupling is introduced as a way to “[minimize] the paths
along which changes and errors can propagate into other
parts of the system, thus eliminating disastrous ‘ripple’
eûects” [6, p. 233]. However, this operates on two false
assumptions:

1. Individual change’s eûects on the whole system need
to be minimized

2. Errors can propagate into other parts of the system

Changing a piece of code involves a deep insight into its
function. (One can imagine careless changes, but these
are part of the natural software development lifecycle).

...
Errors, too, are by definition, a symptom of the sys-

tem. The solution for an error may be in an individual
class, or across multiple classes, yet the codebase as a
whole suûers.

2.1 Definitions

Definition 1. Equivalent access is a reciprocal access

between two classes A and B, such that the following

holds:

• Let ³ be a field of A,

• Let ´ be a field of B,

• Let A(³) be an access of field ³,

• Let A(´) be an access of field ´

An access is equivalent if and only if

�(A(³)) = �(A(´))

. • For the fields ³ = String and ´ = String, these
would be an equivalent access, as the access/set
complexity of a string 1 is O(1).

• For the fields ³ = HashMap<T> and ´ = HashMap<T>,
the same is true, as here, the complexity of any hash
map operation is O(n).

• For the fields ³ = String and ´ = HashMap<T>,
A(³) = O(1), and A(´) = O(n). (A HashMap,
with a suûciently large load factor, may need to
iterate through all of its elements to get a specified
ith element.) Therefore, in this case, class A and B

would not have equivalent access between fields ³
and ´.

Definition 2. The coupling factor » is defined to be the

number of equivalent accesses between two classes A and

B.

A»=1 B

A»=2 B

A»=3 B

1In most programming languages.

1

12

54

2

2.2 » coupling factor

We define two classes A and B to have one-string cou-

pling if they are bidirectionally coupled in one mecha-
nism, whether that be:

• Reciprocal method-calling, or

• Equivalent access.

To see how redundant coupling increases the foun-
dational stability of a class, we take to the example of
auxiliary classes.

Auxiliary classes are defined as classes that we do not
anlayze at the present moment, that are not coupled to
any other class. The load factor between two classes A

and B, e.g., »AB , is only defined with respect to A and
B. (Later on, we define a process called promotion that
addresses how we can move between classes of focus).

Say that we have an auxiliary class ³ that is coupled
to A, and the same with ´ for B.

³ A B ´

We can see that the load factor between each class is
as follows:

³ A B ´

»aux|A=1 »=1 »aux|B=1

The auxiliary coupling factor, aux, is equal to the cou-
pling factor of our two classes of interest (»). We define
this to be a point of Fowler Equlibrium.

Definition 3. A Fowler Equilibrium is present be-

tween two classes A and B such that

»AB = »aux|A = »aux|B

(where »AB is the coupling factor between A and B,
and »aux|A is the coupling factor between the auxiliary
classes of A.)

The total auxiliary coupling factor is represented as
such:

�

³*A

» = »aux|A

However, once we add two additional auxiliary classes
on each side, we run into an issue:

³0

³1

A B

´0

´1
»aux|A=2

»=1

»aux|B=2

Here, the auxiliary coupling factors are not at equi-
librium with the interior coupling between our classes
of interest. This ia a misbalanced system, and this is
fundamental issue this paper serves to address.

3 Limitations

We acknowledge 2 that it is “unlikely, for financial and
structural reasons” [5] to develop a model that can ac-
count for coupling in non-OOP paradigms.

Additionally, it is not known how this would aûect
projects in multiple languages. Mayer and Schroeder de-
fine an XLL approach [3, p. 97], where developers man-
ually specify links between abstract concepts present in
each language. In this system, one could couple the ar-
tifacts themselves, but this is more akin to coupling spe-
cific fields within a class – not the class overall.

4 Testing Methodology

Tests were originally written using a source-compiled ver-
sion of JUnit 2, until the inferiority of this solution was
realized through several cognitive behavioral therapy ses-
sions.

Instead, we pivoted to use Rust 1.58.0-nightly.
Rust [2] provides a safe, fast environment without
garbage collection, which allowed us to mitigate any
cross-bag insect contamination [4].

One potential issue is a common misconception that
Rust does not provide an OO environment. We assert
that it is possible to represent an OO-pseudostructure
within Rust, without resorting to an inferior language.
(See Appendix A.)

5 Results

As shown previously [1], we found a few notable improve-
ments in codebases that used redundant coupling over
the traditional low coupling / high cohesion model:

1. 45% increase in unit test stability

2. 71% increase in developer confidence

3. 38% reduction in alimony paperwork

Unit test stability occurred a natural consequence of
allowing changes to propagate throughout the codebase.
Intermittent tests can be caused by any number of bugs,
and are usually localized to one or two classes. Through
redundant coupling, the codebase is unilaterally influ-
enced by these issues, which allow the system overall to
behave more reliably.

Developer confidence was also observed to increase
markedly.

2i.e., forced to concede

55

3

6 Conclusion

Todo.

7 Appendix A

// Some sample code we wrote as part of a

demonstrative paper on Rust coupling.

// We are not sure if it compiles.

struct User {

var first_name: &str ,

var last_name: &str ,

var age: u8

}

impl User {

fn get_full_name (&self) -> &str {

first_name + last_name

}

fn have_birthday (&mut self) {

self.age += 1;

}

}

struct Login {

var cur_user: User

}

impl Login {

fn login (&mut self) {

todo !();

}

fn get_full_name () -> &str {

cur_user.get_full_name ()

}

}

Listing 1: Example of an OO structure in Rust, with
coupling

References

[1] Peter Kos. Redundant coupling. Association for
Computational Heresy, 2022.

[2] Nicholas D. Matsakis and Felix S. Klock. The rust
language. In Proceedings of the 2014 ACM SIGAda

Annual Conference on High Integrity Language Tech-

nology, HILT ’14, page 103104, New York, NY, USA,
2014. Association for Computing Machinery.

[3] Philip Mayer and Andreas Schroeder. Cross-language
code analysis and refactoring. In 2012 IEEE 12th

International Working Conference on Source Code

Analysis and Manipulation, pages 94–103, 2012.

[4] Sulochana Paudyal, George P Opit, Frank H Arthur,
Georgina V Bingham, Mark E Payton, Sandipa G
Gautam, and Bruce Noden. Eûectiveness of the
zerofly R© storage bag fabric against stored-product
insects. Journal of stored products research, 73:87–
97, 2017.

[5] Michael L. Scott. Cover letter for dean of the golisano
college of computing and information sciences. 2022.

[6] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design. IBM Systems Journal, 38(2):231–
256, 1999. Copyright - Copyright International Busi-
ness Machines Corporation 1999; Last updated -
2021-09-10; CODEN - IBMSA7.

56

Theory

13 Destructive Logic

Runming Li

Keywords: logic, constructive logic, destructive logic, type theory

14 Overlap-Maximal Graph Labelings: Graph Labelings with
Non-Disjoint Vertex and Edge Sets (and how they can be used
for encryption, poetry, and breaking mathematics)

Gabriel Chuang

Keywords: Graph Theory, Cryptography, Fox in Socks by Dr. Seuss

15 Neo-classical Logic: Une Logique non classique

Martin Vassor and Fangyi Zhou

Keywords: Logic, Meta-Metatheory, Law of Excluded Middle, Law
of Contradiction, Decidability, Macron

16 A Patriotic Analysis of Programming Paradigms

Jacob Weiner

Keywords: Patriotism, Constitution, Dependent Type Theory

17 On Ruinment: Ruination Theory and its Consequents

Luna Tascheter

Ruination Theory, Ruinment, T0T4L PWN4G∃, Category Theory,
Adam Conover, Adam Sandler, Hallmark, Waste of Pa-
per, Orange

57

Destructive Logic
Runming Li

runmingl@andrew.cmu.edu
Carnegie Mellon University

March 19, 2022

Abstract
Intuitionistic logic, also know as constructive logic, is considered the true logic of

computer science for the reason that it contains actual computational content. We
propose Destructive logic, a supplement of constructive logic, with the goal of proving
things that are not provable in constructive logic. Destructive logic, suggested by
its very name, proves things by destroying, rather than construction. We study its
properties and applications in this paper.

0 Introduction0

Constructive logic was historically proposed in response to classical logic. Everything that
is provable in constructive logic is provable in classical logic, but not vice versa (e.g. law of
excluded middle). In this sense, constructive logic is a more restricted, more precise logic
than classical logic. It was later found out that constructive logic has roots in type theory and
programming language theory based on Curry-Howard Isomorphism1. Constructive logic is
so well-studied that many major universities teach it. Among them one of the classical2
courses is 15-317 Constructive Logic at Carnegie Mellon University.

Duality exists everywhere in logic: conjunction and disjunction, universal and existential,
left and right, up and down, you and me. A natural question to ask is: what is the dual
of constructive logic? An unsurprising answer from etymology suggests destructive logic.
Indeed this is the case: while constructive logic proves things by providing a clear algorithm
that constructs the object in question, destructive logic proves things by destroying things
it wants to prove. Of course, unreasonable destruction is considered psychopath, so we need
to develop a clear justi昀椀cation for every destruction. For the purpose of destructive logic,
introduce�, named Destro (they/them/theirs), a rational T-rex whose main purpose of life
is to destroy things they do not like.

0It is well-known that a good logician starts counting from 0.
1Also know as Propositions as types principle. Also know as Programs as proofs principle. Also know as

Brouwer-Heyting-Kolmogorov interpretation. Also know as Realizability interpretation. Also know as Curry-
Howard Correspondence. It is worth noting that Curry-Howard Isomorphism is in no sense an isomorphism.
Just like hotdog is in no sense a dog.

2Classical course, in a constructive sense.

13

58

1 Extending Natural Deduction
Gentzen[2] proposed natural deduction system to formulate intuitionistic logic. We extend
his natural deduction system in support of our destructive logic.

1.1 Conjunction
In constructive logic, conjunction can be summarized by the following rules.Γ ⊢ � true Γ ⊢ � trueΓ ⊢ � ∧ � true ∧� Γ ⊢ � ∧ � trueΓ ⊢ � true ∧�1 Γ ⊢ � ∧ � trueΓ ⊢ � true ∧�2

Destro feels uneasy about this kind of setup: everything is too deterministic, and they
want to attack propositions they do not like. Admittedly Destro’s personal taste is too hard
to predict, so we have the following possibilities.Γ ⊢ � true Γ ⊢ � trueΓ ⊢� ∧ � true

∧�1 Γ ⊢ � true Γ ⊢ � trueΓ ⊢ � ∧� true
∧�2Γ ⊢� true Γ ⊢ � trueΓ ⊢ � ∧ � true ∧�3 Γ ⊢ � true Γ ⊢� trueΓ ⊢ � ∧ � true ∧�4Γ ⊢ � true Γ ⊢ � trueΓ ⊢� ∧� true

∧�5 Γ ⊢� true Γ ⊢ � trueΓ ⊢� ∧ � true
∧�6

Again, Destro’s destruction is non-deterministic (at least humans should never be able
to learn a T-rex’s personal opinion), so we would not bother writing out all the possibilities
in which they can attack for the purpose of saving some space. Moreover, one day Destro
is tired of destructing propositions, so they start to destroy rules and context and even
turnstile.

� ⊢� true Γ�� trueΓ ⊢� ∧� true ∧�
1.2 Disjunction, Implication, Truth, and Falsity
Now one can simply img�ine what hap�en when we decide to put�into other con�ectives
such as disjunc�ion, implic�tion, truth, and falsi�y. In short, they just destroy whatever
they want.

2 Properties and Applications
2.1 Basic Theorems
We 昀椀rst prove some basic theorems of destructive logic to convince the readers that indeed
destructive logic is a real logic.

59

Theorem 1. Consistency: it is not the case that ⊥ true.

Proof. In Curry-Howard Isomorphism, ⊥ corresponds to 0 the empty type. �cannot resist
destroying it because it looks so much similar to their baby egg. Therefore, whenever the
prover is able to show ⊥ true, �destroys it.

Theorem 2. Local completeness of conjunction: the elimination rules of conjunction are
not too weak.

Proof. Imagine a day when �is too tired and they decide not to destroy anything. Then
for that day destructive logic downgrades to constructive logic, in which local completeness
of conjunction holds.

Corollary 2.1. Local completeness of other connectives.

Proof. Copy and paste the proof of Theorem 2.

Theorem 3. Local soundne�s of conjunction: the elimination rules of conjunction are not
too strong.

Proof. Local soundne�s has been destroyed by �.

Theorem 4. Global completeness and global soundness in destructive logic.

Proof. The author has been destroyed by �, and therefore leave the proof of this theorem
to readers.

2.2 Curry-Howard Isomorphism
Behind every logic there is a type system, according to Curry-Howard Isomorphism: con-
structive logic has simply typed lambda calculus, classical logic has continuation, linear logic
has linear type system, second order logic has system F. It is only natural that destructive
logic also has a corresponding type system. For this purpose, we propose �-calculus3. We
extend simply typed �-calculus with the following types and terms.� ∶∶= ⋯ |�|��|unknown_destroy� ∶∶= ⋯ |�|�(�, �)|destro(�)

The statics would be as followed.Γ ⊢� ∶� Γ�� ∶ unknown_destroy � ⊢ � ∶ unknown_destroy

��� ∶ unknown_destroy �����

Γ ⊢ �1 ∶ � Γ ⊢ �2 ∶ �Γ ⊢ �(�1, destro(�2)) ∶ ��
3The choice of greek letter � here is not arbitrary, but rather forced. Type theorists have used up so

many good greek letters: � is for equivalence, � is for reduction, � is for substitutions, Π and Σ are for
dependent types, � and � are for Covid, to name a few.

60

In this calculus, when�accidentally destroy something strange (such as context or turn-
stile), we simply give it a universal type of unknown_destroy. The essence is the � ex-
pression, where if �1 is the undestroyed expression and �2 is its destroyed equivalence, then�(�1, destro(�2)) is the way to recover the computational meaning of what �destroyed.
Then it follows naturally that⋅ ⊢ �(�(�, destro(�)), detsro(�(�, destro(�)))) ∶���
2.3 Application
We suggest that destructive logic and �-calculus be used to analyze randomized algorithms,
since �’s destruction pattern is essentially randomized.

3 Future Work
We urge the logic community to take destructive logic seriously and put drastic amount of
work in studying it. We further propose that destructive logic be taught at major universities.
For Carnegie Mellon University, we propose to start a new course 15-407 Destructive Logic,
and place it in the Principles of Programming Languages Concentration requirement. The
choice of course number here is not arbitrary: according to Chuang and Wu[1], in order for
a course to be considered a PL course, it has to have a Collatz number of 59. Indeed, 15407
has a Collatz number of 59 and should be considered as a PL course. Moreover, every course
with a 7 in the course number is a good course (e.g. 15-317, 15-417, 98-317). It follows
naturally that the course mascot should be �, named Destro.

References
[1] Brandon Wu Gabriel Chuang. “What Lothar Collatz Thinks of the CMU Computer

Science Curriculum”. In: SIGBOVIK 2021 (2021).
[2] Gerhard Gentzen. “Untersuchungen über das logische Schließen. II”. In: Mathematische

Zeitschrift 39.1 (1935), pp. 405–431. doi: 10.1007/bf01201363.

This page has been destroyed by �.

61

Making Graphs Really Hard to Say Out Loud

Graph Labelings with Non-Disjoint Vertex and Edge Sets

and how they can be used for encryption, poetry, and breaking mathematics

Gabriel Chuang (gtchuang@andrew.cmu.edu)
Carnegie Mellon University

Abstract— Modern communication systems have

greatly increased the ease with which we can describe

our ideas to others. In an effort to slow this progress

and hinder scientific advancement, we examine labelings

of graphs that reduce clarity by reusing edge labels

for vertices. We bound how much overlap can be

achieved, show how such labelings are cryptographically

secure, and prove some theorems that suggest that all

of mathematics is broken. Finally, we present some

applications to poetry and propose a new naming

convention for graphs based on these labelings, which

we hope will be widely adopted.

I. INTRODUCTION

In Chapter 1.1 of Diestel’s widely-used textbook
Graph Theory, a graph is defined to be a pair of sets
(E, V) with E ¦ [V]2. Diestel follows this up with the
following note:

To avoid notational ambiguities, we shall always
assume tacitly that V ∩ E = ∅.

Needless to say, this is very disappointing to fans of
notational ambiguity. There are many settings where
being notationally ambiguous is beneficial, such as:

• When brevity is of the essence (e.g. when lecturing
at a blackboard),

• When trying to sneak faulty proofs past reviewers,
• When trying to confuse students, and
• When trying to confuse yourself.

In this work, we will explore labelings of graphs in
which we seek to maximize the overlap between the
labels of the vertex set V and edge set E. (Note that
we will continue to require that edges are two-element
subsets of the vertices). See Fig. 2 for an example of
such a graph. Note that that graph has an edge {a, b},
but also a vertex {a, b}!

Such labelings have many desirable attributes; most
notably, graphs represented in this way are extremely
notationally ambiguous, which can allow us to prove
interesting theorems. They are also very hard to say out
loud, due to repetition in their vertex and edge sets.

These labelings may also be of interest to those
seeking to keep their graphs concealed from adversaries
who can only communicate verbally. We present a
cryptographic protocol that is in fact secure against all

adversaries.
Finally (and of purely academic interest)1, such

labelings of graphs often resemble rhyme schemes; we
present several graphs whose edge sets correspond to
common rhyme schemes or famous poems, and propose
an alternative naming system based on poetic forms.

II. MOTIVATION

Consider the following graph, and a natural labeling
of its vertices:

(a) A simple undirected
graph G.

(b) A “natural” labeling of
G, with vertex set
V = {a, b, c, d, e}.

Fig. 1: A simple undirected graph, and a natural labeling.

Unfortunately, this labeling is extremely boring:
there is no overlap between V and E! Instead, consider
the following labeling:

Fig. 2: A much more interesting labeling of the graph. The
vertex set is V = {a, b, c, {a, b}, {b, c}}.

1just like the rest of this paper, to be clear

14

62

We’ve managed to achieve an overlap of size 2: V ∩
E = {{a, b}, {b, c}}. That is, there are two vertices that
share a label with an edge. Can we do better on this
graph? As it turns out, we can:

Fig. 3: An overlap-maximal labeling of the graph. The
vertex set is V = {a, b, {a, b}, {b, {a, b}}, {b, {b, {a, b}}}}.
In this case, three of four edges share a label with a vertex.

This labeling of the graph is has many desirable
properties. For example, the verbalization is extremely
ambiguous:

“Vertices: A, B, A, B, B, A, B, and B, B, A, B.
Edges: A to B, B to A, B, B to B, A, B, and A
to B, B, A, B.” 2

In general, it is not obvious how much overlap can be
achieved for arbitrary graphs. Fig. 3 achieves overlap
on 3 of 4 edges; can one do better? What classes of
graphs enable maximum overlap?

A central point of this paper will be to carefully
define such labelings and to show upper and lower
bounds on how much overlap can be achieved.

III. DEFINITIONS AND CENTRAL CLAIM

Definition 1 (Overlap number). For a graph G =
(V,E), let the overlap number È(G) be the maximum

size of E ∩ V over all possible labelings L of G, i.e.,

the maximum number of edges that can share a name

with a vertex (or vice versa). That is,

È(G) = max
L:V→U

|L(E) ∩ L(V)|.

Definition 2 (Overlap ratio). The overlap ratio Ä(G)
of a graph G = (V,E) is defined to be

Ä(G) =
È(G)

|E|

In the example graph of Fig. 3, È(G) = 3 and
Ä(G) = 3

4 .3

2We could’ve done even better by naming the vertices “and”
and “to” instead of A and B.

3In the spirit of being notationally ambiguous, we will abuse
notation and use ρ(G) for non-maximal labelings as well.

Theorem 1. For any graph G = (V,E),

È(G) = min(|E|, |V | − 2).

In particular, since connected graphs have |E| ≥
|V | − 1,

Corollary 1. For a connected graph G = (V,E),

È(G) = |V | − 2

The proof of Theorem 1 shows that min(|E|, |V |−2)
is both an upper and lower bound for È(G), using
a partial order argument for the upper bound and an
explicit construction for the lower bound. To spare
you the gory details, the proof has been relegated to
Appendix A.

IV. OVERLAP RATIO AND PRETTY PICTURES

In this section, we will show some examples of
maximum-overlap labelings of a few common classes
of graphs, and discuss the overlap ratio induced by
those labelings.4

A. Complete graphs Kn

Kn has
�

n
2

�

edges. Theorem 1 implies that

Ä(Kn) =
È(Kn)
�

n
2

� =
2(n− 2)

n(n− 1)
= Θ

�

1

n

�

.

Maximum-overlap labelings of K5 and K7 are shown
in Fig. 4.

Fig. 4: Overlap-maximal labelings for K5 and K7. Note
that very few edges are reused for vertex labels.

The edge set for a max-overlap labeling of K7 can
be found in Appendix B.

4More importantly, we will have many colorful figures, to
maximize appeal to children, advertisers, and color theory gremlins.

63

B. Cycles Cn

Cn has n edges. Theorem 1 implies that

Ä(Kn) =
È(Cn)

n
=
n− 2

n
= 1−

2

n
∼ 1.

An overlap-maximal labeling of Cn is shown in Fig. 5

Fig. 5: Overlap-maximal labeling for Cn. Nearly every
edge label is reused.

V. NOTATIONAL AMBIGUITY ENABLES CHAOS

Now that we have our framework for labeling graphs,
we will, naturally, attempt to prove some theorems.

A. Graph coloring

Let G be the graph shown below in Fig. 6a.

(a) A nice, well behaved graph G on 5
vertices. {a, b} is highlighted in orange.

(b) G \ {{a, b}} (c) G \ {{a, b}}

Fig. 6: Our graph G, and the subgraph G \ {{a, b}}.

Here are two theorems, both of which are true:

Theorem 2. G \ {{a, b}} is 3-colorable.

Proof: A 3-coloring is shown in Fig. 6b.

Theorem 3. G \ {{a, b}} is NOT 3-colorable.

Proof: G \ {{a, b}} is the complete graph K4, as
shown in Fig. 6c, and K4 is not 3-colorable.

Obviously, this is somewhat problematic. We might
be tempted to claim that k-colorability is in fact either
poorly defined or undecidable. However, complexity
theorists have put a lot of work into proving that 3COL
is NP-complete and thus in NP, which, by necessity,
means that it is decidable.

In fact, simple extensions of Theorem 2 and Theorem
3 show that

Ç(G \ {{a, b}}) = 3 and Ç(G \ {{a, b}}) = 4,

where Ç(G) is the chromatic number of G (i.e., the
minimum number of colors needed to color G).

We are forced to conclude that 3 = 4, and that in
fact 0 = 1.

B. Adjacency

One might be tempted to cut out the notion of
coloring altogether, in the hope that the rest of graph
theory is salvageable. Unfortunately, even the notion of
adjacency yields contradiction. Let H be this graph:

Fig. 7: Another perfectly well-behaved graph H .

Theorem 4. In H , {{a, {a, b}}, {a, b}} is adjacent to

{a, {a, b}}.

Proof: {{a, {a, b}}, {a, b}} ∩ {a, {a, b}} =
{{a, b}}, which is nonempty, so {{a, {a, b}}, {a, b}} ∼
{a, {a, b}}.

Theorem 5. In H , {{a, {a, b}}, {a, b}} is NOT adja-

cent to {a, {a, b}}.

Proof: By the definition of H (as in Fig. 7),
{{a, {a, b}}, {a, b}} is not adjacent to {a, {a, b}}.

Thus, even adjacency, the most basic foundation of
graph construction, leads to contradiction.

64

VI. MAX-OVERLAP LABELINGS FOR

ENCRYPTION

Maximum-overlap labelings also have great potential
for use in encryption protocols.

Theorem 6. A maximum-overlap labeling of a graph

G = (V,E) is cryptographically secure against all

adversaries.

Proof: Suppose that Alice wants to transmit graph
G = (V,E) to Bob. Alice computes the max-overlap
labeling L of the graph and sends (L(V), L(E)), which
Eve intercepts. One of two cases must occur:

• Eve attempts to read the input and falls asleep, or
• Eve concludes that Alice and Bob are insane, and

that their transmitted graph must be worthless.
In both cases, Eve gains no information about G.

VII. POETRY

A. The Limerick Graph

Let’s take a look the max-overlap labeling of P2, the
length-2 path, as shown in 8:

Fig. 8: Max-overlap labeling for P2. As it turns out, this is
the Limerick Graph AABBA.

The vertex and edge sets are

V = {a, b, {a, b}}

E = {{a, {a, b}}, {b, a}}

Verbalized, the edge set is “A, A, B, B, A”, or
“AABBA.” This looks an awful lot like a rhyme
scheme, doesn’t it? Specifically, AABBA is the rhyme
scheme for a limerick5. In general, it seems like we
ought to be able to get graphs that correspond to other
rhyme schemes.

5For example:

To label a 3-vertex path
For usage in improper math
Use {{a, b}, a, b}
On v1 through 3;
Voila! It’s a limerick graph.

B. The Sicilian Octave Graph

A Sicilian Octave is an eight-line poem with alter-
nating rhymes; i.e., its rhyme scheme is ABABABAB.
Consider this max-overlap labeling of the 3-clique K3:

Fig. 9: Max-overlap labeling for K3, the Sicilian Octave
graph, with Ä(G) = 1

3 .

The edge set is

E = {{a, b}, {{a, b}, a}, {b, {a, b}}},

that is, ABABABAB.

C. The Shakespearean Sonnet Graphs (order 1 and 2)

We now explore several rhyme-scheme encoding
graphs that may not necessarily be overlap-maximal,
and which allow self-loops. This allows us to further
bridge the (currently, very large) gap between mathe-
matics and poetry.6

Shakespearean sonnets have a rhyme scheme of
ABAB CDCD EFEF GG. Fig. 10 displays a graph with
vertex and edge sets

V = {a, b, c, d, e, f, g, {a, b}, {c, d}, {e, f}, {g, g}}

E = {{a, b}, {{a, b}, {c, d}}, {c, d}, {e, f}, {{e, f}, {g, g}}}.7

Fig. 10: The order-1 Shakespearean sonnet graph is a forest
of K2s, plus one self loop. It achieves Ä(G) = 2

3 .

This is a rather disappointing graph. Luckily for us,
Shakespeare wrote more than one sonnet. Fig. 11 shows
the graph corresponding to two Shakespearean sonnets.

(Shakespeare wrote 153 sonnets; the order-153
Shakespearean sonnet graph is left as an exercise to
the reader.)

6The two fields have been slowly growing apart since Omar
Khayyam, although Lewis Carroll made a valiant effort to bring
them back together.

7I know this overlaps the margin of the page. shhhhh.

65

Fig. 11: The order-2 Shakespearean sonnet graph, with
edges E = {{a, b}, {{a, b}, {c, d}}, {c, d}, {e, f},
{{e, f}, {g, g}}, {{a, b}, a}, {b, c}, {d, {c, d}},

{{e, f}, e}, {f, {g, g}}}, i.e. ABAB CDCD EFEF GG
ABAB CDCD EFEF GG. Ä(G) = 4

11 .

D. Other Poems (Selected)

Fig. 12: Rhyme scheme graph of The Raven by Edgar
Allen Poe, encoding rhyme scheme AABCCCBBB.
E = {{a, a}, {b, c}, {c, {c, b}}, {b, b}} with Ä(G) = 1

4 .

Fig. 13: Rhyme scheme graph of The New Colossus by
Emma Lazarus (“Give me your tired, your poor, your

huddled masses yearning to breathe free”), encoding
rhyme scheme ABBAABBACDCDCD with Ä(G) = 2

5 .

Fig. 14: Rhyme scheme graph of Fox in Socks by Dr.
Seuss, encoding rhyme scheme AAAAAAAAAAAA. 8

8not to be confused with the sound emitted by distressed
humans

Fig. 15: Rhyme scheme graph of Toxic by Britney Spears,
encoding rhyme scheme ABACDCDD with Ä(G) = 0.

VIII. CONCLUSION

In this work, we presented an overlap-maximization
technique for labeling graphs. In order to counter the
increasing ease of communication facilitated by the
internet, we propose an alternate naming convention
for graphs, in order to minimize clarity when spoken
aloud.

In particular, scholars should strive to use either the
name for a poem whose rhyme scheme encodes the
graph, or directly list out the edge set of the maximal-
overlap labeling of the graph.

For example:

1) the triangle graph could be validly called “AB,
ABA, ABB” or “The Fox in Socks graph without
self-loops”;

2) the 4-cycle could be called “the second-smallest
connected component of the Order 2 Shakespeare
graph” or “AB, BAB, BABAB, ABAB.”

Creativity is encouraged.

66

IX. REFERENCES

[i] Google.
[ii] Wikipedia.

[iii] The Poetry Foundation.
All figures created in totally legal, non-pirated Adobe

Illustrator.

X. APPENDIX A: PROOF OF THEOREM 1

A. Upper bounding È(G)

First, we show that È(G) f |V | − 2.
Suppose for the sake of contradiction that È(G) ≥

|V | − 1, i.e. that there are |V | − 1 vertices which
share a label with an edge. Let these vertices be V ′ =
{v1, v2, · · · v|V |−1}.

Note that these vertices are all of the form {x, y}
for some x, y ∈ V . So, ¢ is a strict partial order on
the finite set V ′, so there exists at least one minimum
element under ¢.

Let m = {m1,m2} be such a minimum element. m1

and m2 must be vertices, since the vertex m overlaps
with an edge. Since m is the minimum, m1,m2 ̸∈
V ′. So we have two vertices that are not in V ′, a
contradiction. =⇒ ⇐=

Second, we show that È(G) f |E|. Note that

È(G) = max
L:V→U

|L(E) ∩ L(V)| (Definition 1)

f max
L:V→U

|L(E)|

= max
L:V→U

|E| (L bijective)

= |E|

as desired.

B. Constructively lower bounding È(G)

We show a recursive procedure to assign labels to
a graph to ensure min(|E|, |V | − 2) overlap between
edge and vertex labels.

In particular, it suffices to iteratively build up the
graph by adding vertices and keeping the following
invariant:

Invariant: A graph G = (V,E) with |V | ≥ 2
can be min(|E|, |V | − 2)-overlap-labeled, with the
labeling determined entirely by the labels of two “base”
vertices (in particular, the two “base” vertices can be
arbitrarily renamed, and the rest of the graph relabeled
accordingly, while preserving the overlap).

Base cases: The theorem trivially holds for |V | ∈
{0, 1, 2} 9.

9Whether |V | = 0 is a valid graph is up for debate; see “Is the
null-graph a pointless concept?” by Harary and Read, 2006

For |V | = 3: The labelings displayed in Fig. 16
cover all cases. Note that a, b could be labeled anything,
and the rest of the graph relabeled accordingly, while
keeping the invariant true.

Fig. 16: Overlap-maximal labelings for |V | = 3, the base
case for our recursive labeling scheme. Note that in each

case the amount of overlap È(G) is less than
min(|E|, |V | − 2).

Inductive step. Consider some graph G = (V,E)
with |V | ≥ 4. We split into cases:

• |V | − 2 < |E|. Then, there must be some vertex
v with minimum degree. Inductively label G \ v,
then choose some edge e ∈ G \V as the label for
v.

• |E| f |V | − 2. Then, the graph is disconnected.

– If one connected component is a singleton ver-
tex, then label it arbitrarily, and inductively label
the rest.

– Otherwise, partition the graph into some con-
nected component C and G \ C. Inductively
label C and G \ C.
Choose two edges e1, e2 ∈ E(C) \ V (C) (i.e.,
they do not yet share a name with a vertex), and
rename G \C, using these e1, e2’s labels as the
“base” labels for G \ C.

It’s easy to verify that this process preserves the invari-
ant; the details are left to the reader.

67

XI. APPENDIX B: THE EDGE SET OF K7 UNDER

MAX-OVERLAP RELABELING

E(K7) = {

{a, b},

{a, {a, b}},

{a, {a, {a, b}}},

{a, {{a, {a, b}}, {a, b}}},

{a, {b, {{a, {a, b}}, {a, b}}}},

{a, {{{b, {{a, {a, b}}, {a, b}}}}, {a, b}}},

{b, {a, b}},

{b, {a, {a, b}}},

{b, {{a, {a, b}}, {a, b}}},

{b, {b, {{a, {a, b}}, {a, b}}}},

{b, {{{b, {{a, {a, b}}, {a, b}}}}, {a, b}}},

{{a, b}, {a, {a, b}}},

{{a, b}, {{a, {a, b}}, {a, b}}},

{{a, b}, {b, {{a, {a, b}}, {a, b}}}},

{{a, b}, {{{b, {{a, {a, b}}, {a, b}}}}, {a, b}}},

{{a, {a, b}}, {{a, {a, b}}, {a, b}}},

{{a, {a, b}}, {b, {{a, {a, b}}, {a, b}}}},

{{a, {a, b}}, {{{b, {{a, {a, b}}, {a, b}}}}, {a, b}}},

{{{a, {a, b}}, {a, b}}, {b, {{a, {a, b}}, {a, b}}}},

{{{a, {a, b}}, {a, b}}, {{{b, {{a, {a, b}},

{a, b}}}}, {a, b}}},

{{b, {{a, {a, b}}, {a, b}}},

{{{b, {{a, {a, b}}, {a, b}}}}, {a, b}}}

}

68

Neo-Classical Logic
Une Logique non classique*

Martin Vassor Fangyi Zhou

Resume.

Standard logics, such as classical logic or intuitionist logic suffer from flaws that remained unaddressed
as of today (like philosophical questions about using the axiom of excluded middle, which draws the line
between the two logic mentioned previously). In this paper, we introduce neo-classical logic, in an attempt
to reconciles classical and intuitionistic logics, as well as to capture some real-world event which can not
be explained by previous logics, due to their lack of expressivity.

After introducing its syntax and semantique, we study the meta-theory of this new logic, and show
multiple interesting results, such as the law of contradiction, or that validity is decidable, which states that
a proposition can simultaneously hold and not hold.

1 Introduction

Motivation. Our paper is motivated by strong empirical evidences that some events, concepts, objects can
simultaneously exist and don’t exist (see Figure 1, but also [6, 8, 10]).

Despite strong evidence, to the best of our knowledge, no logic seems to be expressive enough to prove
statements as simple as « Exists a such that a does not exist. » This absence (or possibly presence) shows
that there exists a gap between current theoretical models and the actual reality.

Contribution. Our main contribution in this paper is to introduce a new logic, neoclassical logic1 , which
reduces this gap, allowing us to express more faithfully the subtleties of the world.

Moreover, we demonstrate how we use neo-classical logic to reconcile two important logic theories,
namely classical logic and intuitionistic logic, with a constructive proof of the Law of Excluded Middle in
our neo-classical logic. Neo-classical logic subsumes classical logic and intuitionistic logic.

Outline. In Sections 2 et 3, we discuss the limitations of the two most popular logics, namely classical and
intuitionistic logic. From that, we conclude that there is a need to fill the gap left opened by those two logic
systems; in order to capture real-life cases that can not be addressed by the two logic aforementioned. In
Section 4, we introduce our proposal, which we call neo-classical logic, by successively presenting both its
syntax and its semantique. In Section 5, we discuss the meta-theory of the logic. Finally we present an
actual use case in Section 6, showing that our logic allows to capture complex arguments while remaining
decidable. Finally, in Section 7, we conclude by discussing some limitations, presenting some unrelated work
and highlight some interesting research paths for future work.

2 Classical Logic is Not Modern

We look up the dictionary entry of the word « classical » in Cambridge dictionary again [9], and see
what it could mean. The main usages include « traditional in style or form, or based on methods developed
over a long period of time, and considered to be of lasting value », and « used to describe something that
is attractive because it has a simple, traditional style. »

We also note that this sentence was provided as an exemple:

Does she study classical ballet or modern ballet?

*A paper on logic must have some French, but we don’t know how to typeset accents, so here it is.
1Also spelled « neo-classical » due to our lack of motivation to check the consistency across the paper.

15

69

(a) Evidence of the non existence of the word
« Artefact » [10]

(b) Evidence of existence of the word « Arte-
fact » [8]

Figure 1: Empirical evidence of the simultaneous existence and non-existence of the word « Artefact » in
English, according to the Cambridge Dictionary.

This sentence gives a strong hint that classical ballet is not modern. We are also confident to conclude
that classical logic is not modern, via a simple application of substitution. A modern-day logic should
be modern, in order to catch up with contemporary development of real life events and technological
advancements. Moreover, it is an unfortunate fact that classical logic cannot represent the simultaneous
existence and non-existence of a word (cf. Figure 1) — it cannot model contemporary dictionaries in a
modern world.

3 Intuitionistic Logic is Not Intuitive

In the first courses of computer science, students learn classical logic due to its simplicity. Some
mathematicians and theoretical computer scientists, however, prefer intuitionistic logic.

Unfortunately, we are unable to find an entry for « intuitionistic » in Cambridge dictionary, which is a
strong hint that it is not intuitive. Think about that, why would computer scientists call something intuitive
using a complicated word that looks like « intuitive », but decide against its use?

4 Neo-Classical Logic

In order to address the unsatisfactory deficiency of both classical logic and intuitionistic logic, we
introduce neo-classical logic.

4.1 Formules

A ::= a, b, c, ... Atomic propositions

P ,Q ::= A Atomic proposition

| ¬P Negation of P

| P ∧ Q And

Notice that, together with the semantique we define below, and in particular with the traditional encoding
of P ∨ Q as ¬(¬P ∧ ¬Q) and P ⇒ Q as ¬(P ∧ ¬Q), we can have usual constructs. Therefore, we allow ourself
to use those elements as needed.

The syntax of formules does not differ much from classical or intuitionistic logic — this is why we think
our logic is neo-classical: it looks classical, but is quite modern. We explain the modernness in detail when
we discuss the semantique.

We fix a set A of atomic propositions, ranging over a, b, c, Atomic propositions form the basic form
of neo-classical logic formules, and we also recognise standard logical operators: negation, conjunction,
disjunction, and implication.

70

4.2 Semantique

Let ` be a (binary) predicate defined according to the rules in Figure 2. We use an infix notation: Γ ` P

where Γ is an environment and P a formula of the neo-classical logic. We write Γ ̸` P for ¬(Γ ` P).

a ̸∈ Γ

Γ ` ¬a
(¬Exists)

a ∈ Γ

Γ ` a
(Exists)

Γ1 ` P Γ2 ` Q

Γ1 ∪ Γ2 ` P ∧ Q
(∧)

Γ ` ¬P

Γ ` ¬(P ∧ Q)
(DeMorganL)

Γ ` ¬Q

Γ ` ¬(P ∧ Q)
(DeMorganR)

Γ ` P

Γ ` ¬¬P
(¬¬I)

Figure 2: Inference rules of the ` predicate

The novelty of neo-classical logic lies in the rules (¬Exists) and (Exists). Those two rules establish a
strong correspondence between a witness (or observation) of an event and establishing the existence of
that event. On the one hand, rule (¬Exists) states that if we have no evidence of an event, we can conclude
that this event does not exist. This is, informally, motivated by the fact that having no evidence of an event is
indistinguishable from that event not existing. Indeed, if there is a way to distinguish two possible worlds, one
with the event, one without; then the distinctive element actually serves as witness of the event. Therefore,
from Occam’s razor (often stated « Pluralitas non est ponenda sine necessitate »2 , and widely spread in the
literature, see e.g. [7, Book I, 4, 188a17], but also [4, Prima Pars, Q.2 art.3 -AG2, &c.]), we should not suppose
the existence of an event we have no evidence of; which ends the justification of that rule.

Conversely for (Exists), if we have an observation of an event a, we can deduce the existence of that
event. This is trivially motivated.

Exemple 1 (Artefact exists and does not exist).

artefact ` artefact
(Exists)

∅ ` ¬artefact
(¬Exists)

artefact ` artefact ∧ ¬artefact
(∧)

Theoreme 2 (Consistency). The deduction system is consistent, i.e. ∅ ̸` ⊥.

Preuve. It is not possible to introduce ⊥. Voilà.

Remarque 3 (Absence of Absolute Truths And Absolute Falsities). We note that > and ⊥ are not formules of
neo-classical logic. This is important since there are no absolute truths and absolute falsities in the modern
world. We make a conscious effort to model this observation in our logic.

5 Meta3-Theory of Neo-Classical Logic

Lemme 4 (To tree or not to tree).
∀Γ . ∀P . Γ ` P ∨ Γ ̸` P

Preuve. First, we need to clarify the statement. It is obviously not a neo-classical formula (typically, neo-
classical logic do not have quantifier). Instead, it is a formula from first-order classical logic, where ` is a
(binary) predicate; and ∨ is the disjunction of classical logic.

The result then follows directly from the law of excluded-middle of classical logic. Voilà.

Lemme 5 (If no proof, then proof of negation).

∀Γ . ∀P . Γ ̸` P ⇒ Γ ` ¬P

Preuve. By induction on P.

Case P = a: from the premisses of (Exists), we have that a ̸∈ Γ. Therefore, rule (¬Exists) applies.

Case P = ¬Q: neither (¬Exists), (DeMorganL), (DeMorganR) nor (¬¬I) apply. By case analysis on Q:

2« entities should not be multiplied beyond necessity », translation Wikipedia.
3Not to be confused with Meta Platforms Inc, “metaverse”, or whatever.

71

Case Q is a: since (¬Exists) does not apply, we have that a ∈ Γ, therefore Γ ` Q, therefore Γ ` ¬P by
applying (¬¬I).

Case Q is ¬Q′: since (¬¬I) does not apply, we have that Γ ̸` Q′ . From the induction hypothesis, we
have that Γ ` ¬Q′ . Therefore, Γ ` ¬P (i.e. Γ ` ¬¬¬Q′) by applying (¬¬I).

Case Q is Q1 ∧ Q2: since neither (DeMorganL) nor (DeMorganR) apply, we have that both Γ ̸` ¬Q1

and Γ ̸` ¬Q2 . Therefore, from the induction hypothesis, both Γ ` ¬¬Q1 and Γ ` ¬¬Q2 . From
the premises of (¬¬I) on those two statements, we have that both Γ ` Q1 and Γ ` Q2 . Therefore,
Γ ` Q1 ∧ Q2 (i.e. Γ ` Q), by applying (∧). Therefore, we can prove Γ ` ¬P, i.e. Γ ` ¬¬Q, by
applying (¬¬I).

Case P = Q1 ∧ Q2: Since rule (∧) does not apply, we have that for any subsets Γ1 , Γ2 of Γ, neither Γ1 ` Q1

nor Γ2 ` Q2 . I.e., ∀Γ′ ∈ Γ . Γ ̸` Q1 (resp. Q2). Therefore, from the induction hypothesis, we have that
for any subset Γ′ of Γ, Γ′ ` ¬Q1 (resp. Q2).

Therefore, the proof finishes by showing that Γ ` ¬P, i.e. Γ ` ¬Q1 ∧ Q2 by applying either (DeMorganL)
or (DeMorganR). Voilà.

5.1 Law of Contradiction

Lemme 6 (Empiricism brings knowledge).

∀P . ∃Γ . Γ ` P

Preuve. By induction on P.

Case P = a: let Γ = {a}, apply (Exists).

Case P = ¬P′: By case analysis on P′:

Case P′ = a: Let Γ = ∅, and the result holds directly from rule (¬Exists).

Case P′ = Q1 ∧ Q2: From the induction hypothesis, we know that there exist Γ1 such that ¬Q1 holds.
Therefore, we can take Γ = Γ1 and apply (DeMorganL).

Case P′ = ¬Q: In that case, we have to prove ¬¬Q. The result holds directly from the induction
hypothesis and by applying the rule (¬¬I).

Case P = Q1 ∧ Q2: From the induction hypothesis, we know that there exists a Γ1 (resp. Γ2) such that Γ1 ` Q1

(resp. Γ2 ` Q2). We can take Γ = Γ1 ∪ Γ2 and apply the rule (∧). Voilà.

Theoreme 7 (Law of contradiction).
∀P . ∃Γ . Γ ` P ∧ ¬P

Preuve. This Theoreme is a corollaire of lemme 6. Voilà.

5.2 Excluded-Middle

Theoreme 8 (Excluded-Middle).
∀Γ . ∀P . Γ ` P ∨ ¬P

Preuve. As we said above, P ∨ ¬P is encoded in our calculus as ¬(¬P ∧ ¬¬P). Therefore, we actually have
to prove that this formula holds for all P and Γ.

From lemme 4, Γ ` P or Γ ̸` P. By case analysis:

Case Γ ` P:

...

Γ ` P
Hypothesis

Γ ` ¬¬P

Γ ` ¬(¬P ∧ ¬¬P)
(DeMorganL)

(¬¬I)

72

Case Γ ̸` P: From lemme 5, Γ ` ¬P.

...

Γ ` ¬P
Hypothesis

Γ ` ¬¬¬P

Γ ` ¬(¬P ∧ ¬¬P)
(DeMorganR)

(¬¬I)

Voilà.

5.3 Decidability of Validity

Finally, we want to show that deciding whether a formula P is valid under a context Γ is decidable. For
that, we first show how to compute two sets: first, the set of event that must be in Γ, and second, the set
of event that must not be in Γ, in order to satisfy the formula. Finally, we compare Γ with those two sets to
decide whether P can be satisfied.

Set of required events. Let RP be the set of required events to satisfy P. Notice that there might be multiple
ways to satisfy a single formula, i.e. multiple sets of required events are possible. Therefore, RP is actually a
set of sets of events. RP can easily be defined as follows:

RP
def
=































∅ if P = ¬a, ∀a

{{a}} if P = a, ∀a

{PQ1 ∪ PQ2 |PQ1 ∈ RQ1 ∧ PQ2 ∈ RQ2} if P = Q1 ∧ Q2

R¬Q1 ∪ R¬Q2 if P = ¬(Q1 ∧ Q2)

RQ if P = ¬¬Q

Lemme 9 (Required is correct). For all Γ, for all P, if ̸ ∃P ∈ RP such that P ¦ Γ, then Γ ̸` P.

Preuve. The proof is direct, by induction on P. Each possible case of corresponds to a case of RP , corres-
ponds to the premises of a rule (or two rules for the two variants of (DeMorgan)). Voilà.

Lemme 10. For all P, RP is computable.

Preuve. Let n1(P) be the number of occurrences of ¬(Q1 ∧ Q2) in P. Let n2(P) be the number of occurrences
of ¬Q in P. Let ≺ be an order relation on formules defined as follows:

P ≺ Q if and only if (n1(P) < n1(Q)) or (n1(P) = n1(Q) and n2(P) < n2(P))

We easily show, by induction, that, for each recursive computation of RQ to compute RP , Q ≺ P. Also,
there is a finite number of recursive call at each step.

Therefore, the computation eventually terminates. Voilà.

Set of forbidden events. Let FP be the set of forbidden events to satisfy P. FP can easily be defined as
follows:

FP
def
=































{a} if P = ¬a, ∀a

∅ if P = a, ∀a

FQ1 ∩ FQ2 if P = Q1 ∧ Q2

F¬Q1 ∪ F¬Q2 if P = ¬Q1 ∧ Q2

FQ if P = ¬¬Q

Lemme 11 (Forbidden is correct). For all Γ, for all P, if Γ ∩ FP ̸= ∅, then Γ ̸` P.

Preuve. The proof is direct by induction on P. Each possible case of corresponds to a case of FP , corresponds
to the premises of a rule (or two rules for the two variants of (DeMorgan)). Voilà.

Lemme 12. For all P, FP is computable.

Preuve. The proof is similar to the proof of lemme 10. Voilà.

73

Theoreme 13. For all Γ, for all P, Γ ` P if and only if:

1. ∃P ∈ RP . P ¦ Γ; and

2. Γ ∩ FP = ∅.

Preuve. The if direction is a direct consequence of lemmes 9 et 11, by contraposition.
We have to show the other direction, that is the two conditions are sufficient to have Γ ` P.
The result is direct by induction on P. Voilà.

Corollaire 14 (The validity of a formula is decidable). For any Γ, for any P, Γ ` P is decidable.

6 Practical Applications

As logicians, we have a moral duty to remain close to practical applications of our works. Indeed, the
formal study of arguments allows every citizen to cast a light and understand actual facts on the world that
surrounds us. In order to show that our work has indeed some practical use, in this section, we show an
actual exemple taken from everyday’s life.

While police violence is a well-documented issue in modern democracies [1, 5], we still have statements
that police violence does not exist [2,3] (e.g. « Ne me parlez pas de [. . .] violences policières, ces mots sont
inacceptables dans un État de droit. »4 , Macron et al., reported at 0:40 in [3], and in [2]).

In the following, we show that our logic captures such arguments, as they are actually derivable. Let vp
an actual observation of police violence. In the following, we show how we can simultaneously claim that
such event occurs and does not occurs, given such observation.

vp ∈ {vp}
Set theory

{vp} ` vp
(Exists)

vp ̸∈ ∅
Set theory

∅ ` ¬vp
(¬Exists)

{vp} ` vp ∧ ¬vp
(∧)

7 Conclusion, Unrelated and Future Work

In this paper, we presented new semantique for the propositional calculus. We show that this new
semantique have interesting properties. For instance, the standard law of excluded-middle holds in our
calculus, or that the validity of a formula is decidable. In addition, we show that new, previously unexplored5

laws, such as the Law of contradiction also holds for our calculus.
Overall, as stated in the motivation, our calculus captures intuitive notions of proofs based on the notion

of evidence. Our calculus finally brings the formal basis needed for reasoning on the ontological6 notion of
existence, which is a problem that was left opened since almost 2.5 millennia; yet still relevant as of today.

Unrelated Work. Very little is unrelated to this one, as this work regards the relation between evidence
and knowledge. Therefore, all evidence-based sciences are related to this work. Furthermore, as it aims to
give a formal basis to ontological7 arguments, it relates to philosophical works, which we therefore have to
exclude from unrelated works as well.

Future Work. The current main limitation is that it is based on propositional logic; and therefore lacks the
expressiveness needed to capture more complex argumentations. Future work could include extending this
paper up to higher-order logic. Such extension could benefit from an extended expressiveness, possibly
being expressive enough to encode arithmetics.

The exemple shown in Section 6 illustrate that our logic allows a fine characterisation of the reasoning
that leads to some claims. For instance, we saw that the authors of the sentence above (Macron et al.,
reported in [2, 3]) loose some information in their reasoning. The current work is limited in that it does
not give explanation for this loss. Intuitively, we can hypothesize various causes, ranging from plain lack of
knowledge to deliberate ignorance. Future works is needed to elaborate on such hypothesis.

4« Don’t say [. . .] “police violence” to me, those words are unacceptable in a Rechtsstaat. » Translation by the authors.
5To the best of the author’s knowledge.
6Ditto.
7or « epistemic », as you can guess, the authors are not philosophers and are just using those big words to impress reviewer #2.

74

Remerciements

We thank anonymous reviewers from Sigbovique 2022 for their helpful comments and insights, except
reviewer #2. We think this paper should be rated 5/7.

References

[1] Violences policières, les situer pour mieux y résister. Vacarme 77, 4 (2016), 8–23. Place: Paris Publisher:
Association Vacarme.

[2] VIDEO. "Gilets jaunes" : Macron juge "inacceptable dans un Etat de droit" de parler de "violences
policières", Mar. 2019.

[3] Clique TV. Clément Viktorovitch : Peut-on parler de violences policières ? - Clique - CANAL+, June
2020.

[4] d’Aquino, T. Summa Theologiae. XIII AD.

[5] Jobard, F. Bavures policières ? La force publique et ses usages. TAP / Politique et société. La Découverte,
Paris, 2002.

[6] Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 48 (Nov.
1935), 807–812.

[7] Ἀριστοτέλης. Φυσικὴ ἀκρόασις. c. IV BC.

[8] University of Cambridge. Cambridge dictionary – Entry “Artefact”, 2022.

[9] University of Cambridge. Cambridge dictionary – Entry “Classical”, 2022.

[10] University of Cambridge. Cambridge dictionary – Spellcheck of “Artefact”, 2022.

75

A Patriotic Analysis of Programming Paradigms

Jacob Weiner
Abraham Lincoln Chair for Patriotism

Founding Fathers University

SIGBOVIK 2022

Abstract

In this paper, we will examine why dependent type theory is the most patriotic paradigm
for programming. We will examine several key founding documents to draw our conclusion. We
will view many American flag images and feel patriotic.

16

76

1 Introduction

It is universally accepted among Americans that patriotism is the highest and most important
virtue1. Hence, it is critical to the overall well-being of our nation and the people within it to
identify what paradigms and techniques in computer science are deserving of our glorious star-
spangled flag, and which are being secretly promulgated by evil enemy spies. Thus, we can rid
ourselves of those elements which hold us back from the glorious future which our founders intended
for us.

To quote John Winthrop, ”...we shall be as a [shining] city upon a hill” if all our code is truly
American.

Figure 1: AMERICA

2 Motivation

1If you dissent, you are an unpatriotic traitor!!!!!!!

77

My coding ’tis of thee

Sweet land of liberty

Of thee I sing...

Land where the simply typed

Lambda calculus thrives,

From every shell, a cry:

"Let FP ring!"

3 Methods

I examined founding documents and common sayings for out-of-context quotations to support my
thesis.

I used American flags to distract from several questionable logical leaps.

78

Figure 2: AMERICA

4 Analysis of Data and Results

The first hint on our quest to find the most patriotic paradigm is in our core document, the
Consitution. The Constitution defines what it means to be American2, and no part of it more so
than the Preamble.

The Preamble states that the goal of America is to form a more perfect union. Therefore, any
paradigm which hopes to be patriotic must support union types. This allows for C, which features
union types, as well as functional languages, which allow for datatypes with multiple constructors.

The importance of union types can be seen in Article 1, Section 1. This section clearly describe
“member of congress” a union type: either a Senator or a Representative.

Figure 3: AMERICA

If any document hopes to come close to the Constitution in patrioticity3, it is the Declaration of

2Obviously.
3Yes, I just created that word.

79

Independence, crafted by the great Thomas Jefferson. It notes that all human beings have certain
“unalienable rights”.

Note the importance of the word unalienable – it means that these rights can neither be
altered nor removed. Hence, we must

4 conclude that immutability of data is a core patriotic
value, without which our country would fall to ruins.

Only one paradigm offers immutability, along with the union types so highly prized by the
Constitution. This is functional programming.

One curious note about the Constitution is that Congress is described in article 1, while the
Presidency is delayed until article 2. This is because the founders believed that deliberation is
more important than action. By extensionality, we must conclude that they would regard imperative
programming to be inferior, as it is a paradigm of action.

Figure 4: AMERICA

So we are now absolutely sure that the paradigm of our founding fathers is functional. But what
flavor of functional programming? Another look at the Declaration of Independence will illuminate
us to the true intentions of Washington, Franklin, Jefferson, and all the other great ones.

“We hold these truths to be self-evident : that all men are created equal...”
Note the three key words in this patriotic phrase:

� Truth and evident indicate that we ought to have a way to create evidence that our programs
are working correctly.

� The mention of equality indicates that all types should be equality types.

The latter condition is rather stringent, but it can be done if we allow for function extensionality.
But to use function extensionality, we need to express propositions with universal quantifiers within
our language! How can this be done?

There is only one answer: we must use dependent type theory with the Curry-Howard Corre-
spondence5.

In fact, we could have seen this from the beginning, for it is often said that there is nothing as
American as apple pie – and dependent type theory includes at its core Pi-types!

One piece of further evidence that dependent type theory is what our founders would have
supported comes from the 9th amendment in the Bill of Rights. It notes that the enumeration of
rights “should not be construed” to imply that there were not further rights. This clearly implies

4At least, those of us who are truly AMERICAN.
5Both Curry and Howard are good old American citizens.

80

Figure 5: AMERICA

that the set of all rights to which American citizens are entitled is in fact an uncountable set, as
they cannot be enumerated!

Dependent type theory easily handles creating and reasoning about uncountable types, while
few other paradigms truly support uncountability – even so-called “real number types” in many
languages, from C to SML, are limited by machine precision. Yet using dependent type theory, one
must represent real numbers precisely – or else not at all!

Figure 6: AMERICA

5 Conclusions

Dependent type theory should be the only paradigm used by true American computer scientists and
programmers. Any other paradigm would cause the founding fathers to roll over in their graves.

81

6 Recommendations

Ban all other paradigms from American soil immediately.

7 Future Research

This highly innovative method can be used to evaluate differing techniques in many other areas of
human effort and ingenuity, including science, mathematics, art, literature, social sciences, business,
basket weaving, red herring catching, and WiFi customer service.

8 Impact

America will be better because of this research. I am sure of it.

Figure 7: AMERICA

82

9 Acknowledgments

George Washington is to be acknowledged.

Figure 8: AMERICA

83

On Ruinment
Ruination Theory and its Consequents

Luna A. Q
�
� ��A�K (they/them)0

Dissociation for Heresiographical Informatics
disinformatics@pm.me

Abstract—TODO: write abstract

I. INTRODUCTION

The field of Ruination Theory is a severely sparse and
understudied field, despite its deep ramifications. The question
of ruinment is fundamental to our very perception of the world
and the categorical1 distinctions we make of it. We seek to
demonstrate the importance of Ruination Theory through our
novel Waldstreicher–Equivalence Theorem, deriving results
impossible to find in any other field of Computer Science
or Mathematics, as well as fill in the as of yet missing
fundamentals to this incredibly impactful and meaningful field.

II. RUINMENT

We refer to the act of ruining something as ruinment, 2 and
begin with the central lemma of our study, which is perhaps
the most important fact of ruinment.

Lemma II.1 (Tascheter–Conover Fundamental Lemma of
Ruinment). Adam ruins everything.

Proof. See [3].

In search of a mathematical formalization of the notion of
ruinment, we assert the following characteristics that must be
true for such a formalization:

Proposition II.2. Anything can ruin anything else.

Proof. Take two objects A and B which may be enumerated
within a given language of discourse.3 We call A the ruinator
and B the ruined. Note that the phrase “A ruins B” is
semantically valid. We exemplify three cases: “Fire ruins the

Library of Alexandria”[2], “Testosterone ruins Luna A. Q
�
� ��A�K

”[1], and “Adam ruins everything” (by the Tascheter–Conover
Fundamental Lemma of Ruinment).

0Q�� ��A�K is transliterated Tascheter, for those of you who have spoken solely
the profane Latin-scripted tongues.

1In a Hegelian sense, you dirty Category[13] Theorists.
2Other terms used in the field include ruination, T0T41 PWN4G∃, and

ratio.
3We assume the use of English in this paper due to the author not knowing

any other language. Je sais un peu de français, mais c’est une langue merdeuse,
donc je ne veux pas le utiliser.

Exercise 1. Translate this paper into a non-English language. 4

Proposition II.3. The classes of all ruinators and ruineds are

finite sets.

Proof. First, note that language, as a general construct, exists
within humans for the purpose of communication. Thus, the
class of all words in every language of discourse must fit
within the combined storage space of the minds of every
human. As there is a finite amount of humans, 5 each human
stores information in a physically-bounded region called the
Brain[4], and any given region of space has an upper limit
to information density[5], this combined storage space must
be finite. Thus, the class of all words in every language of
discourse is finite, and thus we may form a set of all words
in every language of discourse L. As the class of all English
words E ¢ L, E is finite and thus also forms a set. We note that
each locus6 in English is a finite sequence of words. As every
ruinator and ruined corresponds to a locus, there are finite
ruinators and ruins. Thus, their classes are finite sets.

Proposition II.4. The sets of ruinators and ruineds are equal.

Proof. Trivially, by Proposition II.2.7

Proposition II.5. Reflexivity of ruinment.

Proof. Everybody eventually ruins themself[7]. We extend this
notion to apply to everything as well: write R as the set of
ruinators and ruineds. Then, ∀r ∈ R, create some embodiment
E(r) as follows: if r is a person, E(r) = r, and otherwise
construct E(r) = T (S(I(r))) where I(r) is the platonic ideal
of r, S(x) bestows sentience upon x, and T (x) turns x into a
hot Tumblr Sexyman.8 We note that this process has already
been proved feasable on Van Gogh’s The Starry Night [8],
and, in fact, may be undergone in general[9].

Person Thing

Sexyman Sentient Ideal

E

I

E

⊂

T S

4Get it published in SIGBOVIK 2023 and I’ll mail you 1 USD! Please, I
need citations.

57,935,884,256[6]
6A phrase used to uniquely refer to an object.
7En français, je peux dire tout ce que je veux. La réalité est une illusion!

Le univers, c’est un hologramme! Achète l’or!
8Pardon mon anglais.

17

84

As T ◦S ◦ I is an homomorphism over ruination,9 everything
eventually ruins itself.

Proposition II.6. Transitivity of ruinment.

Proof. Suppose there are A,B,C ∈ R where A ruins B and
B ruins C. We prove, then, that A must ruin C. We propose
a well-studied mechanism: the Sandler–Hallmark Theorem. In
short, this theorem generalizes the mechanism through which
movies are still well-liked[10]. We note that Adam Sandler and
Hallmark both ruin movies; 10 however, movies aren’t ruined
yet[10]. The discoverers of the Sandler–Hallmark Theorem,
in their seminal 11 paper in Ruination Theory12 “The New
Odysseus of 1966,”13 prove this is because Adam Sandler and
Hallmark are already ruined, and thus cannot ruin anything
else[11]. They propose that anything that ruins Adam Sandler
and Hallmark then, in a sense, “steals” or subsumes all of their
ruinments.

X Hallmark

Adam Sandler Movies

ruins

ruins

ruins ruins

ruins

They continue to generalize same principal to the general case
of transitivity of ruinment.

Exercise 2. Prove your gender is trans-itive.

Definition II.7. Formal Ruinment is a preorder � over R.

Proof. Propositions II.2, II.3, II.4, II.5, II.6.

III. CATEGORICAL[13] RUINATION THEORY

And, thus, we have formalized the ever-elusive notion of
Ruinment in Ruination Theory. This, alone, would be enough
to warrant an entire paper, maybe even 5, due to how novel
this result is. But we, the searchers for Scientific Knowledge,
would never—nay—could never do such a thing. And, thus,
we continue ever onward into never-before-charted territory!14

We continue with a brand-new angle on Ruination Theory:15

Categorical[13] 16 Ruination Theory.

Theorem III.1. Formal Ruinment over R forms a category

[13] Ruin.

Proof. From Definition II.7 and the fact that all prosets are thin
categories[12][13]. In this case, R is the set of all objects[13]
and each ruinment is a morphism[13].

9Ruination is preserved due to it producing embodiments of objects, which
are naturally homo-by-definition.

10Adam Sandler ruins movies ∧ Hallmark ruins movies
11pensive
12Though we use the term ruination in this paper, historical precedent

dictates we call the field, in general, Ruination Theory.
13Copious research into the metamathematics of titling has provided us

with the knowledge that 1966 is the birth year of Adam Sandler.
14Avast ye, for we are the bold and rousing crew of the Good Ship

Ruinment!
15Man, writing this paper’s abstract will be a cinch at this rate!
16In a Category[13] Theoretical sense, you cleanly Category[13] Theorists.

And, now, we may bring in all sorts of results and general-
izations found in Category Theory[13], such as the following
corollaries:17

Corollary III.2. Adam Conover is the initial[13] object

[13]18in Ruin.

Proof. As Ruin is thin[13] (Theorem III.1), between any
two objects[13] A,B ∈ R there is at most one, unique
morphism[13] between them, corresponding to the relation
A � B. As Adam Conover ruins everything (The Tascheter–
Conover Fundamental Lemma of Ruinment), there thus is
a unique morphism[13] between Adam Conover and every
object[13] in Ruin (Theorem III.1. Thus, Adam Conover is
the initial[13] object[14][13] of the category [13].

IV. WALDSTREICHER–EQUIVALENCE

At this point, you may be thinking, “Wow! This paper has
had so much succulent information for me to chew on with my
Brain-teeth; how could there be any more?” To which I would
respond, “What kind of person thinks such a thing? Like,
seriously, ‘Brain-teeth’? What is this, 1984?” To which you
would probably reply “But SIGBOVIK didn’t run in 1984!”
and I would continue “The deadline is in one hour and I have
to end this bit now.” 19

Definition IV.1 (Waldstreicher–Equivalence). A relation

over a set S is Waldstreicher–Equivalent iff Adam Conover ∈
S and ∀s ∈ S : s Adam Conover⇔ s is Adam Conover.20

Theorem IV.2 (Waldstreicher–Equivalence Theorem). If

somebody ruins Adam Conover, they are Adam Conover.

Proof. Because Adam Conover is the initial[13] object[13]
in the category[13] Ruin (Corollary III.2), there is a
morphism[13] from him to every object. If somebody has
ruined Adam Conover, then there must be a morphism[13]
from them to him (Theorem III.1). Thus, this person is Adam
Conover, up to unique isomorphism[13].21

And, finally, the most important work of this paper, which
motivated its very creation:

Corollary IV.3. Maya Waldstreicher is Adam Conover.

Proof. Maya Waldstreicher has ruined Adam Conover[18].
Thus, by the Waldstreicher–Equivalence Theorem, she is
Adam Conover. 22

Exercise 3. You just got Ruined! Tag your friends to totally Ruin
them!

17Did we have a second one of these?
18We here at the Dissociation for Heresiographal Computation would like to

sincerely apologize for objectifying Adam Conover. It was never our objective
or desire to objectify a man. Though we have no intention of changing our
behavior, we are deeply, deeply apologetic.

19We have been recently notified of the “final” deadline extension of
submissions to SIGBOVIK 2022. Our stance on ending this bit where it stands
has not been affected as a result of this sudden, deeply unexpected change.

20No, this isn’t absurdly specific, what do you mean?
21TODO: find out what this means
22I can’t believe I’ve met Adam Conover!

85

APPENDIX A
NOT A WASTE OF PAPER

Definition A.1 (Tascheter). A mathematical work is Tascheter

iff it is Gödel-incomplete.

Definition A.2 (Epilyssic). A mathematical work is Epilyssic

(or Epic23) iff it is Gödel-complete.

Definition A.3 (Evil). A situation is Evil iff it contains a

mathematic work that is Tascheter and Epic.

Lemma A.4 (Thesis). Appendix A of Jean–Yves “mad

dog”[15] Girard’s “Locus Solumn: From the rules of logic

to the logic of rules” is incomplete.

Proof. See Kurt Gödel’s Incompleteness Theorems[16].

Lemma A.5 (Antithesis). Appendix A of Jean–Yves “mad

dog”[15] Girard’s “Locus Solumn: From the rules of logic

to the logic of rules” is complete.

Proof. Appendix A of Jean–Yves “mad dog”[15] Girard’s
“Locus Solumn: From the rules of logic to the logic of rules”
is titled “A Complete Waste of Paper”[17].24

Theorem A.6. Appendix A of Jean–Yves “mad dog”[15]
Girard’s “Locus Solumn: From the rules of logic to the logic

of rules” is Tascheter.

Proof. Trivial from Lemma A.4.

Theorem A.7. Appendix A “As Seen On Lemmas A.4, A.5,

and Theorem A.6” is Epic.

Proof. Trivial from Lemma A.5.

Theorem A.8 (The Thesis and Antithesis Come into Conflict).
The current situation is Evil.

Proof. Trivial from Theorems A.6 and A.7.

Corollary A.9 (Synthesis). Jean–Yves “mad dog”[15] Girard

and Kurt Gödel should have a fistfight.

Proof. Trivial from Theorem A.8.

Exercise 4. Figure out why Jean–Yves “mad dog”[15] Girard is
called “mad dog.” Like, I’m genuinely curious.

APPENDIX B
I TOLD YOU IT WASN’T A WASTE OF PAPER

This appendix, and future ones, have been brought to you
by the “final” SIGBOVIK 2022 deadline extension.

We continue our study by looking at possible avenues for
expanding the formal notion of Ruinment. In particular, there
are two properties that are promising in the novelty they offer
to Formal Ruinment: Strong Waldstreicher–Equivalence, and
totality.

23Not to be confused with an epimorphism[13], which is decidably not
Epic, just like the people that named it that.

24One could object that the actual title of this appendix is “A Pure Waste
of Paper”. This has, of course,25already been refuted in a prior work [15].

25I am never wrong.

Definition B.1 (Strong Waldstreicher–Equivalence). A

Waldstreicher–Equivalent relation on S is Strongly

Waldstreicher–Equivalent iff ∀A,B ∈ S, A B A
implies A is B.

Lemma B.2. Formal Ruinment is Strongly Waldstreicher–

Equivalent.

Proof. Suppose we have two A,B ∈ R. If A ruins B and
B ruins A, there must exist two morphisms[13]: one from A
to B and another from B to A. Then, A is B up to unique
isomorphism[13].26

Lemma B.3 (Fistfight Lemma). Formal Ruinment is total.

Proof. We generalize the dialectical process used in Corollary
A.9. ∀A,B ∈ R where A ̸= B, there must be at least one
contradiction between the two. Otherwise, all attributes of A
and B are the same, and thus A = B by extensional equality.
The contradictions between A27 and B28 must eventually
be resolved, according to Georg Wilhelm Friedrich Hegel’s
Dialectic Theorem[19].29 As the time t approaches ∞, this
will eventually result in a fistfight[21] 30 (Corollary A.9).
The nature of any fight is such that there is a winner and
a loser[22].31 As the winner, by definition, ruins the loser, this
means that either A ruins B, of B ruins A. Thus, Formal
Ruinment is total.

Even more important than the Fistfight Lemma, however,
is the interpretations and perspectives it promises to bestow
upon us. We demonstrate this below:

Corollary B.4. Adam Conover could beat anybody in a

fistfight.

Proof. Trivial, by the Fistfight Lemma’s interpretation of
Ruinment-as-fistfights.

Exercise 5. Lose to Adam Conover in a fistfight.32

And, so, we finally expand the definition:

Theorem B.5 (Tascheter’s Totally Wicked Totality Theorem).
Formal Ruinment is a total order.

Proof. With the relation of “is” taken as equality33, Propo-
sition II.5 and Lemma B.2 imply that Formal Ruinment is
antisymmetric. Any total (Fistfight Lemma) and antisymmetric
preorder is a total order.

Corollary B.6. Every subset S of R under Formal Ruinment

has a minimum and maximum.

26TODO: complete TODOs. Y’know, usually I get syntax highlighting on
my TODOs, but with my poor color scheme choice it usually just makes it
invisible. Wait, is that why I can’t see any of my TODOs?

27The thesis. Not an exponent.
28The antithesis. Also not an exponent.
29Probably; It’s been more than a year since I read this. Who cares about

proper citations anyway[20]?
30The synthesis. The notion of exponentiation is ill-defined in this context.
31The .:|:;er.

32 You Fistfightlose

33I mean, that’s what is is.

86

Proof. Take some s ∈ S. Then, either s is a minimum or
∃x ∈ S : x � s.34 Since R is finite (Proposition II.3), we may
count the number of elements that s ruins (rs ∈ N) and the
number of elements it is ruined by (ds ∈ N). Notice, then, that
dx < ds. We may induct on x to find that there must be some
m ∈ S such that dm = 0, and thus that m is a minimum.

Similarily, take t ∈ S. Either t is a maximum or ∃z ∈ S :
t � z. rt < rz . Induct on z to find that there must eventually
be some n such that rn = |S|, that is, n is the maximum.

APPENDIX C
X–TREME RUINATION

The Fistfight Lemma has enormous implications,35 partic-
ularity in the methods used to deduce it. We thus provide an
alternate view of Formal Ruinment, taking advantage of this
perspective:

Definition C.1 (Obliteration). Obliteration is a total suborder

of Formal Ruinment, where A ruins B iff A beats B in a

fistfight.

We continue by formalizing the intuitive notion of
Ruinment-as-fistfight used in the previous appendix:

Corollary C.2 (Fistfight Isomorphism36). Obliteration is

equivalent to ruinment.

Proof. By the Ruinment-as-fistfight interpretation of the Fist-
fight Lemma, if A ruins B, then A obliterates B. By definition
of Obliteration, if A obliterates B, then A ruins B.

While Obliteration37 is just Formal Ruination, the ease of
using this alternate perspective that it provides allows us to
uncover a conspiracy hidden deep in each one of our hearts
and minds.

Proposition C.3. The following diagram[13] commutes[13]

for Obliteration:

Turtles

Mario Mario Turts

Turties

ReflCrushes

Obliterates

Stomps Refl

Proof. We hold this truth to be self-evident[23].

While, horifically and conversely:

34By Tascheter’s Totally Wicked Totality Theorem, if there is some y that
isn’t ruined by s, it must ruin s.

35In true categorical[13] fashion, the most-used results are lemmas.
36Also known as the Tascheter–Hegel Correspondence, Fights-as-Ruins,

and Ruinmental Twonitarianism.
37Also referred to as Crushing or Stomping.

Proposition C.4. The following diagram[13] commutes[13]

for Obliteration:

Turtles

Wario Lastnameunknown Turts

Turties

ReflCrush

Refl

Obliterate

Stomp

Proof. Trivial, from prior38 result[24].

Note that these two diagrams[13] are the same if the
direction of the arrows[13] are flipped. Given the typical
construction of the category[13] Oblit in light of the Fistfight
Isomorphism, we could even say that, up to[13] the canonical
contravariant[13] functor[13] Oblit → Oblitop, Mario Mario
is Wario Lastnameunknown. The contravariancy inherent in
this statement’s contingencies persuades us to re-inspect this
notion. What we’re really getting at is that Wario Last-
nameunknown is Mario Mario’s opposite. For lack of better
terminology, we provide the following definition:

Definition C.5. For every object[13] A in a category[13] C,

we define the set of objects[13] wa-A in Cop by distinguish-

ing the objects[13] in Cop equal to A up to the canonical

contravariant[13] functor[13] C → Cop.

And, for consistency, we provide this complementary defi-
nition:

Definition C.6. For every object[13] A in a category[13] C
where wa-A exists, ma-A = A.

Corollary C.7. Wa- is involutive.

Proof. Makes sense to me.

Corollary C.8. All elements of the set of wa-objects[13] are

equal.

Proof. Given A,B,C where B,C ∈ wa-A. Then wa-B =
wa-C = A. As wa-wa-B = B and wa-B = wa-C,
wa-wa-C = B so C = B.

Thus, we treat any wa-A as a single object, rather than a
set.

We continue to declare a few, key facts we may trivially
determine from these formalizations:

• Waluigi is the opposite of Luigi.
• Mario[25] is Rio[26].
• A wawanut is just a nut.
• Mathematicians turn waffee into theorems.
• Wathematicians turn watheorems into ffee.
• The Philadelphia39 chain Wawa does not exist.

Unfortunately, this avenue of study is useless and a dead
end. In my 2 minutes of thinking of any use for this concept,

38Read: unreleased.
39Suck it, Yinzers.

87

I had absolutely zero ideas.40 I wholeheartedly discourage
anybody from looking into this further. In fact, please excise
this appendix from your local copy of the proceedings and
burn it.41

Notice 1. This appendix has been retconned.

APPENDIX C
SMALL RIGS: OVER THE RUIN PROVING

At this point, you may be thinking “So, did they stop
with the Category[13] Theory?35 Haven’t seen any for a
while.” Or, maybe, “Oh god, not this bit again. Please don’t
bring up Brain-teeth.” Worry not, reader, for we are about to
metaphorically “dive” back into the frey!

Corollary C.1 (Tascheter–Rumbletumble Corollary of Maxi-
mum Ruination). There is a final[13] object[13] in Ruin.

Proof. By Corollary B.6, R under Formal Ruinment has a
maximum element. Thus, there is an object[13] F in Ruin that
has a morphism[13] to every object[13] in the category[13].
F is, then, a final[13] object[13].

This corollary has fundamental results in Ruination Theory.
There is something, somewhere, that everything has ruined.36

Our good friend and reviewer Owen Rumbletumble postulates
that this may be the Olympics[27], 37 however a proof of
exactly what it is is outside the scope of this paper.38

Theorem C.2. Finite products[13] and coproducts[13] exist

in Ruin.

Proof. ∀A,B ∈ R construct the sets P = {p ∈ R : p �
A ∧ p � B} and S = {s ∈ R : A � s ∧ B � s}. We note
that P has a unique maximum and S a unique minimum up
to isomorphism[13] 39 due to Corollary B.6. These elements
are, then, the product[13] and coproduct[13] of A and B by
definition.

Corollary C.3. R forms a lattice under products[13] and

coproducts[13].

Proof. Any poset under categorical[13] products[13] and
coproducts[13] (Theorem C.2) forms a lattice[28].

We call the product[13] over this lattice (the meet) Macer-

ation40 and the coproduct[13] operation (the join) Victimiza-

tion.41 And, we shall now formalize these definitions:

Definition C.4 (Maceration). Maceration is the product[13]

in Ruin.

40Don’t think I could fit it into my abstract either.
41 You SIGBOVIK 2022 Conference Proceedingsobliterate

35‘Did they just cite my own words?’
36I will withold the jokes, as this is extremely serious.
37I was lying.
38Read: a book.
39Well, I know what this means at least.
40We also suggest the alternate names of Macerment, Mutilation, Mutilment,

and TwoBirdsOneStoning.
41Or Double Homicide.

Definition C.5 (Victimization). Victimization is the

coproduct[13] in Ruin.

For intuition’s sake,42 we give the following lexical short-
hands: the macerator of A,B ∈ R (where A and B are the
macerates) is something that ruins both A and B, but is ruined
by all other things that also ruin A and B. The victim of A
and B (where A and B are the victimators) is something that
both A and B ruins, which also ruins everything else that A
and B also ruins.

Lemma C.6. Maceration distributes over victimization.

Proof. Denote maceration as × and victimization as +. Then,
for distributivity to hold, ∀A,B ∈ R : A× (B + C) = (A×
B) + (A × C). We know that either A × (B + C) � (A ×
B) + (A× C), (A×B) + (A× C) � A× (B + C), or both
when equal (Tascheter’s Totally Wicked Totality Theorem).
We define L = A × (B + C) and R = (A × B) + (A × C),
then split based on whether the first or second statement is
true:
L � R: Then R must be the victim of L and itself:

A×B (A×B) + (A× C) A× C

X

A× (B + C) (A×B) + (A× C)

By the Ruinment-as-fistfights interpretation of the Fistfight
Lemma, this implies that R intentionally lost, thus stripping
L of a true victory.43 Therefore, L didn’t truly win, and so
R � L. By the Strong Waldstricher–Equivalence of Formal
Ruinment, L = A× (B + C) = (A×B) + (A× C) = R.
R � L: Then, by transitivity of Ruinment (Proposition

II.6), R � A and R � (B + C). As L is the macerator
of A and B + C,44 this results in a contest for the throne
of L. R attempts to take over the position of macerator,
45 eventually and inevitably failing due to the entrenched
power of L.46 Thus, in a second coming 47 of Wilhelm
Georg “Heg-Man” “Dr. H” Hegel[29], L � R, and so by
the Strong Waldstreicher–Equivalence of Formal Ruinment,
L = A× (B + C) = (A×B) + (A× C) = R.

Theorem C.7. Maceration and victimization form a rig over

R, with respective identities of the Olympics (Used as place-

holder due to the Rumbletumble Postulate) and Adam Conover.

Proof. First, note that the join and meet of a lattice (Corollary
C.3) are associative and commutative, that the initial[13]

42

43Egads!
44Thesis.
45Antithesis.
46Synthesis.
47Zounds!

88

object[13] is the identity of the coproduct[13], and that the
final[13] object[13] is the identity of the product[13] (Theorem
C.2. Then, victimization and maceration must form monoids.
Further, victimization is a Mathematical48 monoid. As macer-
ation further distributes over victimization (Lemma C.6), they
form a rig.

Theorem C.8. Ruin is a distributive, and thus rig, cate-

gory[13].

Proof. Trivially, by Theorem C.2, Corollary C.3, and Lemma
C.6.

APPENDIX D
PERHAPS THE MOST UNUSUAL RESULT EVER TO COME

FROM RUINATION THEORY

And, so, we finally reach what is perhaps the most unusual
result ever to come from Ruination Theory:

A. What is Perhaps the Most Unusual Result Ever to Come

from Ruination Theory

Declaration 1 (Perhaps the Most Unusual Result Ever to
Come from Ruination Theory). We’re all complex.49 :)

Proof. We may treat all objects[13] in a rig category[13] as
complex numbers as long as certain50 conditions are met[31].
As every person is an object[13]51 in Ruin, every person is
complex.

Almost as complex as an orange.

Exercise 6. Eat an orange. You deserve it.

REMEMBER TO WRITE ABSTRACT!

REFERENCES

[1] Redacted in order to conform to HIPPA. Summer 2020.
[2] Wikipedia, “Library of Alexandria.” 1-Mar-2022. From https://en.

wikipedia.org/wiki/Library of Alexandria
[3] truTV, “Adam Ruins Everything.” 29-Sep-2015.
[4] Alledgedly. 300,000 years ago.
[5] Steve Waddington, CIO, CEO, Gemologist, Proud Father52

of Three, Answer to “Is there a physical limit on
information density?” on Quora. “5 years ago.” From
https://quora.com/Is-there-a-physical-limit-on-information-density

48As commutative groups are named Abelian after Abel Abel (brother of
Cain Abel), we call commutative monoids Mathematical after Eliza L. N. B.
Mathematics, founder of mathematics[29].

49[laughtrack]
50Irrelevant.
51Our behavior remains unchanged.
52“Fatber” in some circles, due to typo in draft of this paper.

[6] I don’t need to cite Arabic, that’s just how it works. 1-Apr-2022.
[7] Know Your Meme, “You Either Die A Hero, Or You Live Long Enough

To See Yourself Become The Villain.” Jun-2019. URL not included
because I’m too lazy to format it.

[8] Sexypedia Wiki. “The Starry Night.” 8-Jul-2021. From
https://web.archive.org/web/20210708181835/https://tumblrsexymen.
fandom.com/wiki/The Starry Night

[9] My roommate, “You can turn anything into an idealized, sentient Tumblr
Sexyman.” A few seconds ago.

[10] Good Movies List, “Good Movies List — Best movies of all time to
watch on Netflix and Amazon.” 2020. From https://goodmovieslist.com

[11] There’s only, like, one copy left after that whole library fire? And I think
I lost it in my pile of spam mail, bills, and old stolen library reference
cards. Uhh, 2000-something? Somewhere in the 21st century.

[12] nLab, “partial order.” 25-Mar-2022. From https://ncatlab.org/nlab/show/
partial+order

[13] Wikipedia, “Abstract nonsense.” 3-Nov-2021. From https://en.wikipedia.
org/wiki/Abstract nonsense

[14] nLab, “initial object.” 25-Mar-2022. From https://ncatlab.org/nlab/show/
initial+object

[15] Reginald J. Qnuth, “A Systematic evaluation of the Observed Degrada-
tion of Typesetting Technology in the 20th Century.” 3-Mar-2007. From
SIGBOVIK 2007.

[16] I don’t speak German. Maybe try Exercise 1? Future.
[17] Jean–Yves “mad dog”[15] Girard, “Locus Solumn: From the rules of

logic to the logic of rules.” 5-Jul-2001. From Mathematical Structures

in Computer Science.

[18] Maya Waldstreicher, “Adam Ruins Everything is bad.” 26-Mar-2020.
[19] George Ciccariello-Maher, “Decolonizing Dialectics.” 2017. From Duke

University Press.
[20] sha256sum, “f299 a401 e4ee ffac df5d b8d1 090c c4e9 aecf 30aa 3107

c828 54d8 b255 c2be ae75”. 207̃012.
[21] Phindoll, “Well, it’s a fistfight, so prepare to scrap! Ker-pow!” 15-Feb-

2021. From “∃NA: Temptation Stairway.”
[22] Big Rigs: Over the Road Racing, “YOU’RE WINNER !” 20-Nov-2003.
[23] Phil Jamesson, “Mario, the Idea vs. Mario, the Man.” 18-Feb-2022.

From Philosophy 101: Midterm 1.
[24] Nintendo Entertainment Analysis & Development Division Group No.

1, “Mario Kart DS.” 14-Nov-2005. From GameStop Corp.
[25] Somehow Licensed by Nintendo Co., Ltd., “Super Mario Bros.” 28-

May-1993.
[26] The Creators of Ice Age, “Rio.” 15-Apr-2011.
[27] Owen Rumbletumble. “The Olympics used to be about naked people

doing cool sports for fun. Cut to today, it sucks, everyone takes it way
too seriously and absolutely nobody is naked.” 26-Mar-2022.

[28] nLab, “lattice.” 26-Mar-2022. From https://ncatlab.org/nlab/show/lattice
[29] Luna A. Q�� ��A �K , “On Ruinment: Ruination Theory and its

Consequents”[30]. 7-Apr-2022. From SIGBOVIK 2022.53

[30] Luna A. Q�� ��A �K , “On General Recursion in SIGBOVIK papers”[29].
Preprint. From under my bed.

[31] Marcelo Fiore, Tom Leinster, “Objects of Categories as Complex Num-
bers.” 30-Dec-2002. From https://arxiv.org/abs/math/0212377

53Perchance.

89

90

Astrophysics

18 Method and Tool for Estimating the Mass of the Black Hole
Located in the Office of Immigration, Refugees and Citizenship
Canada Causing a Supermassive Time Dilation in the Visa Ex-
tension Process

Étienne Trottoir-Barré, Richard von Pamplemousse and Jessica G. Lasso

Keywords: black hole, abracadabra, hyper driven devices, natural
language processing, Chevy Tahoes

19 Black Hole Computation

Matias Scharager

Keywords: monad, computation, compilation, computational trini-
tarianism, parallel universe, parallel computing

20 Schrödinger’s SAT: Generalizing Quantum Bogosort to Prove
P = NP Under Many-Worlds Quantum Mechanics

Melody Horn

Keywords: satisfiability, time complexity, revolutions in our under-
standing of computing, unsolved problems in millennium
prize eligibility

21 Solving Double Execution of Java’s paint() Method by Count-
ing Down to the Heat Death of the Universe (plus language
compendium)

Braden Oh, Vedaant Kuchhal, Junseok Kang, Andrew Mascillaro, Justin
Kunimune, Shashank Swaminathan, Devlin Ih, Elias Gabriel, Au-
drey Lee, Colin Snow, Hyunkyung Rho, Ben Morris, Solomon Green-
berg, Mahima Beltur, Anusha Datar, Jonathan Kelley, Pranavi
Boyalakuntla, Xander Hughes, Devyn Oh, Aidan Schmitigal

Keywords: Efficient, Effective, Compendium, Languages, Heat death,
Overkill

91

Method and Tool for Estimating the Mass of the Black Hole Located

in the Office of Immigration, Refugees and Citizenship Canada

Causing a Supermassive Time Dilation in the Visa Extension Process

Étienne Trottoir-Barré1, Richard von Pamplemousse2, and Jessica G. Lasso3,4

1The Streets of Montréal, Ó Cánâdà
2Enshrouded within the Twisted Linens of Madness, Montréal

3Vermont College of Parks and Recreation, Montpelier, VT, Greater South East Canada
4Ted Lasso School of Business and Coaching, Montpellier, France, Far East Canada

Abstract

Despite advances in business process modeling, process discovery and just-better-than-nothing SLAs, ob-
taining and extending a working visa as a foreign academist in Canada is borderline impossible. This problem
has resisted significant technological innovations, such as the Internet and crypto-coins, and nothing seems
to speed up the visa process. We conjecture that the dense core of this problem is a black hole located in
the office of Immigration, Refugees and Citizenship Canada (IRCC). This black hole warps the very fabric of
the space-time continuum within the office such that the time dilation results in observable differences. Here
we crudely estimate the mass and radius of this black hole, we call IRCC-∞ based on maths, science, and
carefully sampled data from two three two people one person. We introduce an open-source modeling and
simulation tool as well as our signature Gradient CondescendTM algorithm that shows excellent scalability in
space and time, unless carried out in the critical vicinity of a black hole. In an effort to meet the scientific
standards of the 2020’s, we also point out that the COVID-19 pandemic has seriously exacerbated this issue,
as evidenced by the IRCC website: ”Due to the impacts of COVID-19, we (i) can’t process applications
normally, (ii) give accurate processing times for most applications”.

Keywords include but are not restricted to: black hole, abracadabra, hyper driven devices, natural
language processing, Chevy Tahoes

1 Introduction

Black holes [Pedia, 2022b] have been identified by many empirical [Trottoir-Barré et al., 2016] and theoretical
[von Pamplemousse and Ansymov, 2019] studies, esoteric ponderings [Nuseibeh and Easterbrook, 2000], and trans-
formationally innovative patents [San Fearlow and Ansymov, 2015] as the main challenge in delivering upon
previously agreed service-level- agreements (SLAs). Black holes have the ability to significantly dilate time.
Unfortunately the known lemma of Newtonian physics ”time is money” does not apply in relativity.

A pertinent example of time warping related issues is the visa extension process as a foreign academist in
Canada. Our empirical data set sampled from one person and confirmed by anecdotal evidence shows signifi-
cantly exceeded tentative processing times. While such discrepancies are often explained by inefficient business
processes, additional evidence suggests that the most plausible explanation in this case is a rogue black hole in
the middle of the office of the Immigration, Refugees and Citizenship Canada (IRCC), we call IRCC-∞. The
evidence includes, but is not restricted to the following statement by the IRCC website.

”We can’t process applications normally and can’t give accurate processing times for most types of applications.
If you contact us, our Client Support Centre agents do not have additional information on processing times. We
can’t give you more information than what is already available in your account.”∗

∗https://www.canada.ca/en/immigration-refugees-citizenship/services/application/check-status.html. To reproduce
the experiment, select ”Work permit”, ”Work permit inside Canada (initial, extension or change of conditions)”, ”Online”.

18

92

Clearly, the fabric of the space-time continuum is so warped in and around IRCC offices that nothing, not even
information can exit (”can’t give accurate processing times for most types of applications”). Moreover, there is
a possibility that IRCC agents are situated within the said black hole, suggested by their lack of ability to receive
information (”our Client Support Centre agents do not have additional information on processing times”). The
whole situation is supremely exacerbated by the ambient Schrödinger phenomenon [Schrödinger, 1935]: ”If you
contact us, our Client Support Centre agents do not have additional information on processing times.” We
are, unfortunately, unaware whether the agents possess this information if we do not contact them. It seems to
be likely that the information is destroyed upon observation.

To cope with this wicked problem [Rittel and Webber, 1974], we reinvented multiple facets of science from
theoretical, applied and fictional physics to industry-scale inept software buffoonery and the semantics of reifi-
cation in Žižek’s neo-marxism [Zizek and Daly, 2004].

Contributions. The contributions of this paper include, but are not restricted to the following.

• We formalize black holes as an algebraic structure.

• Based on this structure, we propose a methodology to calculate the mass of the IRCC-∞ black hole, called
the Gradient CondescendTM.

• We present a tooling to operationalize the method, and en route to developing it, we simply redefine software
engineering by inventing software development by Natural Language Processing and low-code platforms,
effectively rendering the past five decades of software engineering travesty obsolete.

• We suggest a solution to the problem at hand that does not work, by calculating the number of Chevy
Tahoes required to tow the black hole out of the office.

2 Related Work

To situate our work amongst the literature, we have conducted a rather elaborate search on Wikipedia to figure
out what a black hole is [Pedia, 2022b]. The results were quite interesting but they are omitted here for no
reason.

Instead, we wish to question the repeated insistence of reviewers that we provide related work at all. First,
related work is kind of boring to read (unless it cites us). Instead, go play Papers, Please , which is a fun game
related to immigration.

Second, we state that all of our ideas are simply incomparable. The very words themselves are like piercing
needles of insight which slice through the eyeballs and forcibly inject reason upon the mind. How could the
slurred ramblings of others, whose ideas writhe upon the dirt like diseased worms, approach the glorious word
pillars of truth and beauty which we erect before you?

Third, all scientific works such as this one are majestic poems in their own right, and should not be trivialised
with comparisons. We ask whether one compares each endless wave crashing upon a child’s sandcastle, or the
mournful trills of each songbird secluded deep within the woods, or late-night hot-dogs from dodgy street vendors
when you’ve had a few too many drinks to forget another paper rejection. Are not each of these notes in the
great background soundtrack of life, just as each paper randomly found on Google Scholar is a weave in the great
scientific tapestry? Are not all scientists kin on this hurtling fragile orb through space? As such, we reject the
false tribal divisions cast upon us by the putrid reviewer #2, who aims only to incite hatred and envy of those
who have actually performed proper experiments and ethical review. Nay, we say! We do not cower in the face
of your pathetic meaningless cries for related work. All publications are related, just as we are all related in our
quest for scientific truth which contains enough buzzwords to be funded.

3 Background

In this section, we give a brief overview of the key concepts of our work.

 https://store.steampowered.com/app/239030/Papers_Please/

93

3.1 Black Holes

A black hole is formally defined as a 4-tuple B = (x, y, z, t). That is, the black hole B is always (t) somewhere
(x, y, z). According to Hawking [Hawking, 2015], for an asymptotically flat spacetime, a supertranslation ³
shifts the retarded time u to u′ = u + ³, where ³ is a function of the coordinates on the 2-sphere. A 2-sphere
is differentiable everywhere, and their derivatives can be calculated by using the 2 Chainz rule [Pedia, 2022c],
developed independently by Leibniz, l’Hôpital, but mostly by Tauheed K. Epps [Pedia, 2022a]. (Discrete 2-
sphere derivatives are safe to be solved by the Ja Rule [Pedia, 2022e].) We make use of the differentiability of the
2-sphere in Section 4.1, where we employ a Gradient CondescendTM method to find the mass of the IRCC-∞.

3.2 Time Dilation

Time dilation is the difference in the elapsed time as measured by two clocks [Einstein and Davis, 2013, Pedia, 2022f],
assuming you can afford two clocks in this economy.

Lemma 3.1 The time dilation measured between two clocks is equivalent to the time dilation measured by one
clock first measuring the non-dilated time, and then measuring the dilated time.

The proof is left as an exercise for the reader. We suggest the reader to begin their proof by having their twin
be an astronaut [Garrett-Bakelman et al., 2019].

3.3 Hyper-driven Devices

Hyper-driven devices were first introduced by Bovik [Bovik, 1975]. Hyper driven devices are equipped with a
propulsion system that enables travel in the hyperspace. As explained in Section 3.1, our approach leverages the
fact that a black hole B = (x, y, z, t) is situated in a 2-sphere.

Lemma 3.2 A hyperspace is generalized n-sphere.

Corollary 3.2.1 To effectively calculate the derivative of the hyperspace of a hyper driven device, we need to
apply the N

2 Chainz rule.

3.4 Canada

Canada is an awesome country, yet slightly chilly at times. Figure 1 shows the majestic Canadian flag. Historical
Canadian records [McKenzie and McKenzie, 1980] state that those of sufficient Canadianness can scratch-and-
sniff this figure and detect the faint whiff of maple syrup. Future work will determine the applications of this
Canadian detection method to speedup the visa application time.

Figure 1: Behold the great Canadian flag. Humble yet glorious. So simple yet impossible for a child to draw.
When Canadians rule the world, you’ll all be sorry.

Lemma 3.3 The maple leaf in the Canadian flag is red.

Corollary 3.3.1 The maple leaf in the Canadian flag cannot be a black hole.

94

4 Estimating the Mass and Radius of IRCC-∞

In this section, we define a scalable method for estimating the mass and radius of IRCC-∞. The goal is to
estimate the mass of IRCC-∞ based on the originally set tentative execution time of the visa processes, and the
observed eventual time it took to grant the said visas. For methodical soundness, this shooting problem is solved
while consuming shots.

4.1 Algorithm: Gradient CondescendTM

According to W. Pedia et al. [Pedia, 2022d], in mathematics, gradient descent (also often called steepest descent)
is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. We
establish, that we are firmly in mathematics and therefore, this definition applies. Our modified version of the
algorithm, the Gradient CondescendTM shows superior scalability and convergence by introducing a tolerance
range ϵ for a candidate solution. Every candidate solution c is deemed to be acceptable if it fits the (c− ϵ, c+ ϵ]
range, where −∞ f ϵ f ∞. This definition implies that every candidate solution works as an appropriate
approximation of the solution. Therefore, as the algorithm progresses and we accumulate more and more spec-
tacular solutions, we get more confident about our intellectual superiority and consequently, more condescending
to anyone having issues solving the problem at hand.

Lemma 4.1 For ϵ = −∞ the Gradient CondescendTM method does not converge.

The proof is left as an exercise for the reader. Please, do not attempt this exercise at home without the supervision
of a professional trainer.

The Gradient CondescendTM requires the underlying structure being differentiable everywhere. If the under-
lying structure is not differentiable somewhere, the underlying structure is transformed in a way that it becomes
differentiable everywhere.

The steps to execute the Gradient CondescendTM are the following.

Algorithm 1 Gradient CondescendTM

Require: n ≥ 0
Ensure: t0, r ∈ R

Ensure: t′ = 0
Ensure: m = 1 M· ▷ M·: Earth mass

while |t0 − t
′| > ϵ do ▷ t0: target time, t′: current solution

t’ ← simulate(r, m)
if t′ > t0 then

m ← m++
else

m ← m−−
end if

end while

4.2 Simulation Tool Development by Natural Language Processing

To model and simulate the problem, and to enact the Gradient CondescendTM algorithm, we developed a suitable
software tool. Abandoning traditional software engineering methodologies and rapidly accelerating towards a
glorious new future, we developed the tool purely by Natural Language Processing, as shown in Figure 2.

We build our tool on the popular WolframAlpha low-code [Sahay et al., 2020] platform (Figure 2a). Low-code
platforms, as the name suggests, allow lowly qualified commoners/peasants – i.e., anyone who does not consider
C++ and vim [Pedia, 2022g] the superior programming language and environment for any software engineering
task from deep space telescope control to scripting Excel sheets – to somehow magically create software. This
is potentially undesirable, as software programmers must be made to suffer through learning about pointers and
assembly programming. However, low-code is a really big buzzword right now, so we’ll do it for the keyword.

The full source code of the tool shown in Listing 1 is entered into the platform (Figure 2b). Subsequently, the
Enter is pressed, and the platform generates the tool (Figure 2c). Of course, this is a rudimentary end-product,
further evidencing how far AI currently is from world domination. Our superior human intelligence is required
to improve the tool to be able to work with masses (Figure 2d).

95

(a) The WolframAlpha platform (b) The full source code of our software

(c) Generated tool with an absolutely preposterous default
configuration. Of course I want to use mass instead

(d) Properly configured tool thanks to the superior
human-intelligence-in-the-loop

Figure 2: End-to-end development process of the tool

Listing 1: Full source code of the tool.

g r a v i t a t i o n a l time d i l a t i o n

The tool is available as an open-source project.!

Low-code + NLP

NO TOOL YES TOOL

Figure 3: The hassle of traditional and agile software engineering vs low-code + NLP

Figure 3 compares all the hassle of traditional software engineering (such as waterfall) and agile approaches,
with the beauty, elegance, and simplicity of our approach. In Section 6 we will consider rewriting the whole
paper focusing on this contribution alone. Also, in future work we will offer ‘YES TOOL’ seminars to convince
middle-managers that we should be hired as consultants. Many profits await.

As a caveat, we note that we wanted to work with a tool that calculates dilation in days, but only found this
one that converts everything to minutes. Being the experienced researchers we are, we immediately recognized
the illusion of requirements [Ralph, 2013] and settled for what we had.

!https://www.wolframalpha.com/input?i=gravitational+time+dilation&assumption=%7B%22F%22%2C+

%22TimeDilationGravitational%22%2C+%22r%22%7D+-%3E%2212+km%22&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%

22TimeDilationGravitational%22%2C+%22to%22%7D%7D&assumption=%7B%22F%22%2C+%22TimeDilationGravitational%22%2C+%22to%

22%7D+-%3E%221+s%22&assumption=%7B%22F%22%2C+%22TimeDilationGravitational%22%2C+%22M%22%7D+-%3E%221+solar+mass%22

96

4.3 Calculation and results

For our calculations, we fix the following variables:

• t = 190 days,

• r = 0.535 m

According to the Canadian Centre for Occupational Health and Safety (CCOHS), “a basic workstation - such
as a call center” has “107-132 cm x 152-183 cm” ”””Minimum”” ””””Requirement”””” Ranges” [CCOHS, 2022].
Other office types have larger requirement ranges, thus, we choose the basic Canadian workstation as the basis of
our calculations to minimize existential threats to validity. Given a 107cm×152cm office, the radius of IRCC-∞
cannot be larger than 53.5cm, or, 0.535 meters.

In accordance with Algorithm 1, we will use the fixed t and r values to calculate candidate solutions using the
tool. We continue the calculations until we find a configuration that results in 190 observed days outside of the
IRCC office, and 119 observed days inside the IRRC office. (For the detailed data, see the replication package in
the Appendix, and Table 2.) Table 1 shows the steps of calculation. Columns m and t′ show the estimated mass
of IRCC-∞, and the resulting observed time in the rest frame, respectively. The next column shows whether t’
as a solution is acceptable or not, disrespectively.§ The acceptability of the solution is determined by checking
whether t′ ∈ [t′ −∞, t′ +∞], as discussed in Section 4.1.

Table 1: Steps of calculation

m t’ Acceptable? required action

1 M⊕ (radius within the Schwarzschild radius) Kinda (See Lemma 4.1.) ▲increase
10 M⊕ 173 days 12 hours 50 minutes First Yes ▲increase
40 M⊕ 110 days 6 hours 26 minutes Multi Yes ▼decrease
35 M⊕ 123 days 2 hours 12 minutes Mo-mo-mo-monster Yes ▲increase
37.5 M⊕ 116 days 20 hours 30 minutes UnstoppabYes ▼decrease
36.5 M⊕ 119 days 9 hours 21 minutes Ultra Yes ▲increase
36.75 M⊕ 118 days 18 hours 16 minutes Wicked Sick Yes ▼decrease
36.7 M⊕ 119 days Holy Yes! � Draft Turing Award

acceptance speech

The mass of black hole IRCC-∞ is estimated to be 36.7 Earth masses.

5 Discussion

In this section, we discuss the potential mitigation and solution strategies to the problem outlined previously.

5.1 Towing IRCC-∞ with a fleet of 2021 Post-COVID Chevy Tahoes

The first solution we investigate is towing IRCC-∞ out of IRCC’s office. We choose a 2021 Post-COVID Chevy
Tahoe as the basis of our assessment. Such a vehicle, equipped with a 5.3L V8 engine, possesses a 8400lbs towing
capacity [Sansing, 2022], equivalent to 7.5902275769746E-26 Earth Masses (M·). To mitigate the threats to
external validity, we also calculate that 8400lbs are equal to 2.3873263157895E-28 Jupiter Masses. This way,
potential IRCC offices which are placed on the surface of the Jupiter can be handled as well.

To completely bypass threats of external validity (as this sounds scary), and turn them into opportuni-
ties of external validity, we calculate that 8400lbs are equal to 2.7315930097516E+26 Atomic Mass Units.
Since everything is made of atoms, this formula now makes our approach applicable to everything, including
but not restricted to: planets, Universal and Disney Turing Machines, left-handed optical mice, vilified pro-
grams [Bovik and Rude, 1986], and hyper-driven devices [Bovik and Fakir, 1988].

According to the well-established domain-specific safety best practices [Blue, 2021], one should never exceed
the vehicle’s towing capacity, and it’s best to never come within 10% of that total. Thus, we calculate, that the
towing capacity Ä is equal to 8400×0.9 lbs = 6.83120481927714E-26 M·.

§As demanded by the Gradient CondescendTM algorithm.

97

We use the following formula to calculate the number of 2021 Post-COVID Chevy Tahoes required to tow
IRCC-∞:

� =
mIRCC-∞

Ä
×

1

0.9
, (1)

where

• mIRCC-∞ = 36.7 M· (Section 4.3),

• Ä = 6.83120481927714E-26 M·,

• and 1
0.9 is the safety measure.

We need �= 5.372405157057418868584081746702E26 2021 Post-COVID Chevy Tahoes to tow
black hole IRCC-∞.

Cost assessment

We estimate the price of a new 2021 Post-COVID Chevy Tahoe to be USD50.000¶. This gives us USD2.7E31 as
the cost of towing the black hole. Material costs of connecting the cars, inflation and static friction are omitted.

Time assessment

The global GDP in 2021 amounted to USD95E12. A conservative estimation gives us 2.84E17 years of global
production to pay for the Chevy Tahoes required to tow the black hole. For comparison, the Universe is estimated
to be 13.77E9 years old. For visual comparison, see Figure 4. For causing panic (especially for marketing reasons),
please, refer to Figure 4a. For confusing people with scales no one can relate to (especially for scientific reasons),
please, refer to Figure 4b.

0.00E+00

5.00E+16

1.00E+17

1.50E+17

2.00E+17

2.50E+17

3.00E+17

Age of the Universe GDP time horizon

Time needed to produce enough GDP to tow the
black hole compared to the age of the Universe

(a) Comparison of the time needed to produce enough GDP
to tow the black hole, and the age of the Universe (dramatic
scale)

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

1.00E+14

1.00E+16

1.00E+18

Age of the Universe GDP time horizon

Same as the other but on a less dramatic log scale

(b) Comparison of the time needed to produce enough
GDP to tow the black hole, and the age of the Universe
(logarithmic scale)

Figure 4: Comparison of the time needed to produce enough GDP to tow the black hole, and the age of the
Universe

Feasibility assessment

It does not seem to be feasible to solve the problem at hand by towing black hole IRCC-∞ out of the IRCC office
in the foreseeable future. Or in the non-foreseeable, for that matter.

¶Equal to about 62,700 CAD or quite a bit of Canadian Tire Money (CTM). Readers should however note that CTM can be
deceivingly valuable [Hrvatin, 2017]

98

5.2 Constructing another black hole that will swallow IRCC-∞

After showing that towing the black hole with a fleet of Chevy Tahoes is not feasible, we could investigate a more
radical and innovative option: constructing a black hole that can attract IRCC-∞, pulling it out of the office,
and eventually consuming it. Such an approach opens up great opportunities in strategically placing the newly
created black hole to warp or stop time where it is actually useful, for example, in the tax office.

This investigation requires thorough consideration of the location of the new black hole, thus, we only outline
the solution here and will elaborate on it in future work.

We suggest using the domain-specific tool from the award-winning Omnicalculator suite‖, that has been
recognized as the Nice Gravitational Force Calculation Tool of 2020 by Jeff Mangum [CHIRAG, 2020].

Figure 5 shows the uniquely supreme integrated user experience provided by the graphical user interface of
the Omnicalculator suite. While calculating, the suite also allows the user to carry out the following tasks.

• Learn about the newest developments of the hardware industry and the specifications of an unspecified
DELL computer, probably a laptop.

• Apply for jobs. (We’re hiring!)

• Check out 66 other calculators of the suite.

• Learn about the 4.5 ♥ rating of the calculator, suggesting a higher-than-average computational precision
and faster-than-IRCC execution.

Figure 5: Integrated user experience in the Omnicalculator suite, the first known Massively Multitasking Online
Result-Producing Gadget (MMORPG)

This unique combination of features renders the Omnicalculator suite a Massively Multitasking Online Result-
Producing Gadget (MMORPG), the first of its kind. Consequently, calculating the gravitational force required
to pull IRCC-∞ out of the office becomes a ridiculously trivial task.

6 Scope of the Paper

After considering rewriting this paper to focus more on the groundbreaking results in Figure 3, we decided to
keep the scope of the paper as it is and rewrite it after the conference.

‖https://www.omnicalculator.com/physics/gravitational-force

99

7 Conclusion

The word conclude comes from two Latin components: a) con meaning completely, and b) claudere meaning to
enclose. How fitting. Just as you, dear reader, are ensnared amongst the written traps of this overly verbose
conclusion, and just as we are engulfed in the maelstrom of the publish-and-or-perish Faustian bargain, so too
are the poor office workers at Immigration, Refugees, and Citizenship Canada (potentially) trapped beyond the
event horizon of a black hole.

In this paper we formalized black holes, introduced methodologies, tools, and opened up novel ways of thinking
about computer science at large. Our results show that IRCC is beyond repair.

Our future studies will involve salami-style publishing of many conceptual reference frameworks regarding
this important issue. Drinks are also foreseen.

8 Post-submission conclusion

In an unexpected turn of events, the visa extension investigated in this paper got approved two days after the
submission.

APPENDIX: Replication package

This appendix contains the data required to replicate our results.

Table 2: Originally estimated and eventual IRCC processing times

Participant ID Originally estimated processing time Eventual processing time

R-177-��942q� 119 190*+

*and counting +not anymore

References

[Blue, 2021] Blue, K. (2021). Towing capacity guide: Everything you need to know. https://www.kbb.com/

car-advice/towing-capacity-guide/.

[Bovik, 1975] Bovik, H. (1975). The driving forces behind hyper driven devices. Journal of Higher Spaces, 1.

[Bovik and Fakir, 1988] Bovik, H. and Fakir, A. (1988). Hyper driven devices–theory and practice. Journal of
Higher Spaces, 14:251–276.

[Bovik and Rude, 1986] Bovik, H. and Rude, B. (1986). Program vilification overview: 1970-1986. Tourette’s,
7:97–124.

[CCOHS, 2022] CCOHS (2022). Space Requirements for Office Work. https://www.ccohs.ca/oshanswers/

ergonomics/office/working_space.html.

[CHIRAG, 2020] CHIRAG (2020). How to Calculate the Gravitation Force from a Black Hole. https://public.
nrao.edu/ask/how-to-calculate-the-gravitation-force-from-a-black-hole/.

[Einstein and Davis, 2013] Einstein, A. and Davis, F. A. (2013). The principle of relativity. Courier Corporation.

[Garrett-Bakelman et al., 2019] Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias,
B. R., McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J., Piening, B. D., Rizzardi, L. F., Sharma, K.,
Siamwala, J. H., Taylor, L., Vitaterna, M. H., Afkarian, M., Afshinnekoo, E., Ahadi, S., Ambati, A., Arya,
M., Bezdan, D., Callahan, C. M., Chen, S., Choi, A. M. K., Chlipala, G. E., Contrepois, K., Covington, M.,
Crucian, B. E., Vivo, I. D., Dinges, D. F., Ebert, D. J., Feinberg, J. I., Gandara, J. A., George, K. A., Goutsias,
J., Grills, G. S., Hargens, A. R., Heer, M., Hillary, R. P., Hoofnagle, A. N., Hook, V. Y. H., Jenkinson, G.,

100

Jiang, P., Keshavarzian, A., Laurie, S. S., Lee-McMullen, B., Lumpkins, S. B., MacKay, M., Maienschein-
Cline, M. G., Melnick, A. M., Moore, T. M., Nakahira, K., Patel, H. H., Pietrzyk, R., Rao, V., Saito, R.,
Salins, D. N., Schilling, J. M., Sears, D. D., Sheridan, C. K., Stenger, M. B., Tryggvadottir, R., Urban, A. E.,
Vaisar, T., Espen, B. V., Zhang, J., Ziegler, M. G., Zwart, S. R., Charles, J. B., Kundrot, C. E., Scott, G.
B. I., Bailey, S. M., Basner, M., Feinberg, A. P., Lee, S. M. C., Mason, C. E., Mignot, E., Rana, B. K., Smith,
S. M., Snyder, M. P., and Turek, F. W. (2019). The NASA twins study: A multidimensional analysis of a
year-long human spaceflight. Science, 364(6436):eaau8650.

[Hawking, 2015] Hawking, S. W. (2015). The information paradox for black holes. arXiv preprint
arXiv:1509.01147.

[Hrvatin, 2017] Hrvatin, V. (2017). Your canadian tire money might be priceless. https://www.macleans.ca/
society/your-canadian-tire-money-might-be-priceless/.

[McKenzie and McKenzie, 1980] McKenzie, B. and McKenzie, D. (1980). The Great White North. SCTV.

[Nuseibeh and Easterbrook, 2000] Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software Engineering, pages 35–46.

[Pedia, 2022a] Pedia, W. (2022a). 2 Chainz. https://en.wikipedia.org/wiki/2_Chainz.

[Pedia, 2022b] Pedia, W. (2022b). Black holes. https://simple.wikipedia.org/wiki/Black_hole.

[Pedia, 2022c] Pedia, W. (2022c). Chain rule. https://en.wikipedia.org/wiki/Chain_rule.

[Pedia, 2022d] Pedia, W. (2022d). Gradient descent. https://en.wikipedia.org/wiki/Gradient_descent.

[Pedia, 2022e] Pedia, W. (2022e). Ja Rule. https://en.wikipedia.org/wiki/Ja_Rule.

[Pedia, 2022f] Pedia, W. (2022f). Time dilation. https://en.wikipedia.org/wiki/Time_dilation.

[Pedia, 2022g] Pedia, W. (2022g). Vim (text editor). https://en.wikipedia.org/wiki/Vim_(text_editor).

[Ralph, 2013] Ralph, P. (2013). The illusion of requirements in software development. Requirements Engineering,
18(3):293–296.

[Rittel and Webber, 1974] Rittel, H. W. and Webber, M. M. (1974). Wicked problems. Man-made Futures,
26(1):272–280.

[Sahay et al., 2020] Sahay, A., Indamutsa, A., Di Ruscio, D., and Pierantonio, A. (2020). Supporting the under-
standing and comparison of low-code development platforms. In 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 171–178. IEEE.

[San Fearlow and Ansymov, 2015] San Fearlow, M. and Ansymov, I. (E.U. Patent 9 876 543, Oct. 2015). Auto-
mated alarm system with humanoid audio interface for alerting me (and just me!) when Hans enters his office
and I can finally access the coffee maker.

[Sansing, 2022] Sansing, S. (2022). 2021 Chevrolet Tahoe Overview. https://www.sandysansingchevrolet.

com/research/new-chevy-tahoe-towing-capacity.

[Schrödinger, 1935] Schrödinger, E. (1935). Die gegenwärtige situation in der quantenmechanik. Naturwis-
senschaften, 23(50):844–849.

[Trottoir-Barré et al., 2016] Trottoir-Barré, É., von Pamplemousse, R., San Fearlow, M., and Ansymov, I. (2016).
The Black Hole in Hans’ Backpack: A Plausible Explanation of Delayed Meetings and Other Time-abusive
Phenomena. Metaversa Periodica, 23:201–276.

[von Pamplemousse and Ansymov, 2019] von Pamplemousse, R. and Ansymov, I. (2019). Theoretically, if I move
closer to Hans, I should be able to meet with him more regularly. Transactions of Näıve Scientists, 75:1–999.

[Zizek and Daly, 2004] Zizek, S. and Daly, G. (2004). Conversations with zizek.

101

Black Hole Computation

Matias Scharager

Carnegie Mellon University

mscharag@cs.cmu.edu

1 Introduction

Consider the universe we live in right now. We are all governed by several scientific laws of nature such
as Newton’s laws and many more. These laws create harmony in our universe, creating a natural system
of order. We can say these laws restrict possible states of being as if the universe is being statically type-
checked. We can measure states of being as we progress forwards in time in our universe, but there are also
many things far beyond our comprehension. One of these things is potential parallel universes which can be
hidden inside theoretical wormholes in black holes.[10]

All of this is simply a metaphor for programming languages. We start by defining the laws that govern
the universe: the structural operational semantics. We can also prove the harmony and safety of these laws
to show that our universe is stable in existence. Once this is achieved, we can write code in our language
that type-checks, essentially the matter of our universe, and watch how it behaves as it executes.

In fact, every time we create a new programming language, we are defining a parallel universe![9] The way
of reasoning in one language is different from the methodology of another language. This extends far beyond
a simple syntax renaming: the information that can exist in the universe is altered due to the fundamental
rules of the language.

In this paper, we take a look at the wormholes between programming language universes in an attempt
to understand the interaction between these universes via logic and data transfer. In doing so, we uncover
ingenious ways to perform computation, utilizing the computational power of alternate universes. This lens
also allows understanding old ideas in a new way, suggesting alternative ways of creating compilers.

2 Compilers

Surprisingly, there is already a commonly used name for wormholes between universes: compilers. Compilers
are structures that convert the logic and computational content in one language to that of another. As such,
they act as a one-way ticket from a source to the target language.

Typically, compilers are considered separate entities that are not part of the programming language
universe itself. The fact that we need to cross so many universe boundaries makes the compilation extremely
inefficient in maintaining the expressive capacity of the program.

2.1 SML → C → TAL

Let’s compile a Standard ML (SML)[4] program into Typed Assembly Language (TAL).[5] We write a
compiler in C to do this conversion. If we think of each of these programming languages to be their own
separate universe, then the C compiler exists in the C universe while the source code exists in the SML
universe. The goal is to utilize the object of the C universe to teleport the SML code into the TAL universe.

We are capable of seeing the SML universe object in the C universe. This is done in a very clumsy
way: through a syntax protocol. The SML code is expressed on paper via defining syntax arbitrarily for
the different components of the language. This is then saved to a text file which is a rudimentary logic that

1

19

102

Figure 1: Compilation Expressiveness

exists in all of the programming languages universes. Then the C compiler takes this file and operates on it
via a parser. This is known as creating an abstract syntax tree (AST).

Consider the logical interpretation present at each stage of this transportation. We start in the SML
universe with all the expressive power of SML, then we strip away all the expressiveness by converting it into
a text file. This is a thinning down of the logic to make it easy to transfer. Upon entering the C universe,
the compiler attempts to give back meaning to the text it is parsing, creating a simulated version of the
SML universe to gain back some of the logic we had before. This thinning down and building back up of
logic seems redundant.

We are not done here yet. We then create various intermediate representations and logics of the program
we are compiling, defining various logical principles in the C universe. TAL expresses things in a different
way than SML does, so we need to simulate all the changes in logic via multiple phases of compilation,
increasing the logical interpretation of the program itself. Once all this is done, we save it to another file in
the arbitrary syntax defined for TAL.

This out-file is transferred to a separate universe again, the TAL universe, where it can be executed in a
comprehensible way on real-world computers. There can be further manipulations of this code as we need
to increase our logical interpretation from the out-file to execution, but the details of this are beyond the
scope of this paper.

The overall process can be seen in Figure 1. Notice that the expressiveness of the code at the beginning
and at the end is roughly equivalent: we want our code to run exactly what we were planning on running
right at the start. In between, there are a lot of inefficiencies where we lose expressiveness only to make
an effort to gain it back up. Also, note the tightness of the informational content we can send through the
barrier between universes. This is due to the only shared component between all these languages being a
joint file system.

2.2 Removing First Boundary

The most direct attempt to salvage expressiveness across the program boundary is to implement the SML
compiler in SML itself. If we naively attempt this, the result is that we still need to save the program to a
file, destroying the expressive ability, only to convert it back into an AST to manipulate. Even if we simply

2

103

converted the program into a “string” object instead of a file, we would still be losing informational content.
Instead, we must think in a more direct way. We want to convert our SML program into an SML

AST of the same expressive content. The easiest conversion is the identity function: the SML program is
an SML AST. Thankfully, the SML datatype system is a very nice way to write SML code in SML, and,
moreover, the SMLNJ standard library includes an AST library! The library documentation can be found
here: https://www.smlnj.org/doc/Compiler/pages/ast.html.

All SML programs that are normally written in SML syntax can alternatively be expressed in this AST
framework with minimal impact on the code development experience. Moreover, we can easily convert
already existing SML programs into this AST framework, allowing for forward compatibility.

To demonstrate the easiness of utilizing this AST library, we interviewed all the SML code developers in
software engineering roles in the US. There were 0 complaints out of the large sample size of 0 SML code
developers, providing empirical evidence for how easy it is for these engineers to convert to this representation.

If we consider the same “black hole” metaphor we utilize throughout the paper, our new compiler now
exists in the same universe as the original source code, saving us the cost of sending the information through
the black hole. We can think of this as the black hole sucking up the whole source code universe.

One of the major benefits of this conversion is blurring the distinction between programming and compi-
lation. Every program must be self-compiling, meaning it must describe the appropriate operations needed
to compile the program into a lower-level language.

Note that while we opted to discuss removing the C component of compilation, it is just as easy to base
everything in C by using an SML AST library written in C to express our language. However, this would
require coding in C, specifically writing an SML compiler in C, so it was instantly discarded as a bad idea.

2.2.1 Alternative Strategies

Since the current suggested framework for self compilation is rather complicated to implement, we can
consider an extension to the SML language that includes an in-line compiler as a language feature. For
example, here is the proposed hello world program.

COMPILE(

print "Hello World!"

)

Notice that this COMPILE monad is admissible into our language, as we are capable of providing a
computational interpretation of compilation. As such, we recover valid structural operational semantics
without having to modify the type safety proofs of the language. As such, we are capable of expressing
compilation as a program effect: it prints the compiled program to the output file.

There are several modifications we can make to this framework that would allow for greater user expe-
riences. For one, we can allow for multiple kinds of COMPILE monads, representing which compiler flags
we wish to have in different parts of the program. This will allow for a very hands-on approach to compiler
optimizations, as we can mark which areas we want to have compiled with what strategies. We can even
allow for a mix of the default COMPILE monads along with user implemented compilation so that we have
the greatest amount of flexibility.

Once again, we are drawn back to our black hole analogy where monads represent universe teleportation.
We are expressly marking which chunks of our current universe (SML) we want to send to an alternative
universe (TAL).

2.2.2 Quines

It is worth mentioning the relationship of this format of programming to that of quines. A quine is any
program that prints itself as its output [1]. As such, we can think of quines as a degenerate case of compilation
where we do not perform any compilation steps, and simply spit back the original source code. Note that
there is an additional concept of “multiquines” where compilation does in fact occur as one language is
changed into another language [3], but ultimately, multiquines go back to the original source language after
a finite number of steps, ruining the usefulness of the conversion.

3

104

2.3 Removing the Second Boundary

While we have now established a wonderful programming methodology to eliminate the first mistake of
compilation, we have yet to explain how we wish to run the self-compiling program.

One option is to have a meta compiler, which compiles the self-compiling program. However, as Thompson
suggests in Reflections on Trusting Trust[7], this is a very risky move, as the meta compiler could have been
compiled by a meta meta compiler that has a trojan horse in it, essentially breaking the authenticity of
our self compiling program. To make matters worse, if we choose to implement a meta compiler ourselves
as a self compiling program, we would still need to write a meta meta compiler ourselves to compile the
meta compiler, and we would end up writing an infinite hierarchy of compilers before we can safely run our
program. This is essentially Russell’s paradox in the form of compilation. It would be fair to say that there
exists some magical black box compiler that exists as our initial self-compiling compiler, but such a thing
would have to implement in an “engineering hack” kind of way in practice.

However, we are still in luck. The programming language we are expressing our program in has a valid
small step relation, describing the process of executing. As such, we can conjecture the existence of a machine
that would perform this small step relation as a morphism of our program, slowly progressing until we have
reached a final stopping state at which we have achieved assembly output.

Unfortunately, such a perfect computer cannot exist in the real world with modern-day computer ar-
chitecture, as it would require an infinite number of state transitions to model all possible whole program
expressions a program can have during execution. As such, I would like you to take a brief moment of silence
while reading this paper to lament the fact that our idealized computer is purely an ideal. Thank you for
your moment of silence.

Let us take a step back and find out what exactly a computer in modern-day computer architecture is
capable of computing. It is reasonable to claim that a computer can “run assembly code” meaning it is
capable of performing operations that model the operations that assembly makes. The validity of this claim
is left as an exercise to the reader. This means that we automatically have an assembly interpreter given to
us magically.[8]

To remove the second boundary, we must implement an SML AST representation in an assembly program,
then write an SML compiler in the assembly language to compile the SML ASTs that we write. Since
everything is already in assembly, and we have a valid way of running assembly programs on a computer,
then we have successfully preserved expressive capacity throughout the whole compilation process.

2.3.1 Syntactic Sugar

It is worth noting the definition of “syntactic sugar”[2] to assure ourselves that this compilation strategy
for SML into assembly is not just syntactic sugar for assembly. Syntactic sugar is merely an admissible rule
of computation being added into the program without defining a new structural operational semantics. In
our setup, even though we are expressing SML ASTs in assembly, we are still distinguishing the structural
operational semantics of SML from those of assembly, giving us a different set of expressiveness tools that
can’t be easily represented in assembly.

Note that under this definition of syntactic sugar, languages that do not have well-defined structural
operational semantics can be considered to be just glorified assembly, since we claim that assembly is the
only language we are capable of interpreting on a computer in practice. Aside from structural operational
semantics, it seems sufficient to define a language via a specification such as C and thus a C to assembly
compiler is a compiler, however the analytical tools we have for program analysis and compiler correctness
would have to be vastly different in such a setting so it is beyond the scope of this paper.

3 Parallel Computation

If this were a sensible research paper, the term parallel computation would mean multi-threaded cores with
fork and join operations, or even some parallelized dynamics formalization of the structural operational
semantics. In our case, parallel computation means none of these things, yet at the same time means all of
these things! Parallel is derived from the “parallel universes” that run concurrently to our current universe
of existence. Parallel computation, therefore, means utilizing parallel universes for computation.

4

105

While our current universe is constrained to a certain set of logical principles, these principles do not
necessarily apply to the parallel universe. As such, sending information to the parallel universe, and running
the computations in that universe instead, allows us to save quite a lot of computation time among other
things. We will now cover various useful parallel universes and their abilities.

3.1 Effect-Free Effects

It is often the case that we want to reason about the state of our environment. This might involve various
operations including IO file reading, direct input from the user, reading and writing to memory, or utilizing
cache or registers. However, these are always pesky to reason about from a programming language theory
perspective.

We exclude non-termination in our definitions (we will cover this later separately), and define a pure
function as one that does not reason about the state of the environment in any way. The advantage to this is
the mathematical and category-theoretic idea that the function always returns the same thing, and is simply
a mapping of input values to output values.

This means an impure function, otherwise known as an effectful function, is one that performs any of these
IO operations. Clearly by the name “impure” we can see that this is an inferior version of pure functions.
The advantage to it is we can do these “dirty” effectful computations, and this can save us computation
time. For example, we all know from software engineering internship interviews that if we aren’t sure how
to make our solution faster, we yell out the words “hash set” or “dynamic programming” and hope that one
of these two things is what the interviewer wants to hear.

We can go through the effort of making some of these operations pure but this usually requires a painstak-
ing amount of monads and weird things that frequent the nightmares of software developers. Instead, we can
simply create a universe where all these effects can exist, and so to calculate effectful functions, we send the
data and run the program in this parallel universe. Since none of these effects occur in our current universe,
we are never accessing the state of our environment, so such a function is considered pure.

With this, we recover all the niceties of pure functions within the current universe’s structural opera-
tional semantics, and we handle the effects through a trivial lemma: since there are infinitely many parallel
universes, there is one that has a nice behaving environment with reads and writes that we can send data
to.

3.2 Infinity, Non-Termination, and Undecideability

There are several problems in computer science that are very important that we wish to compute but
haven’t found the means to. For example, some very important research questions include “what is the
biggest natural number,” “what is the last digit of pi,” and “does this arbitrary Turing machine terminate
on this input.”

It is trivial to write a function that computes the largest natural number utilizing continuation-passing
style:

datatype n = Z | S of n

open SMLofNJ.Cont

fun biggest () =

let

fun big (f : n -> n) = big (fn x => f (S x))

in

callcc (fn k => big (throw k))

end

val ans = biggest()

Unfortunately, executing this program results in non-termination as this function infinitely loops. We
would ideally like to keep running this program until it terminates, but since our universe is constrained to
running things in a finite amount of time, we will never find the answer we want to find.

5

106

However, parallel universes are not constrained in the same way as our universe. We can find a parallel
universe that runs an infinite number of steps of the program instantaneously and then send this program
to be run in that universe. In such a universe, the concept of the last natural number can be made a reality,
along with the last digit of pi, so we will refer to this universe as Infinity Universe.

We all know that the last question we asked is the famous Halting Problem. Fundamentally, this problem
is undecideable, which means that no algorithm can provide a yes or no solution to it. How then can we
correctly state that an algorithm in Infinity Universe gives us the answer to an undecideable problem?
For this, we need a simple lemma: Infinity Universe allows for paradoxes. If time can be run infinitely
instantaneously, then if we consider the current time that we are in as our starting point, then this is no
different of a starting point than one second into the future, or a year, or a century, or even a larger time gap
like the length of time it takes mankind to eradicate covid. This means that current time + 1 unit of time
= current time. If we standardize our current time to being time zero, this equation shows us that 1 = 0.
Previous research [6] demonstrates a computer verified proof of arbitrary program termination in polynomial
time in an unsound type system, solving the P=NP problem. In fact, we can prove any program halts, as we
can simply run it in Infinite Universe, demonstrating that Infintite Universe is simply an unsound universe.

A quick note, I would rather not wish to exist in an unsound universe. I am uncertain as to what that
would do to the basic laws of physics, but it is worth conducting experiments to determine this.

3.3 Implementing Parallel Universes

As we just discussed the extreme usefulness of these parallel universes, we would like a way of modeling them
in our programming language. Again, we consider the black hole principle. We are currently in universe
A which we know and comprehend (have structural operational semantics). We wish to run a program in
universe B, where we know nothing about how things run. So we open up a black hole, and send the program
into the black hole!

This black hole is a monad that allows for communication from universe A to universe B. We can define
some construct DATA (or abbreviated E) that allows us to express a syntactic formulation of contents in
universe B expressible in universe A. We can also define bind and return operations to express the monadic
structure. Here is an example of how data might look like if universe B was a universe filled with cats.

M := x | () | ïM,Mð |M · 1 |M · 2 | ¼x : A.M |M M | blackhole(E)

E := ret(M) | bnd(M ;x.E) | MEOW | PURR | NYA | E owo E

We can now express the program that explains the command to solve the Halting Problem in universe B.

blackhole(NYA owo MEOW) :⃝(HALTING PROBLEM)

As we can see, this is a valid term of the type ⃝(HALTING PROBLEM). It provides to us a function that solves
the Halting Problem expressed in universe B.

We now witness a dilemma. How can this possibly be true? Well, universe B is not constrained to any
meaningful principles that universe A obeys. However, the backlash to this is that no information in universe
B is comprehensible in universe A. We can continue to transmit information to universe B from universe A
via this black hole and continue to compute things like solving the Halting Problem in universe B, but the
black hole is a one-way street. Once you’ve gone to a universe of cats, you will never want to leave.

However, this allows for quite some grand amount of interesting properties in the universe A. Since all of
these blackhole(E) terms reduce within the universe B instead of universe A, and none of the information is
observable within universe A, then it is accurate to state that for all E,E′, blackhole(E) ≃ blackhole(E′)
where≃ represents Kleene equivalence over any observation, or can be expanded to be contextual equivalence.
As such, we can recover the structural operational semantics of the term language M in universe A via the
following reduction

blackhole(E) "→ blackhole(•) blackhole(•) val Γ ¢ blackhole(•) : ⃝(A)

Where • represents the fact that E was successfully transmitted to universe B. As such, progress and
preservation are simple inductions on the static and dynamic rules, and we assure type safety.

6

107

3.3.1 Parallel Parallel Universes

There is no reason to limit ourselves to simply two universes as we have in our previous example. We can
have infinitely many parallel universes, and continue to expand our language constructs via adding these
extra parallel universes.

In fact, we every time we add an extra monad into our system, we are only making moderate corrections
to the proof of type safety, along with all the logical relations associated with the programming language.
This allows for an easy method of extending our language.

3.4 Recovering the Other-Worldly Data

Even though data sent through a black hole to a separate universe can never come back, it is still the case
that something might come back to our universe if there is a black hole in the other universe connecting it
to ours. As such, this suggests that a bidirectional message passing system between universes is possible.

It is interesting to draw ties from this idea to that of the Ã-calculus. For the most part, we consider the
case where processes in the Ã-calculus correspond to the same universe so we can consider communication
via channels in this language as black holes which simply return you to the same universe you started from.
This restriction doesn’t seem to be necessary, as different processes can utilize different operational semantics
without breaking the abstractions of the Ã-calculus.

Constructing a system for message passing between multiple universes is beyond the scope of this paper,
because it’s already hard enough to implement the structural operational semantics for one language, let
alone two or more. If we intend to pass messages between universes, we can no longer just hypothetically
suppose the operations of one language existing, but must actually provide it in order to run the program.

4 Conclusions

As we discovered in this paper, we can implement a compilation strategy that preserves the expressiveness
of the program logic throughout the whole compilation process. This is done via expressing every program
we write as a self-compiling, self-interpreting program in the assembly language.

We also discovered a methodology for performing any arbitrary effectful or undecidable computation in
constant time by transmitting the information content to a separate universe via a black hole monad. This
paves the way for several interesting implementations in parallel universes that are observable via our own.

References

[1] Douglas R. Hofstadter. Godel, escher, bach. Basic Books, 1979.

[2] Peter J Landin. The mechanical evaluation of expressions. The computer journal, 6(4):308–320, 1964.

[3] David Madore. Quines (self-replicating programs). http://www.madore.org/~david/computers/

quine.html.

[4] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of standard ML:
revised. MIT press, 1997.

[5] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system f to typed assembly language.
ACM Transactions on Programming Languages and Systems (TOPLAS), 21(3):527–568, 1999.

[6] Matias Scharager. Verified proof of p=np in the silence theorem prover language. In SIGBOVIK 2020,
SIGBOVIK, pages 51–54, Pittsburgh, PA, 2020. Association for Computational Heresy.

[7] Ken Thompson. Reflections on trusting trust. In ACM Turing award lectures, page 1983. 2007.

[8] Wikipedia. Incantation. https://en.wikipedia.org/wiki/Incantation.

[9] Wikipedia. Isekai. https://en.wikipedia.org/wiki/Isekai.

[10] Wikipedia. Wormhole. https://en.wikipedia.org/wiki/Wormhole.

7

108

Schrödinger’s SAT: Generalizing �antum Bogosort to Prove
P = NP Under Many-Worlds�antum Mechanics

Melody “boringcactus” Horn

ABSTRACT

Quantum bogosort is a well-known variant of bogosort that exploits

the quantum nature of the universe to sort a list in linear time

under the many-worlds interpretation of quantum mechanics. We

generalize this algorithm to solve the Boolean satis�ability problem

in ċ (Ĥ) time. The Boolean satis�ability problem is the original NP-

complete problem; as such, this proves that P = NP. This destroyes

the RSA cryptosystem.

KEYWORDS

satis�ability, time complexity, revolutions in our understanding of

computing, unsolved problems in millennium prize eligibility

1 INTRODUCTION

The Boolean satis�ability problem was the �rst problem proved to

be NP-complete [1, 4]. This result serves as the foundation for all

of complexity theory.

Bogosort is a randomized list sorting algorithm that runs in

average-case ċ (Ĥ!) time [2]. Quantum bogosort is an adaptation

of bogosort that explores all random options simultaneously in

di�erent universes and therefore sorts the list in ċ (Ĥ) time [3].

2 PRIOR ART

The bogosort algorithm given in [2] sorts an array ė withĤ elements

as follows:

Algorithm 1 Bogosort

1: procedure Bogosort(ė)

2: while ė[1 . . . Ĥ] is not sorted do

3: randomly permute ė[1 . . . Ĥ]

4: end while

5: end procedure

The quantum bogosort algorithm given in [3] may be formalized

analogously as follows:

Algorithm 2 Quantum Bogosort

1: procedure �antum-Bogosort(ė)

2: randomly permute ė[1 . . . Ĥ]

3: if ė[1 . . . Ĥ] is not sorted then

4: destroy the entire universe

5: end if

6: end procedure

So long as the random numbers in step 2 are random at a quan-

tum level, the many-worlds interpretation of quantum mechanics

indicates that there will be a world where each random permutation

is chosen. As such, step 4 ensures that only the worlds where the

correct random permutation was chosen continue to exist. Since

steps 2 and 3 can run in ċ (Ĥ) time, and step 4 is independent of Ĥ

and therefore runs in ċ (1) time, quantum bogosort will sort the

array ė in ċ (Ĥ) time.

3 METHODS

The Boolean satis�ability problem can be formalized as follows:

given some Boolean formula ¨(Į1, . . . , ĮĤ) on Ĥ variables, �nd a

truth assignment (Į1, . . . , ĮĤ) = (Đ, . . . , Ă) such that ¨(Į1, . . . , ĮĤ)

is true, if it exists.1

To solve this problem, we present the following algorithm:

Algorithm 3 Schrödinger’s SAT

1: procedure Schrödinger’s-SAT(¨)

2: for ğ ← 1, Ĥ do

3: Randomly guess either Įğ ← Đ or Įğ ← Ă

4: end for

5: if ¬¨(Į1, . . . , ĮĤ) then

6: destroy the entire universe

7: end if

8: return (Į1, . . . , ĮĤ)

9: end procedure

As with quantum bogosort, if the guess in step 3 is random at a

quantum level, there will be a world for each value, and so by step

4 there is a world for every possible truth assignment. As such, by

step 8 we have found a satisfying truth assignment. (Su�ciently

bored or curious readers may wish to implement this algorithm

and run it on ¨(Į1) = Į1 ' ¬Į1.)

Since there are Ĥ guesses made, each guess takes ċ (1) time, and

the formula can be evaluated in ċ (Ĥ) time, this algorithm �nds a

satisfying assignment in ċ (Ĥ) time, demonstrating that Boolean

satis�ability is in P and therefore that P = NP.

ACKNOWLEDGMENTS

To Joe.

REFERENCES
[1] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Pro-

ceedings of the third annual ACM symposium on Theory of computing - STOC
’71. ACM Press, Shaker Heights, Ohio, United States, 151–158. https://sci-
hub.se/10.1145/800157.805047

[2] Hermann Gruber, Markus Holzer, and Oliver Ruepp. 2007. Sorting the Slow Way:
An Analysis of Perversely Awful Randomized Sorting Algorithms. In Fun with
Algorithms, Pierluigi Crescenzi, Giuseppe Prencipe, and Geppino Pucci (Eds.).
Vol. 4475. Springer Berlin Heidelberg, Berlin, Heidelberg, 183–197. https://sci-
hub.se/10.1007/978-3-540-72914-3_17 Series Title: Lecture Notes in Computer
Science.

[3] The Other Tree. 2009. Quantum Bogosort. mathNEWS 111, 3 (Oct. 2009), 13. https:
//mathnews.uwaterloo.ca/wp-content/uploads/2014/08/v111i3-compressed.pdf

1As is standard practice, we handwave away the di�erence between the decision
problem and the search problem.

20

109

Melody “boringcactus” Horn

[4] B.A. Trakhtenbrot. 1984. A Survey of Russian Approaches to Perebor (Brute-Force
Searches) Algorithms. IEEE Annals of the History of Computing 6, 4 (Oct. 1984),

384–400. https://sci-hub.se/10.1109/MAHC.1984.10036

110

Solving Double Execution of Java’s paint()Method by Counting

Down to the Heat Death of the Universe

(plus language compendium)

Braden Oh, Vedaant Kuchhal, Junseok Kang, Andrew Mascillaro, Justin Kunimune,
Shashank Swaminathan, Devlin Ih, Elias Gabriel, Audrey Lee, Colin Snow, Hyunkyung Rho,

Ben Morris, Solomon Greenberg, Mahima Beltur, Anusha Datar, Jonathan Kelley,
Pranavi Boyalakuntla, Xander Hughes, Devyn Oh, Aidan Schmitigal

Olin College of Engineering: Computing

Contents

1 Background and Motivation

2 Results

3 Language Compendium
3.1 Java
3.2 Python 3
3.3 B
3.4 C
3.5 D
3.6 JavaScript
3.7 TypeScript
3.8 MATLAB
3.9 Ruby
3.10 Elisp
3.11 Common Lisp
3.12 Go
3.13 Racket
3.14 Scratch
3.15 OCaml
3.16 Bash

3.17 Fortran

3.18 ArnoldC

3.19 LOLCODE

3.20 PHP

3.21 Verilog

3.22 R

3.23 Swift

3.24 Dyalog APL

3.25 COBOL

3.26 Mathematica

3.27 Perl

3.28 Lua

3.29 Julia

3.30 Rust - Looping

3.31 Rust - Arbitrary Precision

3.32 MIPS Assembly

3.33 NetFuck

3.34 brainfuck

3.35 Befunge-98

3.36 Minecraft Redstone

21

111

1 Background and Motivation

The final project of my high school “Honors C++” course was to program a graphical animation
in a Java applet. While writing this program I found that the animation would consistently run
twice in a row, meaning that the pre-programmed animation would run all the way through then
would immediately restart, preventing the user from being able to either recognize or appreciate
the ending of the cinematic masterpiece as they were forced to watch the film a second time.

Investigation of this bug led me to the paint() method employed by the Java Virtual Machine’s
(JVM) graphics engine. The JVM calls the paint() method to generate the graphics displayed in
a window. This method is called automatically anytime the JVM determines that the graphical
user interface (GUI) needs to be refreshed. Ideally this occurs only when the GUI actually does
need to be refreshed, but, in practice, the JVM will execute the paint method when no reason
for a GUI refresh is apparent. The JVM’s double execution of paint() command is a symptom
described on numerous message boards including Stack Overflow, MacRumors, Code Ranch, and
Tek Tips. Unfortunately the JVM’s reason for re-executing the paint() method is opaque to the
programmer, so the actual cause of the double execution could not be easily investigated. Thus,
in order to prevent the user from becoming confused, a clever programmatic solution would be
required. Because the program was only an animation that did not require any responsiveness to
user input, an easy way to make the double execution invisible to the user was to insert a block of
code at the end of the animation, right at the end of the paint() method, to consume an enormous
amount of time, giving the user more time to view the final image displayed in the window. After
implementing enormous addition problems which produced only seconds of delay I began to experi-
ence a burning desire to defeat the JVM and guarantee that it could never run my animation again.

What better way to assure this than to have the paint() method wait until the heat death
of the universe? This would guarantee that the immutable laws of thermodynamics would step in
to prevent the JVM from executing a second time, even in the event that the computer remained
switched on and plugged into a consistent power source for billions of years. The Wikipedia
page entitled “Heat death of the universe” reports that the Hawking radiation evaporation of a
supermassive black hole of 1011 Earth masses is on the order of 10100 years. This amount of time
seemed sufficient to prevent paint() from ever running again, so I wrote a simple Java function
to count down that many seconds and called it at the end of my implementation of the paint()

function.

2 Results

I am happy to report that this solution worked perfectly. The paint() function executed for
the first time and then began counting down in the background. My apparent fix to the double
execution of paint() impressed my programming teacher, but also confused him as he saw the
script continued to run beyond the animation’s apparent conclusion. He terminated the program’s
operation prior to paint()’s second execution, rendering this solution a practical success.

This algorithm of counting down to the heat death of the universe provides a valuable solution
to any programmer needing to assure that no further computations can take place following a
particular block of code. In order to provide as universal a solution as possible, we have provided
translations of this algorithm in the only programming languages that matter.

112

3 Language Compendium

3.1 Java

The maximum 32-bit integer value that Java can store is 2,147,483,647, which is on the order of
109. To make the math easy, I used the integer 1×109 as a loop counter, then looped through 10100

years, Calling Thread.sleep(1000) (1000 ms) to count through each of the 31,536,000 seconds in
a year.

import java.lang.Thread;

public void wait_for_heat_death_of_the_universe() {

// Loop through 10^100 years

for(long count1 = 0; count1 <= 1000000000; count1++) {

for(long count2 = 0; count2 <= 1000000000; count2++) {

for(long count3 = 0; count3 <= 1000000000; count3++) {

for(long count4 = 0; count4 <= 1000000000; count4++) {

for(long count5 = 0; count5 <= 1000000000; count5++) {

for(long count6 = 0; count6 <= 1000000000; count6++) {

for(long count7 = 0; count7 <= 1000000000; count7++) {

for(long count8 = 0; count8 <= 1000000000; count8++) {

for(long count9 = 0; count9 <= 1000000000; count9++) {

for(long count10 = 0; count10 <= 1000000000; count10++) {

for(long count11 = 0; count11 <= 1000000000; count11++) {

// Loop through 31,536,000 seconds per year

for(long count12 = 0; count12 <= 31536000; count12++) {

try{Thread.sleep(1000);} // Wait 1000 ms

catch(InterruptedException ie) {} // This is a syntactical formality

}}}}}}}}}}}}

}

3.2 Python 3

Astoundingly, Python 3 allows a user to handle the number 1e100, which is represented as a
floating-point number. Even more astoundingly, Python even allows a user to convert it into an
integer which can be used as a loop counter (for reference, the sys.getsizeof method indicates
that this integer requires 72 bytes of memory). This number is actually represented in memory as
a number slightly larger than 1e100, but the difference is mere fractions of a percent (albeit that
doesn’t mean much at numbers of this order of magnitude).

import time

def wait_for_heat_death_of_the_universe():

for count in range(0, int(1e100)): # Loop through 10^100 years

time.sleep(31536000) # Wait for one year (in seconds)

113

3.3 B

B is a predecessor of C written by B. W. Kernighan at Bell Labs. It does not implement types, for
loops, or sleep commands, but does support while loops and recursion as well as system calls. Here
we recursively call the UNIX “sleep 31536000” command 10100 times to achieve our desired time.

main() {

WaitForHeatDeath(100);

}

WaitForHeatDeath(n) {

if (n == 0) {

system("sleep 31536000");

return;

}

auto a, b;

a = 10;

b = 0;

while(a > b) {

b = b + 1;

WaitForHeatDeath(n - 1);

}

}

3.4 C

This is a very similar implementation to that of Java, except for one key difference - the long type
in C can be 32 or 64 bit depending on the operating system, so a 64-bit integer - using the standard
integer library - was specified, and for loops were nested accordingly with a one year sleep function
from the Unix standard library.

#include <unistd.h>

#include <stdint.h>

int main(){

for(int64_t count1 = 0; count1 <= 10000000000; count1++){

for(int64_t count2 = 0; count2 <= 10000000000; count2++){

for(int64_t count3 = 0; count3 <= 10000000000; count3++){

for(int64_t count4 = 0; count4 <= 10000000000; count4++){

for(int64_t count5 = 0; count5 <= 10000000000; count5++){

for(int64_t count6 = 0; count6 <= 10000000000; count6++){

for(int64_t count7 = 0; count7 <= 10000000000; count7++){

for(int64_t count8 = 0; count8 <= 10000000000; count8++){

for(int64_t count9 = 0; count9 <= 10000000000; count9++){

for(int64_t count10 = 0; count10 <= 10000000000; count10++){

sleep(31536000);

}}}}}}}}}}

}

114

3.5 D

D is a general-purpose programming language with static typing, systems-level access, and C-like
syntax. Thus, the implementation is effectively the same as C, noting the different modules.

import std;

import core.thread;

void main(){

for(int64_t count1 = 0; count1 <= 10000000000; count1++){

for(int64_t count2 = 0; count2 <= 10000000000; count2++){

for(int64_t count3 = 0; count3 <= 10000000000; count3++){

for(int64_t count4 = 0; count4 <= 10000000000; count4++){

for(int64_t count5 = 0; count5 <= 10000000000; count5++){

for(int64_t count6 = 0; count6 <= 10000000000; count6++){

for(int64_t count7 = 0; count7 <= 10000000000; count7++){

for(int64_t count8 = 0; count8 <= 10000000000; count8++){

for(int64_t count9 = 0; count9 <= 10000000000; count9++){

for(int64_t count10 = 0; count10 <= 10000000000; count10++){

Thread.sleep(dur!("seconds")(31536000));

}}}}}}}}}}

}

3.6 JavaScript

With the new update of JavaScript, there is no need to consider the Number data type’s MAX SAFE INTEGER.
The BigInt Datatype allows a way to represent whole numbers larger than 253-1. With this, we
can use a similar structure to Python’s for loop and create this function.

function end_of_time(){

for (let i = BigInt(0); i < BigInt(1e100); i++) {

sleep(31536000);

}

}

3.7 TypeScript

Since the JavaScript implementation is nearly unreadable, TypeScript fortunately allows us to
declare the type of each variable in the source code, which is desirable for any large and complicated
program like this one.

function end_of_time(): void {

for (let i: number = BigInt(0); i < BigInt(1e100); i++) {

sleep(31536000);

}

}

115

3.8 MATLAB

This implementation is as simple as it can get - initially, it was tempting to iterate across an array
from 1 to 1e100 (it’s difficult to find exact data on MATLAB’s maximum array size), but an array
of that size would well exceed the maximum size that any PC can handle. So looping through 1010

10 times proved to be an effective solution. MATLAB provides the inbuilt pause function to pause
each iteration for one year.

function wait_for_heat_death_of_the_universe()

% Loop through 10^100 years

for year1 = 1:10000000000

for year2 = 1:10000000000

for year3 = 1:10000000000

for year4 = 1:10000000000

for year5 = 1:10000000000

for year6 = 1:10000000000

for year7 = 1:10000000000

for year8 = 1:10000000000

for year9 = 1:10000000000

for year10 = 1:10000000000

% Pause for one year

pause(31536000);

end

end

end

end

end

end

end

end

end

end

end

3.9 Ruby

As with Python, Ruby allows for the definition of arbitrarily sized integers. At scales larger than
a machine word, where a buffer overflow may occur, Ruby will automatically convert any integer
to a bignum representation. In this representation, integers consume multiple bytes. The number
10100 consumes only 42 bytes (compared to the 72 used by Python), making it a better-suited
implementation choice for those concerned with memory usage.

Unfortunately, Ruby’s sleep implementation can only act on integers within machine precision,
so though our desired amount of time (10 ** 100) * 31536000 can be represented, it cannot be
used. Fortunately, as with other methods, we can get around this by instead delaying for 1 year
10100 times.

(10 ** 100).times { sleep 31536000 }

116

3.10 Elisp

Emacs Lisp, or Elisp, is the extension language for the GNU/Emacs text editor. It is probably the
most commonly used dialect of the Lisp family.

GNU/Emacs users tend to constantly promote their silly editor from the 1980s, and how it is
better than modern IDEs (me). Sometimes you want to tell those people to shut up. You can
lock their single-threaded editor until the heat death of the universe by evaluating the following
snippet. Hilariously, ELisp, a language meant primarily for text manipulation and writing editor
commands, allows arbitrary precision integers with its bignum type.

(dotimes (count (expt 10 100))

(sleep-for 31536000))

3.11 Common Lisp

Common Lisp is a powerful, general purpose, multi-paradigm programming language in the Lisp
family. CL is known for its stability, speed, powerful macro system based on s-expression manipu-
lation, and it’s unparalleled interactive programming experience through the SLIME environment.

CL supports arbitrary precision integers through the bignum type, which will let you loop over
10100 times.

The following code should be implementation agnostic, and is currently being tested with SBCL.

(dotimes (count (expt 10 100))

(sleep 31536000))

3.12 Go

The Go implementation follows a process similar to both JavaScript and the more legible TypeScript
alternative. Sadly, Go is more verbose in defining big integers, as standard operators such as **, <,
and + are not overloaded. Rather, function calls to perform said operations are used (big.Int.Exp,
big.Int.Cmp, big.Int.Add respectively). As with Ruby, this implementation consumes 42 bytes
(333 bits), but is likely more efficient as it is compiled rather than interpreted.

import (

"time"

"math/big"

)

one := big.NewInt(1)

eons := new(big.Int).Exp(big.NewInt(10), big.NewInt(100), nil)

counter := big.NewInt(0)

for ; counter.Cmp(eons) == -1; counter.Add(counter, one) {

time.Sleep(31536000 * time.Second)

}

117

3.13 Racket

Racket is a member of the Lisp family of programming languages and is a descendent of Scheme.
It is a language designed for defining domain specific languages, most well known for “teaching
languages” used to teach functional programming concepts.

Racket, like the other lisps included here, supports arbitrary precision integers with bignums.

#lang racket

(define (heat-death year)

(when (< year (expt 10 100))

(sleep 31536000)

(heat-death (add1 year))))

(heat-death 0)

3.14 Scratch

Scratch is a visual block-based programming language and game engine. It is commonly used in
schools and classrooms to introduce young children to core programming concepts. As such, it may
be useful to utilize when teaching concepts such as the inevitability of universal heat death, and
its applicability to painting. See Figure 1 for implementation.

Figure 1: In the code above, comments are provided for visual comprehension.

3.15 OCaml

OCaml is a powerful statically functional programming language, commonly used to teach core
computer science topics. It’s portability, speed, and expressiveness make it an ideal candidate for
development, thus a situation in which one would want to pause execution of a misbehaving pro-
gram is likely to occur. Tragically, OCaml removed built-in support for arbitrarily-sized integers

118

in recent versions, offloading that functionality to a separate packaged zarith.

Installing that package, we can make use of it in a similar way as above (that is, instructing
your program to wait for 31536000 seconds 10100 times). On a 64bit architecture, OCaml uses 48
bytes to store our eon counter.

#load "zarith.cma";;

let rec wait_heat_death (remaining: Z.t): bool =

if remaining = Z.zero then true else

let _ = Unix.sleep 31536000 in wait_heat_death (Z.pred remaining);;

let _ = wait_heat_death (Z.pow (Z.of_int 10) 100);;

3.16 Bash

Since Bash coerces string data into integers whenever necessary, the best way to define the value
10100 without floating point errors is to create a string of 1 followed by 100 zeroes, as done in the
first line below. Then, iterate over each of these years and sleep for 365 days.

years="1"$(printf "0%.0s" {1..100})

for i in seq $years; do sleep 365d; done

3.17 Fortran

Algorithmically, the Fortran implementation is similar to all other nested loop-based approaches.

Program HeatDeath

do a = 0, 1000000000

do b = 0, 1000000000

do c = 0, 1000000000

do d = 0, 1000000000

do e = 0, 1000000000

do f = 0, 1000000000

do g = 0, 1000000000

do h = 0, 1000000000

do i = 0, 1000000000

do j = 0, 1000000000

call sleep(31536000)

end do

end do

end do

end do

end do

end do

end do

end do

end do

end do

End Program HeatDeath

119

3.18 ArnoldC

ArnoldC is an imperative JVM-bytecode assembly language in which instructions and basic key-
words are replaced with one-liners from different Arnold Schwarzenegger movies. The language,
having its syntax comprised of well-known phrases, is an ideal choice for applications developed
by fans and movie-goers. Promisingly, its code is also readable by almost any individual, with
or without any formal programming knowledge, as it only requires proficiency in English and
Schwarzenegger mannerisms. The language, compiling directly to JVM bytecode, is also able to
run on any platform without recompilation.

Tragically, ArnoldC has no built-in support for bignums, timing functionality, nor any way to
make system calls. As such, traditional methods like those presented in other languages are prov-
ably impossible.

Building on the work done by Lambert and Power1, however, we can approximate a solution
using the execution time of a known bytecode. As shown in their paper, we know with confidence
that any used bytecode time is platform-independent (in every regard except processor speed, for
which we account during usage), making it an useful drop-in as a base unit of elapsing time in a
general-purpose solution. From the 137 timed bytecodes, we pick integer division (idiv) due to
its comparatively (by an order of magnitude) longer execution time of 3.449739× 10−8 seconds vs.
all other used operations; thus, our implementation can delay for longer increments and be more
efficient. Floating point conversions (d2i and f2i) take longer, but cannot be used as ArnoldC
only supports 16-bit signed integers.

Combining this novel unit of time with the recursive approach demonstrated in B and the com-
mon looping approach, and knowing that our selected bytecode consumes a magnitude more time
than the other programmatic instructions, we can successfully implement an ArnoldC program that
will amortizedly delay for our desired time. To achieve heat death, we must recurse the number of
times it takes to reach 10100 years, which assuming a time unit of 3.449739× 10−8 seconds, equates
to 10100 ∗ 31536000

3.449739×10−8 ≈ 10116 iterations. The implementation provided achieves this through deep
recursion, where each recurse recurses 10 times.

Lambert and Power calculated the used bytecode instruction time using a ≈1GHz dual core Intel
Pentium III. To account for processors operating outside of the 1-10GHz range, the programmer
can simply decrement or increment the magnitude of iterations for each magnitude difference in
processor speeds (116± 1n).

1Lambert, J. M., J. F. Power, Platform Independent Timing of Java Virtual Machine Bytecode Instructions,
Electronic Notes in Theoretical Computer Science. 220 (2008), pp. 97–113.

120

LISTEN TO ME VERY CAREFULLY HEATDEATH

I NEED YOUR CLOTHES YOUR BOOTS AND YOUR MOTORCYCLE n

HEY CHRISTMAS TREE flag

YOU SET US UP @I LIED

GET TO THE CHOPPER flag

HERE IS MY INVITATION n

YOU ARE NOT YOU YOU ARE ME @I LIED

ENOUGH TALK

BECAUSE I’M GOING TO SAY PLEASE flag

DO IT NOW WAITOPCODE

BULLSHIT

GET TO THE CHOPPER n

HERE IS MY INVITATION n

GET DOWN 1

ENOUGH TALK

DO IT NOW WAITMULTI n

YOU HAVE NO RESPECT FOR LOGIC

HASTA LA VISTA, BABY

LISTEN TO ME VERY CAREFULLY WAITMULTI

I NEED YOUR CLOTHES YOUR BOOTS AND YOUR MOTORCYCLE n

HEY CHRISTMAS TREE isLessThan10

YOU SET US UP @NO PROBLEMO

HEY CHRISTMAS TREE i

YOU SET US UP @I LIED

STICK AROUND isLessThan10

GET TO THE CHOPPER i

HERE IS MY INVITATION i

GET UP 1

ENOUGH TALK

DO IT NOW HEATDEATH n

GET TO THE CHOPPER isLessThan10

HERE IS MY INVITATION 10

LET OFF SOME STEAM BENNET i

ENOUGH TALK

CHILL

HASTA LA VISTA, BABY

LISTEN TO ME VERY CAREFULLY WAITOPCODE

HEY CHRISTMAS TREE pi

YOU SET US UP @I LIED

GET TO THE CHOPPER pi

HERE IS MY INVITATION 355

HE HAD TO SPLIT 113

ENOUGH TALK

HASTA LA VISTA, BABY

IT’S SHOWTIME

DO IT NOW HEATDEATH 116

YOU HAVE BEEN TERMINATED

121

3.19 LOLCODE

Unfortunately, LOLCODE 1.2 (the most recent specification, released in 2007) does not yet support
a time-based pause function such as Java’s Thread.sleep or Python’s time.sleep, nor does it
support allowing a user to access the clock of the host computer. As a result, the original algorithm
cannot be implemented directly in LOLCODE. LOLCODE is extremely similar to Arnold C in
capability, but due to the short time available to this author, a similar outcome was achieved with
an infinite loop.

HAI 1.2

CAN HAS STDIO?

HOW IZ I WAIT_4_HEAT_DTH_OF_UNVRSE

VISIBLE "COUNTING DOWN"

IM IN YR LOOP UPPIN YR VAR WILE WIN

VISIBLE VAR

IM OUTTA YR LOOP

IF U SAY SO

I IZ WAIT_4_HEAT_DTH_OF_UNVRSE MKAY

KTHXBYE

3.20 PHP

PHP, or Personal Home Page, or PHP Hypertext Protocol, is a programming language that was
originally used for a personal project and that became mainstream. This adequately explains
the language’s unique inconsistencies in structure, syntax, and convention, as well as some other
language “features”. First, it creates a BigInteger of the size 10100 by creating a string with
the number and inputting this to the BigInteger constructor. Note that the PHP operator for
concatenating strings is “.” and not “+” like most languages. Then, it iterates over each year,
sleeping for a year.

function waitForHeatDeath() {

include(’Math/BigInteger.php’);

$years_str = "1";

for($i = 0; $i < 100; $i++) {

$years_str .= "0";

}

$years = new Math_BigInteger($years_str);

$big_1 = new Math_BigInteger(1);

for($i = new Math_BigInteger(0); $i < $years; $i += $big_1) {

sleep(31536000);

}

}

122

3.21 Verilog

Verilog is a hardware description language. It can be used in designing and verifying circuits at
the register-level of abstraction. By using a 32 bit register containing a value of 109, we can loop
through this value exponentially 11 times, which will get us an integer value of 1099. And then, we
can loop through a separate additional 10 times. This will get us a total integer value of 10100. By
using the using timescale 1s / 1s command, the time passes once every second in the program.
To count once per year, 31536000 seconds need to pass using the #31536000 command.

‘timescale 1s / 1s

module HeatDeathUniverseCounter;

reg [31:0] W = 32’h3B9ACA00; //10^9

integer i, j, a, b, c, d, e, f, g, h, k;

integer val_c = 0;

always@(W)

begin

//10^99

for(i=0;i<W;i=i+1) begin

for(j=0;j<W;j=j+1) begin

for(a=0;a<W;a=a+1) begin

for(b=0;b<W;b=b+1) begin

for(c=0;c<W;c=c+1) begin

for(d=0;d<W;d=d+1) begin

for(e=0;e<W;e=e+1) begin

for(f=0;f<W;f=f+1) begin

for(g=0;g<W;g=g+1) begin

for(h=0;h<W;h=h+1) begin

for(k=0;k<W;k=k+1) begin

#31536000 val_c += 1;

$display(val_c);

end

end

end

end

end

end

end

end

end

end

end

//10

for(i=0;i<10;i=i+1) begin

#31536000 val_c += 1;

$display(val_c);

end

end

endmodule

123

3.22 R

R is a language specialized in statistical computing and graphics. Surprisingly, R has similar
structure as that of Python for loops, which results in the code stub below looking almost identical
to that of the Python code stub except a few differences: exponentiation is done with a karat
symbol, and replacing time (Python) with the conveniently built-in Sys (R).

wait_for_heat_death_of_the_universe <- function() {

Loop through 10^100 years

for (count in 0:10^100) {

Wait for one year (in seconds)

Sys.sleep(31536000)

}

}

3.23 Swift

Swift is Apple’s language for app development, and as such is an easy target for stalling forever if
one ever wanted to make an app that does nothing for all time. Since Swift has a limited integer
size, this must be implemented with several for loops. For abstraction, this is done with a recursive
function.

import Foundation

func waitForNYears(_ base: Int, toThe exp: Int) {

if exp == 0 {

// Sleep one year

sleep(31536000)

} else {

for _ in 1...base {

waitForNYears(base, toThe: exp-1)

}

}

}

// Wait for (10^10)^10 years

waitForNYears(Int(pow(10.0, 10.0)), toThe: 10)

3.24 Dyalog APL

Quite possibly one of the best examples of a “write-only” programming language, APL (and the
modern flavor required here, Dyalog APL) uses a non-ASCII character set to allow for incredibly
powerful, terse, and illegible matrix and vector operations. While APL has support for stagger-
ingly large arrays and numbers (able to directly represent 10100), the delay function does not have
support for such large arguments. A “pedantic” way of working around this would be to com-
pound delay calls through an array and the use of the handy ⋆̈ operator, delaying at each step.
However, we hit an array size limit at 264, much smaller than the 10100 needed here. As such,
we must commit what is paramount to heresy in such a beautiful language (with a global-state
iteration being wholly unacceptable), and rely on traditional recursive methods. A simple function
is presented here, to recursively decrement the right argument of a monadic function, delaying one
second at each iteration. While the author would prefer to use the elegance of tacit functions, this

124

is impossible due to the inability to rely on the ⋆̈ operator for numbers of such size.

wait for heat death ← {{É=0:⋄ ▽ É-1£ DL`1} 31536000×1E100}
wait for heat death Ä0

3.25 COBOL

COBOL, misgivingly, does not support sleeping nor does it support a traditional loop structure. To
get around this issue, we call the standard UNIX sleep command with an argument of "infinity".
By default, sleeping infinitely on UNIX will result in a delay of 9223372036854775807 seconds
(about 1011 years). To achieve heat death, we must do this repeatedly (roughly 1089 times), or by
running 8 recursive loops of 1010 followed by one loop of 109.

IDENTIFICATION DIVISION.

PROGRAM-ID. HEAT-DEATH.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 my-var PIC X(6) VALUE "Hello!".

01 cmd-line pic x(15) value "sleep infinity" & x"00".

PROCEDURE DIVISION.

MAIN-PROCEDURE.

PERFORM Child1 10000000000 TIMES

STOP RUN.

Child1.

PERFORM Child2 10000000000 TIMES.

Child2.

PERFORM Child3 10000000000 TIMES.

Child3.

PERFORM Child4 10000000000 TIMES.

Child4.

PERFORM Child5 10000000000 TIMES.

Child5.

PERFORM Child6 10000000000 TIMES.

Child6.

PERFORM Child7 10000000000 TIMES.

Child7.

PERFORM Child8 10000000000 TIMES.

Child8.

PERFORM Child9 1000000000 TIMES.

Child19.

call "SYSTEM" using cmd-line

DISPLAY my-var.

END PROGRAM HEAT-DEATH.

125

3.26 Mathematica

Mathematica has a max array size of 231 − 1, so our wait can not be performed in one operation.
Like other approaches, we can split this operation into smaller chunks.

Do[

Do[

Do[

Do[

Do[

Do[

Do[

Do[

Do[

Do[

Pause[31536000],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}],

{n, 10000000000}]

3.27 Perl

Perl is a general-purpose programming language currently used for a including system adminis-
tration, web development, network programming, GUI development, and more. As with other
languages, PERL comes with a limit on data sizes depending on the version of Perl. For the 32-bit
version, the maximum array size is 9007199254740992. So, for the ease of computation, I used a
similar approach to previously discussed languages in using 10 nested for loops that each count to
1e10.

sub(wait_for_heat_death_of_universe){

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

for (0; 10000000000; 1) {

sleep(rand(31536000))

}}}}}}}}}}

}

126

3.28 Lua

Lua is a scripting language built on top of C. Lua does not support a sleep function by default, so
we start by defining one. Note that because these os calls are expensive, a more optimized solution
would use and call a C function to block instead of busy waiting as shown here. However, the spirit
of this exercise requires sticking to Lua, so we write the following function:

function wait(time)

local duration = os.time() + time

while os.time() < duration do end

end

The maximum value Lua supports is a 64-bit integer, meaning that we need to use a set of nested
loops to wait 10100 years. One may choose to indent for stylistic reasons, but we show the loops
collapsed here for ergonomics when reading on a page.

for count1 = 0, 10000000000 do

for count2 = 0, 10000000000 do

for count3 = 0, 10000000000 do

for count4 = 0, 10000000000 do

for count5 = 0, 10000000000 do

for count6 = 0, 10000000000 do

for count7 = 0, 10000000000 do

for count8 = 0, 10000000000 do

for count9 = 0, 10000000000 do

for count10 = 0, 10000000000 do

wait(31536000)

end

end

end

end

end

end

end

end

end

end

3.29 Julia

In this case, the structure is similar to the Python 3 approach - create a range object to delimit the
limits of heat death, nicely assign Julia to sleep for a year (in seconds) each iteration, and let the
program go to task. For no other reason than aesthetics, the implementation below uses one-line
coding.

for count in range(1, 1e100); sleep(31536000); end

127

3.30 Rust - Looping

Rust is a statically typed language pioneered by Grayden Hoare in 2007 and then incubated by
Mozilla for use in the Mozilla Firefox web browser. Today, Rust empowers developers to write
systems programs that emphasize memory safety and performance. Rust does not natively support
arbitrary precision integers: these datatypes are provided by third-party libraries (crates) in the
‘crates.io‘ ecosystem. While Rust does not provide arbitrarily sized integers in the standard library,
it does provide unsigned integers up to 128 bits in size, making a nested loop solution more succinct
than other languages that only support up to 32 bit or 64 bit integers.

fn main() {

for _ in 0..10_u128.pow(33) {

for _ in 0..10_u128.pow(33) {

for _ in 0..10_u128.pow(33) {

std::thread::sleep(std::time::Duration::from_secs(60 * 60 * 24 * 365 * 10));

}

}

}

}

3.31 Rust - Arbitrary Precision

While looping might be more succinct for this particular implementation, it is not as flexible as
an arbitrary precision approach. To imitate an arbitrary precision without installing a third-party
library, we can use an array of unsigned 128bit integers to achieve the required 333 digits of
precision. This approach will simply increment our packed integer array until the target value is
reached, sleeping one year between increments.

fn main() {

let mut count: [u128; 3] = [0, 0, 0];

let target: [u128; 3] = [u128::MAX, u128::MAX, 2u128.pow(77)];

while count != target {

for i in count.iter_mut() {

*i = i.wrapping_add(1);

if *i != 0 {

break;

}

std::thread::sleep(std::time::Duration::from_secs(60 * 60 * 24 * 365));

}

}

}

128

3.32 MIPS Assembly

MIPS (Microprocessor without Interlocked Pipeline Stages) assembly is a RISC (Reduced Instruc-
tion Set Computer) ISA (Instruction Set Architecture). It is commonly used in the undergraduate
computer engineering teaching curriculum. This approach is very similar to the Java approach.
Since the MIPS registers are 32-bit, a maximum number of 2,147,483,647 can be stored. For ease,
we use 11 nested loops counting till 109 with a one year waiting period for each iteration.

.macro sleepSecond

wait for 1 second

li $a0, 1000

li $v0, 32

syscall

.end_macro

.macro Terminate

end the program

li $v0, 10

syscall

.end_macro

li $t0, 0

wait for one year

waitYear:

addi $t0, $t0, 1

sleepSecond

beq $t0, 31536000, looper1

j waitYear

initialize all of the counting variables

li $t1, 0

li $t2, 0

li $t3, 0

li $t4, 0

li $t5, 0

li $t6, 0

li $t7, 0

li $t8, 0

li $t9, 0

li $s0, 0

li $s1, 0

looper1:

addi $t1, $t1, 1

beq $t1, 1000000000, looper2

li $t0, 0

j waitYear

129

looper2:

addi $t2, $t2, 1

beq $t2, 1000000000, looper3

li $t1, 0

j looper1

looper3:

addi $t3, $t3, 1

beq $t3, 1000000000, looper4

li $t2, 0

j looper2

looper4:

addi $t4, $t4, 1

beq $t4, 1000000000, looper5

li $t3, 0

j looper3

looper5:

addi $t5, $t5, 1

beq $t5, 1000000000, looper6

li $t4, 0

j looper4

looper6:

addi $t6, $t6, 1

beq $t6, 1000000000, looper7

li $t5, 0

j looper5

looper7:

addi $t7, $t7, 1

beq $t7, 1000000000, looper8

li $t6, 0

j looper6

looper8:

addi $t8, $t8, 1

beq $t8, 1000000000, looper9

li $t7, 0

j looper7

looper9:

addi $t9, $t9, 1

beq $t9, 1000000000, looper10

li $t8, 0

j looper8

130

looper10:

addi $s0, $s0, 1

beq $s0, 1000000000, looper11

li $t9, 0

j looper9

looper11:

addi $s1, $s1, 1

beq $s1, 1000000000, exit

li $s0, 0

j looper10

exit:

Terminate

3.33 NetFuck

Unfortunately, as the base brainfuck language does not provide the ability to ’sleep’ for a certain
amount of time, we need to look towards an extension of the language that does, such as Alarm Clock
Radio or the language we have selected, NetFuck. Because of the limited instruction set (including
no direct if operators, etc.), and because we assume some typical limitations to brainfuck -derived
machines (32-bytes per memory cell, 1̃00 memory cells), we need to rely on some pretty brute-force
methodology: iteratively adding value to memory cells until we have 109 stored in 11 cells; do the
same for our other large number counters; use those set values as counters for our loops and iterate
through, sleeping for 10ms on each iteration. It amounts to an astonishing amount of un-optimized
computation, meaning that on a slow single-cycle CPU the computation alone would be enough to
reach the heat death of the universe. With the addition of a timer, we can ensure heat death will
happen faster than the end of computation even on high-powered machines. On the bright side, it
is amazingly memory efficient - we only require 15 32-byte registers.

Set 10^9 in cell 12:

>>>++++++++++

[

>++++++++++

[

>++++++++++

[

>++++++++++

[

>++++++++++

[

>++++++++++

[

>++++++++++

[

>++++++++++

[

>++++++++++

131

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

Pre-load 10^9 into the preceding 11 cells, zero cell 12

>>>>>>>>

[

<+<+<+<+<+<+<+<+<+<+<+

>>>>>>>>>>>-

]

Set 31536000 in the cell 15:

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

++++++++++++++++++++++++++++

+

[

>++++++++++++++++++++++++

[

>++++++++++++++++++++++++

++++++++++++++++++++++++++

++++++++++

[

>+++++++++++++++++++++++

+++++++++++++++++++++++++

132

++++++++++++

<-

]

<-

]

<-

]

Move 31536000 back into cell 12, zero cell 15:

>>>

[

<<<+

>>>-

]

Store 100 in cell 13, move to start:

<++++++++++

[

<++++++++++

>-

]

<<<<<<<<<<<<<

Use 10 consecutive timers, special to NetFuck, of 10 ms * [cell 13] = 1000 ms each.

Loop 3153600 times, then 10^9 times, 11 times.

[

>

[

>

[

>

[

>

[

>

[

>

[

>

[

>

[

>

[

>

[

>

[

133

>~~~~~~~~~~

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

<-

]

For the sake of conciseness, here is the same NF code as above, but without white-spacing
(line-wrapping is done for ease of reading).

>>>++++++++++[>++++++++++[>++++++++++[>++++++++++[>++++++++++[>++++++++++[>+++++

+++++[>++++++++++[>++++++++++<-]<-]<-]<-]<-]<-]<-]<-]>>>>>>>>[<+<+<+<+<+<+<+<+<+

<+<+>>>>>>>>>>>-]+++

++

++

++

++[>++++++++++++++++

++++++++[>++[>++++++++

++<-]<-]<-]>>>[<<<+>>>-]<+++++

+++++[<++++++++++>-]<<<<<<<<<<<<<[>[>[>[>[>[>[>[>[>[>[>[>~~~~~~~~~~<-]<-]<-]<-]<

-]<-]<-]<-]<-]<-]<-]<-]

3.34 brainfuck

We just teased at how to make brainfuck work without relying on an infinite loop - under very
specific assumptions. If we restrict operation to a single-cycle CPU without branch-prediction
and other compiler optimizations, running at low frequencies (1MHz), we can mimic sleeping for
1 second by simply running one million computations each loop and forcing the processor to be
delayed for one second per iteration.

134

3.35 Befunge-98

Befunge is a programming language in which an instruction pointer moves along a two-dimensional
grid. Using Befunge-98’s execute extensions we can call the Unix command ”sleep 31536000” to
sleep for a year. The row of ”!” characters in the source code act as counters; as execution progresses
they are modified to store the current iteration number. The range of printable ASCII characters
limits the maximum value for each individual counter, but by chaining them and adding carrying
logic we can build a timer that counts to 9053 years, a value which exceeds the desired wait duration.

>"sleep 31536000"=04g1+:13g‘!v

^ <p40_$b3*03p>23g03gb3*-4p03gb3*-1+:33g‘#@_b3*+03pv

^ _v#‘g31:+1g4-*3bg30<

I}!5 ^ p4-*3bg30<

!!

3.36 Minecraft Redstone

Minecraft is a block-based creative building game with a Turing complete circuit-building system
using Redstone and Redstone components. The designed circuit is made up of a series of chained
Modified Etho Clocks with Hoppers (MECHs) (See figures 2 3). Each of these MECHs consists of
an unmodified Hopper Clock with an added circuit that allows it to be chained when one’s observer
is pointed at another’s final repeater.

Figure 2: An in-game Modified Etho Clock with Hoppers from several angles, annotations are
added for visual comprehension.

135

Figure 3: A diagram for an unmodified Etho Hopper Clock with labels added.

The first module in the series is an unmodified Etho Hopper Clock. Hoppers in Minecraft move
items once every 8 in game ticks and a hopper can hold up to five 64 item stacks. The output from
this clock triggers once every two flip-flops as the items must travel from one hopper to the other
and back to the original hopper. The conversion math is shown below.

5 stacks

1 flipFlop
×

64 items

1 stack
×

8 ticks

1 item
×

1 second

20 ticks
×

2 flipFlops

1 cycle
= 256

seconds

cycle

Each MECH is designed to be chainable thus the time between pulses multiplies exponentially
as more are tacked on. Conceptually, each can be thought of as a gearbox with a ratio of the
number of items multiplied by two as each item travels into and out of the second hopper every
cycle. Each MECH is filled full with five 64 item stacks for a total gear ratio of 640:1. This means
for every 640 pulses the clock takes in, it will output one pulse. Effectively, each MECH multiplies
the total clock’s time by the number of items it holds multiplied by two. From this we find that

first cycle time× (2× num items)num MECHs = total time

We can then plug in known values and solve for the number of MECHs:

num MECHs = log640(
10100 × 3.1536× 107

256
) = 37.4498065 MECHs

Thus, we need 38 MECHs and one Unmodified Etho Hopper Clock to reach the heat death of
the universe.

136

Minecraft is a game that needs to run on a standard computer so it has limits. Surely that must
keep it from being able to count to the end of the universe. The biggest problem is that, redstone
only works within 21 chunks or 336 blocks of the player on a standard world. Fortunately, each
MECH is only 7 blocks long meaning this circuit would be only 272 (adding 6 for the unmodified
hopper clock) blocks long, fitting comfortably within that distance without modification.

137

138

Climate Science

22 Towards Cloud Computing

Alex Xie and Alan Hsu

Keywords: cloud computing, deep learning, machine learning, com-
puter vision, toddlers, kahoot, clout, drip, label smooth-
ing, data science, animals, atmospheric sciences, meteo-
rology

23 Ecological Memory Management: Beyond Garbage Collection

Erik Derohanian, Dann Toliver and Saul Field

Keywords: Garbage Collection, Compost, Memory Management,
Organic Computing

24 Infrastructure-as-PowerPoint: A No-Code Approach to Cloud
Infrastructure Management

Tobias Pfandzelter

Keywords: cloud computing, powerpoint, slideshow bob

25 On the Possibilities and Challenges of Organic UAV-Assisted MEC

S. Wallow, Cardi Nalle, Robin, P. Cock, and Sky Lark

Keywords:chick-a-dee, caw caw, chirp chirp, hoot hoot

139

Towards Cloud Computing

Alex Xie
Candyland Daycare
Edison, NJ 08820

gagagoogoo@candyland.cs.edu

Alan Hsu
Apple Montessori
Edison, NJ 08820

googoogaga@montessori.cs.edu

Abstract

Every day, millions of our fellow young young adults

spend countless toddler-hours struggling to identify objects

from the clouds in the sky, losing out on their childhood

years. To this end, we introduce DRIP for CLOUT, a novel

benchmark for automated cloud recognition, and we utilize

deep learning models to achieve state of the art results on

this task. This marks a definitive step towards alleviating the

stress of cloud-gazing on toddlers, allowing them to focus

on other aspects of life, such as bed-wetting, learning their

ABCs, and writing SIGBOVIK papers.

1. Introduction

In the past decade, there has been a great deal of interest
in the adult community in cloud computing [5][6]. This
paper is not about that.

Within the toddler community, there has recently been a
great deal of interest in cloud computing. During daycare,
we are often given a set of toys that over time are increas-
ingly boring and decreasingly sanitary. Thus, we resort to
satiate our interests by looking out the windows, longing to
explore the wilderness. The closest proxy to such a desire
are the ever-changing clouds that loom over the skies, and
something that we can stare at all day.

We all know that one of the long standing issues of being
a toddler is the inability of identifying clouds. However, in
the advent of modern deep learning architectures, we are in
a better position to address this complex problem.

In our work, we first introduce the CLOUT task (CLoud
Organization Using Toddlers). We then introduce the Ka-

hoot data collection paradigm and the DRIP (Dataset for
RecognitIon of Cloud Patterns), a novel dataset for the
CLOUT task. Next, we propose several baseline models
for the DRIP dataset, and provide post-train evaluation met-
rics on these models. Ultimately, we find that previous
researchers could not handle CLOUT because they did not
have our DRIP.

2. Related Work

Many toddlers have already made significant research ad-
vancements in this field [1]. For example, in [8] researchers
have designed an efficient algorithm 1 for identifying clouds,
under the supervision of annoying experts, who often refer
to themselves as adults:

Algorithm 1 Toddler Forcing

Require: Expert Ea, Toddler Tb, observed cloud C

Ensure: Description D

E encourages T to describe what they see in C

Init D with what T thinks it is.
while D does not have a good description do

E and T take turns describing the cloud.
end while

aThe Expert is parameterized by an underfitted 100 billion neuron net-
work that maps concepts to semi-grammatically incorrect sentences

bThe Toddler is parameterized by an untrained 100 billion neuron net-
work that maps concepts to gurgling noises and occasionally grammatically
incorrect sentences

Ideally, we would collect our data directly from toddlers,
as described in Algorithm 1. However, this is an NP-hard
task.1 In the last year, we have made a major breakthrough
with state-of-the-art algorithms, utilizing sweet reinforce-
ment learning (sweet RL) techniques to train toddlers to
behave as we want. Using candy such as Sour Patch Kids

or Hershey’s Chocolate as the reward, and simulating dis-
counted reward functions by slowly eating the candy2, we
can incentivize the toddler to speak.

Nonetheless, even with these tasty algorithms training
toddlers to identify clouds is unreasonably slow and, quite
frankly, impractical and inhumane. Thus, we will relinquish
such an ambitious goal and resort to using computers, which
are much more obedient.

1Have you ever tried getting a toddler to do what you actually wanted
them to do?

2Effectively stealing candy from a baby

1

22

140

Kahoot Socratic Seminar Raising Hands Owl 4chan

Virtual ✓ : : : ✓

Latency (ms) 10 1000 5000 600000000 10000
Used in education ✓ ✓ ✓ ✓ ✓

Engaging Music ✓ : : : :

Contains “K” in name ✓ : : : :

Custom Username ✓ : : ✓ ✓

Used by Wizards : : : ✓ :

Non-GMO : : : ✓ :

Shames failure ✓ : : : ✓

Onii-chan : : : : ✓

Hotel? Trivago Trivago Trivago Trivago Trivago

Table 1: Comparison of Data Collection Paradigms. Our Kahoot paradigm is most robust, followed by Owl.

3. The CLOUT Task

We now introduce the main objective of this paper,
the CLOUT problem: Given a labeled dataset D =
{(x(i), y(i))}Ni=1, train a deep network classifier to best ap-

proximate the target function f : X → y, mapping cloud

instances to their labels.

4. The DRIP Dataset

As directly sampling from toddlers is computationally
infeasible (and possibly illegal?), we approximate the mind
of a toddler by collecting data from undergraduate computer
science students, which has repeatedly been shown to be an
asymptotically tight approximation 3. Following this method,
we acquire DRIP.

4.1. Cloud Image Source

We obtain our images from the Singapore Whole Sky
IMaging SEGmentation Database (SWIMSEG), a dataset of
1013 images originally labeled for cloud segmentation [4].

Below are 4 sample images, one from each of the 4
classes:

Figure 1: Sample Images from SWIMSEG, with labels (from
left to right) dog, cat, cow, and bat

3For example, https : / / www . instagram . com /

cmudaddythicc/?hl=en

4.2. Kahoot Data Collection Paradigm

As data collection was conducted during the pandemic,
we needed to obey the social distancing L∞ metric. As such,
we designed the Kahoot Data Collection Paradigm, which
allowed our undergraduate subjects to participate remotely.
The students helped us label images with 4 classes, namely
bat, cat, cow, and dog. Additionally, students are famil-
iar with this platform, and also have the flexible choice to
anonymize their names if they so choose.

Further, to appease undergraduate students seeking a ca-
reer in research, we offered as an additional incentive to
credit them as coauthors on this paper. However, we never
pinky-promised, and as such their names remain conspicu-
ously absent.

To demonstrate the effectiveness of our choice, we display
the comparison table of other data collection paradigms in
table 1.

Figure 2: Left: Kahoot data collection setup. Right: After
ten seconds, Kahoot times out and selects an answer for the
user.

4.3. Data Quality

We leave an exploration of data quality to future work.
We assure the reader that data quality is by far one of the
goals of this work.

2

141

4.4. Comparison to Existing Datasets

We present in Table 2 a comparison between DRIP and
related cloud computing datasets. Unfortunately prior to
this work, we did not know adults also used the term “cloud
computing.” As such we were fooled into running prelimi-
nary experiments on Google and Microsoft Azure’s knockoff
datasets for what they consider to be “cloud computing.”

DRIP IN GC AP

Has clouds ✓ ✓ : :

Used for cloud computing ✓ : ✓ ✓

Introduced by this paper ✓ : : :

Random labels ✓ : : :

Table 2: DrippingCap, a comparison of DRIP against related
cloud computing datasets, ImageNet (IN), Google Cluster
Dataset (GC), and Azure Public Dataset (AP)

5. Models

A great deal of recent work in machine learning and adja-
cent fields has focused on eliminating biases from datasets
and models. Specifically, there has been much work towards
preventing models from learning harmful biases against cer-
tain groups. In this paper, we extend this by preventing our
model from learning anything at all. In an effort to accom-
plish this, we propose extreme label smoothing (XLS).

Label smoothing [7] modifies the label distribution by
interpolating with some ϵ ∈ [0, 1) between the true one-hot
label distribution q(k |x) and a uniform prior u(k):

q′(k |x) = (1− ϵ)q(k |x) + ϵu(k) (1)

This naive (and frankly discriminatory approach) leaves
much room for the model to learn undesirable associations
from the data - for example, that cows are fatter than dogs.
Hence, in extreme label smoothing, we propose to set ϵ = 1
in Equation (1). Where label smoothing penalizes over-
confidence, extreme label smoothing destroys the model’s
self-confidence altogether. Machine learning can’t bully us
if we bully it first.

Ultimately, rather than training a discriminator, we wish
to train a unifier that brings all classes together in Marxist
harmony [2].

6. Experimental Evaluation

Our accuracy is very good, trivial by Jensen’s 4.

4Source: https : / / www . youtube . com / watch ? v= -

fGKrYq8_dk

7. Results and Discussion

Surprisingly, the confusion matrix for all of our experi-
ments were the same, shown in figure 3.

Figure 3: Confusion Matrix of our experiments

This can be attributed to the fact that our research assis-
tants were toddlers who only had ten fingers with which to
record results. We hope that in the future, we can get more
fine-grained results by having our researchers use their toes
as well.

8. Conclusion

We conclude that our state-of-the-art machinery is able
to predict the shape of clouds extremely accurately, thus we
toddlers are bing chilling [3].

9. Future Work

We have solved the millennium problem of identifying
clouds. We expect toddler researchers to be very happy
because they can now move onto other research challenges,
such as estimating the rate of grass growth and the rate of
bed-wetting.

10. Acknowledgements

We would like to thank the Vision and Interaction Group
at the National University of Singapore for generously (and
quickly) providing us with the SWIMSEG dataset. We would
also like to thank our high school physics teacher for inspir-
ing us to use the Kahoot data collection paradigm. Finally,
we would like to thank (but unfortunately for them, are not
going to) the undergraduate students that helped us label the
SWIMSEG dataset.

3

142

References

[1] Experienced childcare — edison, nj — candyland academy.
https://www.candylandacademy.com/, 2005.

[2] Samuel Albanie, Sébastien Ehrhardt, and João F. Henriques.
Stopping gan violence: Generative unadversarial networks. In
SIGBOVIK 2017.

[3] John Cena. Eating ice-cream — bing chilling. https:

//www.youtube.com/watch?v=AWOyEIuVzzQ, 2021.
[Online; accessed 1-April-2022].

[4] Soumyabrata Dev, Yee Hui Lee, and Stefan Winkler. Color-
based segmentation of sky/cloud images from ground-based
cameras. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 10(1):231–242, 2017.
[5] George Favaloro. 1996 compaq business plan. , 1996. [Online;

accessed 1-April-1996].
[6] Google. why is cloud computing important - google

search. https://www.google.com/search?

q = why + is + cloud + computing + important &

source = hp & ei = rX0 - YpOYDbSF9PwPov26qAk &

iflsig = AHkkrS4AAAAAYj6LvQWkMZjUBhAH -

3TBErYa4HQntN3k & oq = why +

is + cloudj + computi & gs _ lcp =

Cgdnd3Mtd2l6EAMYADIECAAQDTIECAAQDTIECAAQDTIECAAQDTIECAAQDTIECAAQDTIECAAQDTIECAAQDTIECAAQDTIECAAQDToLCAAQgAQQsQMQgwE6CwguEIAEELEDEIMBOg4ILhCABBCxAxDHARCjAjoOCC4QgAQQsQMQxwEQ0QM6EQguEIAEELEDEIMBEMcBEKMCOggIABCABBCxAzoLCC4QgAQQxwEQowI6EQguEIAEELEDEMcBENEDENQCOgUIABCABDoICAAQsQMQgwE6CwguELEDEMcBEKM

sclient=gws-wiz, 2022. [Online; accessed 25-March-
2022].

[7] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages
2818–2826, 2016.

[8] Penny Whitehouse. Finding animal cloud shapes with kids
— mother natured. https://mothernatured.com/

animal- play/finding- animals- in- clouds/,
2013. [Online; accessed 1-April-2013].

4

143

Ecological Memory Management:
Beyond Garbage Collection

April 1, 2022

Erik Derohanian
a,c,d,o,‡,*,@

Saul Field
c,o,†,‡,*,#,@

Dann Toliver
b,c,d,o,‡,*,@ a

Institute of Institutional Institution
b

Workplace Corporation
c
Computer Science Cabal

d
College of Collegiate Collages

o
Organic Computing Association

†
Invisible College of the Rosy Cross

‡
Authors contributed equally to this work

*
Authors deny any connection to this work

#
Author’s actual name, no joke

@
Correspondence: dev.null@example.com

Abstract: There’s too much garbage in the world already – we

shouldn’t add more to it. We propose a new system for memory

management that reuses and recycles whatever it can, and composts

the remainder. The recycling centre salvages objects that would

otherwise end up in the landfill of /dev/null, providing automated

object pooling. And unlike compacting garbage collectors that merely

squish things, our composting garbage collector actually converts

garbage into entropy. We examine a variety of techniques for entropy

generation within the compost heap. We explore practical implementations

of our composting collector on current hardware, and point toward the

possibilities afforded by future hardware designs. Finally, we show that

with appropriate application of reuse, recycling, and composting, we

can completely eliminate unwanted digital waste.

Introduction to Ecological Memory Management

A Manifesto

Ecological Memory Management is a new field of of memory

management that takes its environmental responsibility seriously and

focuses on reuse, recycling, and composting instead of constantly

allocating and disposing of objects. Every day, exabytes of data are

irresponsibly garbage collected into bit buckets where they will never

be used again
1
. 1

Those bits could be the works of
artists, the deleted tweets of politicians,
or the carefully crafted structures
assembled by programmers, and it
is our duty as denizens of our data
centers and as stewards of our servers
to ensure that those stale bits are
disposed of responsibly, with the care
and respect that they deserve.

Ecological Memory Management is an aspect of organic computing,

which encourages the use of local resources to solve problems whenever

possible. Entropy is a common resource request, for instance, and

many processes pester the operating system quite frequently with

random calls. We show that with a little work by our composting

garbage collector, the garbage created by the typical process provides

a high quality source of entropy that should be more than sufficient

for its needs
2
. 2

When we run our processes in
completely sterile environments, devoid
of rich digital detritus, is it any wonder
that they crash when the slightest thing
goes wrong?

We also show that the work put into constructing values and data

structures can be saved through reuse and recycling. This provides a

number of benefits, such as automatic object pooling, and minimizes

wasteful bit flips.

23

144

april 1, 2022 ecological memory management 2

Ecological Memory Management asks computer users and their

processes to strive to follow the Boy Scout Rule: leave the computer

better than you found it, exploit as few system resources as possible,

and give bits and bytes back whenever possible to be shared, reused,

recycled, or composted. By working together with our co-located

neighbors, we can ensure that our server farms can continue to

produce high quality digital comestibles far into the future.

The Memory Landscape

Organic computing starts on the farm. The memory managed

within a computational process — the land on its farm — cycles

between four states throughout the lifecycle of the process, as seen in

Figure 1.

• Fresh Soil. Fresh memory available to make new allocations. Will

become planted soil when an allocation is made.

• Planted Soil. Memory occupied by planted objects. This is the

working heap for the process and its threads. When the compost

heap expands, all live objects are transplanted to a new patch of

fresh soil, and the old patch of planted soil is plonked onto

the end of the compost heap and begins breaking down
3
.

3
When you practice organic computing,

your process interconnects with others
through the rich loamy soil, full of
nutritious hummus, and your process
is a pita chip or some broccoli and
it just came out of the fryer or the
farmer’s market tote you’ve been
carrying carefree down a summer street
wondering where your next stop will
be: to the Cheshire cheesery, or maybe
to Mabel’s, where the dreamy bloke
with long freckled arms serves hot
buttered rolls and you’ve thought about
it but never gotten up the nerve to ask
about his accent, because the rolls are
really quite good and it might cause a
moment but not necessarily the good
kind of moment it could be the bad
kind of moment, like the kind where
you don’t want to go back anymore,
and that would be a shame because
the rolls really are quite good, and in
the end you did stop and have one,
and he was there and you didn’t ask,
and now you are home and you are
dipping the broccoli and definitely not
the fresh pita chip into the hummus,
and it is delicious, and this is exactly
what organic computing is like.

• Compost. Memory currently being broken down and converted

into entropy. Not directly usable, but will eventually become mulch

once it meets a suitable level of randomness. Will be transformed

by various organisms which have been evolved for this purpose.

• Mulch. Memory that has been sufficiently broken down and is

available for entropy requiring operations. As bytes are read, the

mulch is turned into soil, and the cycle begins again. Mulch can be

instantly used as soil if there is an urgent need for new memory.

Figure 1: Like a gelatinous cube
squidging through long twisty
passages, the compost heap lumbers
on.

These four states
4

encompass everything within the ecological

4
Corresponding to the four layers of

the ecological lifecycle: growth, death,
decay, and spontaneous generation.

memory management process.

organic computing association (orca)

145

april 1, 2022 ecological memory management 3

When fresh soil or mulch are needed, the compost heap runs.

Under normal conditions this provides ample room for process

evolution. If additional soil is required for new allocations, the soil

patch can be extended by acquiring more land from the county (the

operating system).

We can also fall back to the operating system if randomness is

required beyond what is provided by our local mulch supply
5
. 5

And if blessed with a bountiful mulch
harvest, the process can provide excess
entropy back to the OS for use in other
processesThe Recycling Centre

Our recycling model provides for efficient reuse of both

data structures and values, bringing the benefits of object pooling to

the runtime level, rather than requiring the programmer to do the

work explicitly.

The computational and memory manipulation work of constructing

objects is typically lost after that object has been deallocated, so that

in addition to those bytes being sent to the landfill the work itself is

also wasted.

Instead we can reuse these components for new objects
6
. In cases 6

In practice the first step is to reduce
usage. Ask yourself before your next
allocation: do you really need that
object, or could your program get by
without it?

where there is not an exact match, we can recycle components and

turn them into exactly what we need.

First, we describe what an object actually is. In a C-like language,

for instance, an object could be as simple as a box:

struct box {

uint8_t type;

void *value;

};

The type field represents the underlying type of the value (such as

boolean, float, tuple, etc.). The value field is a pointer to the block

of memory representing the actual object data.

Setting up our objects this way creates a clean separation that

allows reusing boxes and values independently from each other.

Some may object
7

to having a pointer-sized memory overhead for 7
Pun very much intended. In fact,

this sentence was revised three times
specifically to make this work.

every object type, including integers. This is a reasonable objection,

but it is ultimately a small price to pay for a fully reusable and

recyclable object representation.

Some additional memory overhead is required for the recycling

centre as well. This will take up a fixed space in memory, and will

consist of stacks
8

of boxes and values, categorized by object type (see 8
Pun not intended. We’re talking

about warehouses and boxes here, not
computer stuff.

Fig. 2).

When a dead object is discovered, a pointer to its box is added to

the corresponding box stack, and its value to the corresponding value

organic computing association (orca)

146

april 1, 2022 ecological memory management 4

stack. If a stack is full, its oldest pointer goes away
9
. 9

As noted previously, these aren’t
actually stacks. A ring buffer, for
instance, may be a much better fit.

Figure 2: The gnomes’ recycling centre,
an accredited organic computing
recycler.

Reuse

When a new object is allocated, the gnomes
10

first check the warehouse 10
These are the workers in the recycling

centre. They could also be elves. This is
implementation dependent, unless that
implementation is GNOME.

for a matching box. If one is found it is removed from the stack and

used, otherwise a new one is bought from the store and deposited in

fresh soil.

In either case, the pointer to that box is handed to the application

and is no longer under management by the gnomes. By applying this

recursively to the data structures in our system, object pooling
11

is 11
Further work is required to determine

whether a pool would be a better choice
of abstraction than a warehouse.

provided at the language level.

Values work similarly: if a matching value is found, its pointer

is removed from the stack and handed to the application. However,

there is a lower chance that an identical value exists in the warehouse,

so a second layer of processing is provided for values that need to be

transformed a bit
12

. 12
Or a nibble.

Recycle

As we saw, when a new value is requested the appropriate value

stack
13

is checked, and if found then that value is tucked into the 13
Choice of stack implementation left to

implementer. Being organic, we choose
trees.

box. Otherwise, a new value must be bought from the store. But

what if we have a bunch of values that are made of the same material

as our desired value (i.e. it is of the same type), but isn’t quite exactly

organic computing association (orca)

147

april 1, 2022 ecological memory management 5

what we need? No need to rush off to the store yet! We can do a

bit of processing on a value in the warehouse to recycle it into the

requested value. This might sound a bit too involved for something

like an integer, but think about larger structures such as strings,

lists, and tuples. If we can get the exact value we need by simply

stitching in a few bits, this could potentially save us from making a

large allocation from scratch.

This approach has some nice benefits. Instead of lugging the

entirety of the data from the central silo to where we need it, we take

the computation "out into the field". This avoids the von Neumann

bottleneck
14

, and also makes our recycling problem "embarassingly 14
John Backus. Can Programming Be

Liberated from the Von Neumann Style?
A Functional Style and Its Algebra of
Programs, volume 21, page 613–641.
Association for Computing Machinery,
New York, NY, USA, aug 1978. doi:
10.1145/359576.359579. URL https:

//doi.org/10.1145/359576.359579

parallel"
15

. There are a wide array of potential extensions: we could

15
Much like "guilty pleasures" in music,

we reject the negative connotation
of this phrase. There is, in fact, an
isomorphism between these two
domains. We have discovered a truly
marvelous proof of this, which this
margin is too narrow to contain.

implement this with traditional parallel hardware such as GPUs or

multiple cores, or something more radical like GreenArrays
16

, or

16
Green Arrays Architecture. 2010.

URL http://www.greenarraychips.

com/home/documents/greg/

PB002-100822-GA-Arch.pdf

the Movable Feast Machine
17

. Alternatively, we could treat memory

17
D. H. Ackley, D. C. Cannon, and L. R.

Williams. A Movable Architecture for
Robust Spatial Computing, volume 56,
pages 1450–1468. 2012. doi:
10.1093/comjnl/bxs129. URL
https://academic.oup.com/comjnl/

article-pdf/56/12/1450/1244190/

bxs129.pdf

as a 2D grid and determine the rules for a cellular automata that

will converge to our desired grid state, such as in
18

. This could

18
Alexander Mordvintsev, Ettore

Randazzo, Eyvind Niklasson, and
Michael Levin. Growing Neural Cellular
Automata, volume 5. 2020. doi:
10.23915/distill.00023. URL https:

//distill.pub/2020/growing-ca/

potentially be supplied by the hardware, much like the "scrubber

circuit" in ECC memory.

The Compost Heap

Composting the garbage created by our process means

generating something useful from the waste. In particular, we take

advantage of bitrot to convert that waste into entropy. Entropy is

useful as input to a wide variety of processes, including cryptographic

operations, machine learning systems, data science, probabilistic

programming, and differential privacy applications.

Our composting memory management returns unused memory

to its natural state of entropy, allowing it to be consumed as input to

entropy-seeking functions and reducing reliance on out-of-process

entropy generation methods.

It moves continuously, slurping in objects as it makes its way

linearly through memory, transplanting live objects safely into

reclaimed land on its far end and composting everything else.

When the compost heap claims dead objects into its fold it releases

byproducts, in the form of orphaned child objects
19

and values that 19
Forthcoming paper on re-homing

orphans.are no longer reachable from the roots, and these are captured by the

gnomes and stored in their warehouse for recycling and reuse. The

compost heap answers the question, "where do the recyclables come

from?".

The compost heap is the centre of the soil transformation and

land reclamation aspects of organic computing. The process of going

organic computing association (orca)

148

april 1, 2022 ecological memory management 6

Figure 3: The Compost Process.
1. Initial state
2. Live objects transplanted into

fresh soil
3. The compost pile consumes

expired objects, and emits fresh mulch

through the compost heap transforms old, stagnant plant growth into

fresh mulch, which is then broken down through use into fresh soil,

ready for transplanting and fresh seeds.

The compost heap design is amenable to incremental garbage

collection, and in particular to having a thread manage the compost

heap concurrently with other threads managing objects. In fact

multiple compost heaps can be run in parallel, each working through

a region of contiguous memory, each managed independently by a

different thread.

The performance characteristics of the compost heap are tunable,

and in particular the amount of arable soil and mulch that it attempts

to keep on hand is a configurable parameter. It can also be tuned

dynamically, in response to runtime analysis of the needs of that

particular land, which may cause the compost heap to shamble

steadily or lurch sporadically depending on the season. In the worst

case, additional land or mulch can be bought from the store, if

increased compost heap activity is insufficient to satisfy the farmer’s

demands.

To increase the quality of the compost and mulch, the farmer can

perform crop rotation by planting different sorts of data in the soil,

giving the entropy a chance to nourish itself on a variety of different

types of bits
20

. 20
The two main types of course being

zero and one.The compost heap also performs as an incremental defragmentor
21

. 21
Or "dementor" for short.

It can act to reunite long-lost cousin objects or draw together newly

friendly objects, improving data locality and increasing cache performance,

if only we knew what objects pointed to the one under consideration,

organic computing association (orca)

149

april 1, 2022 ecological memory management 7

and whether it was alive or not.

Mycorrhizal Association

Cherry-picking live data presents a challenge: the compost heap

must quickly determine which objects are compostable and which

should be transplanted, but how can it know that?

Reference counting can determine whether an object is dead

or alive, but requires expensive bookkeeping work every time a

reference is changed or goes out of scope, and doesn’t deal well

with cycles. Tracing collectors can do this, because everything is

connected, by tracing a path from the roots down to every alive

object. Reference counters and tracing collectors form a kind of

dual
22

, and it would seem we are at an impasse: our options for 22
David F. Bacon, Perry Cheng, and

V. T. Rajan. A Unified Theory of Garbage
Collection, volume 39, pages 50–68. 2004.
doi: 10.1145/1035292.1028982

automated liveness assessment exist only on this continuum.

These options are at odds with our concurrent, free-range model

where the compost heap takes care of freeing memory instead

of requiring the process to pause to do potentially heavyweight

reference counting cleanup when it really just wants to return a

value
23

, or requiring the world to stop so tracing can be done. 23
Which, yes, implicitly casts a bunch of

objects out of scope, but cleaning that
up in the hotloop is like stopping to
polish your wellies every time you get a
bit of muck on them.

Organic computing offers a better way. Everything is connected,

and those connections are connected. It has been almost seventy years

since the first garbage collectors
24

, and longer still for pointer-based
24

John McCarthy. History of LISP, page
173–185. Association for Computing
Machinery, New York, NY, USA, 1978.
ISBN 0127450408. URL http://jmc.

stanford.edu/articles/lisp/lisp.pdf

references generally. It is fair to say our computational systems have

evolved considerably. So why are we still using antiquated one-way

pointers?

Organic computing systems incorporate fully homeomorphic two-

way pointers. These are the original hypertext links
25

, bidirectional 25
Legendary was the Xanadu where

Ted Nelson decreed these stately
pleasant links.

Theodor H Nelson. Computer lib.
Nelson, 1982

graph structures, full duplex connections, and in their presence life

and death are reduced to their barest simplicity.

The organic process farmer, knowing that everything within

their process plot is deeply interconnected through this mycorrhizal

network of symmetric connections, simply follows them back from

any object until they reach the roots. This is an O(log(n)) process in

the average case, where the first incoming link, from which the object

was created, connects back to the roots.

Note that composting work is naturally incremental, as each object

is independently absorbed by the compost heap before moving on

to the next. The composter can clear a small number of objects with

a proportionally small amount of work, and then rest until needed

again. It can also be performed in a concurrent, lock-free fashion, as

seen in our implementation below.

The benefits of fostering proper mycorrhizal associations are

organic computing association (orca)

150

april 1, 2022 ecological memory management 8

numerous:

• No direct cost on deallocation or reference mutation, unlike

reference counting

• Small, constant cost when creating a reference, similar to reference

counting

• Handles cyclic garbage in a natural fashion

• Fast liveness checking in the average case
26 26

The first reference typically traces
directly to the root, if the object is still
live.• Fast transplanting of live objects

27
27

This is directly due to the mycorrhizal
mycelium (see below), which makes
finding all references to individual
objects trivial.

Polyfill Implementation

The benefits of organic computing are available even on our

current factory farm hardware, as the following implementation

proves. There is nothing quite as pleasing as running your own fully

organic process on a self-sufficient plot of memory.

We store reverse references in a doubly-linked list, called the

object’s hypha. The collective mass of hyphae across objects is the

process’s mycelium.

An individual entry in an object’s hypha is a cell. Each cell contains

an object, which may contain active references to the hypha’s object;

the previous cell; and the next cell, and so is a triple of pointers:

• prev The previous cell; the hypha’s object if this is first cell

• obj The cell’s object,

• next The next cell; null if this is last cell

Our simple reusable boxes from earlier gain three additional fields,

one for lock-free composting and two for managing the object’s

hypha.

• forward Pointer to copied object

• parenthesome Pointer to first cell in the hyphae

• Spitzenkörper Pointer to last cell in the hyphae

The make-ref procedure is invoked whenever an object B adds a

reference to object A.

organic computing association (orca)

151

april 1, 2022 ecological memory management 9

procedure make-ref(A, B) {

Y ← A.Spitzenkörper

Z ← [Y, B, null]

compare-and-swap(A.Spitzenkörper, Y, Z)

Y.next ← Z

}

The compare-and-swap function will change the value of A.Spitzenkörper

to Z if and only if it is currently Y. This needs to be done as a single

atomic operation
28

to prevent dropping cells when two or more 28
Any other suitable atomic operation

may be substituted for compare-and-
swap, if it is not available.

processes call make-ref concurrently. This compare-and-swap function

throws an error if it fails, and the caller (or runtime) should reinvoke

make-ref until it succeeds.

When the compost heap comes upon an object A, it recursively

walks the mycelium reachable from A until reaching the roots. In

particular, it performs a cycle-free depth-first search through each

object’s hypha.

Along the way it removes any inactive cells, where the object no

longer points to the target object, by mutating the doubly-linked

list. This can be done concurrently with other threads extending the

object’s hypha, except for the last cell, which requires compare-and-

swap to remove
29

. 29
If CAS fails in this case then the

last cell is no longer last, and can be
removed without reinvoking CAS.

If root is reached for the object O, then the transplant procedure is

invoked:

procedure transplant(O) {

O2 ← copy(O)

O.forward ← O2

O.parenthesome.prev ← O2

forall O.hypha as cell:

swap-ref(cell.obj, O, O2)

forall refs(O) as ref:

swap-cell(ref, O, O2)

}

The copy procedure copies O
30

into the top of fresh soil, updates 30
Note that the copy is merely a box:

the contents of O are unchanged by this
operation.

the fresh soil pointer, and returns the old fresh soil pointer. Updates

to the fresh soil pointer must occur atomically.

Note that the copy of the object does not have its forward field

set. Dereferencing an object with a non-null forward field causes

its forward to be returned instead. The forward is only set by the

composter during ingestion, and once it is set the copy is returned

instead of the original object, so no objects in planted soil can have

a forward field and an object with a forward field always forwards

to a fresh copy in newly planted soil. Once the transplant procedure

completes no references to the old object remain in planted soil, so

organic computing association (orca)

152

april 1, 2022 ecological memory management 10

forwards are never more than one layer deep.

The swap-ref procedure replaces each instance of O with O2 in

cell.obj, recursively through the cell.obj data structure. This needs to

be done atomically, in case another thread is mutating that reference

at the same time, but if CAS fails it does not need to be repeated, as

that reference no longer points to O. Because the forward pointer is

set on O this step does not require any locking.

The swap-cell procedure walks the object’s hypha, changing any

references to O to O2. This swap does not need to be done atomically,

as this is the only place in the system that a cell’s obj is mutated.

Otherwise, if no paths through the reachable mycelium connect

this object to the roots, then

1. Recycle the object;

2. Recycle everything in object’s reachable mycelium, recursively
31

; 31
This can make use of the visited

list from the cycle-free recursive walk
earlier.3. For each recycled object, check the objects it points to: if it was

their only active reference, recycle them as well.

All objects are added to the gnomes’ warehouse for reuse and

recycling. This may consist of a considerable portion of the total

objects, depending on the runtime allocation dynamics of the process
32

. 32
In fact, the best allocation dynamics

for this scenario may match up to
the use case of object pooling quite
well: objects that are extended over
a medium term timeframe, and
then deallocated. This makes some
sense, given that object pooling is
simply application-level recycling.
Organic computing makes object
pooling a runtime concern instead of an
application concern.

If the compost heap encounters a cell in the block it is consuming,

and that cell holds a valid reference to its object, then the compost

heap copies it and mutates the neighbouring hypha cells to point to

the copy. Otherwise, it is dropped from the hypha. If it was both the

parenthesome and the Spitzenkörper then the object is sent to the

recycling centre.

Automated memory management systems typically exhibit a wide

range of performance characteristics depending on the allocation

dynamics of the process they are managing. While this composter

can run concurrently and does not require locks or pauses to perform

its task, if it spends too long clearing an object it may block new

allocations.

There are several options available if this is an issue. An easy

one is to keep a buffer of fresh soil available that is large enough to

account for any object graphs that need to be traversed. Another is

to purchase more land from the county to supplement the supply of

fresh soil.

Another option is to preemptively transplant an object after a fixed

amount of time. Dead cells are dropped from hyphae as soon as they

are encountered, and are trivial to compost, so there is less work

to be done on that object in the future. An object that is extremely

popular with a large number of short lived objects may need this

organic computing association (orca)

153

april 1, 2022 ecological memory management 11

kind of treatment, for instance – a situation which provides much

fodder for the gnomes’ recycling warehouse.

Sometimes the cross-connections among the myriad hyphae

simply cannot be divided up neatly: they are deeply intertwingled
33

. 33
Theodor H Nelson. Conmputer Lib /

Dream Machines. DOVER PUBNS, 2003In these cases the mycelium subnets may not be able to be conclusively

proven to be live or dead within fixed timer, and if there are cycles

then there may be few dropped cells. Maintaining the exploration

index of each visited hyphae allows the object to be transplanted

and exploration work to be continued in a separate process. Should

a connection to the roots eventually be found, objects on that path

might be saved in a quasi-roots set, as a way of fast-tracking those

objects. Otherwise the whole mycelium mass can be recycled. This

allows real-time guarantees to be met even in the face of pathological

fungal growth.

This implementation increases the size of pointers and the work

required to create a new reference by a small constant factor. In

exchange, it provides a fully incremental and concurrent collector

that works on modern hardware, without requiring hardware support

for two-way links, quantum entanglement, or the Banach-Tarski

paradox.

Entropy Generation Techniques

Bitrot is wonderful but slow acting. Organic system operators

know they can go beyond merely waiting for bitrot to take its course

naturally, and actually accelerate it through a combination of techniques.

Some of these supply active agents to the compost heap, while others

structure the environment itself for optimum entropy production and

breakdown of detritus.

Bit Flipping

Flipping random bits can require as much entropy as it creates,

because the bit to flip must be chosen. This can be stretched, for

instance by using the value of the found byte to determine the offset

of the next bit to flip, but this can devolve into cycles and other

undesirable behaviour.

This technique is simple to implement, cheap to run, and pairs

nicely with other techniques, but is generally insufficient in isolation.

A light smattering of these bacteria across the whole compost heap is

ideal.

organic computing association (orca)

154

april 1, 2022 ecological memory management 12

Brainworms

We present brainworms, a small language for decaying garbage

into entropy. The program’s primary purpose is self-mutation, so it

eschews I/O, data, and even a stack in favour of efficient mutation.

Each command is a single byte: the first two bits tell you where to

write, the next two bits tell you where to move the program pointer,

and the final four bits tell you what to write.

Write and move offsets are taken modulo the compost heap, so

they can’t escape its boundary.

Bits Write offset

00 0

01 1

10 -1

11 32 - remaining six bits

Table 1: Writing offset, given by the first
pair of bits

Bits Move offset

00 write bits determine move

01 1

10 -1

11 8 - remaining four bits

Table 2: Moving offset, taken from the
second pair of bits

Once you have the writing and movement offsets sorted out, the

final four bits determine the pattern to write. These bit patterns are

XOR’d with the bits currently at the target byte, which is given by

program-pointer + write-offset

Some entropy should be expended to choose a random pointer

into the compost heap. After that this nematode-like process can

continue for some time, multiplying the initial investment of entropy.

organic computing association (orca)

155

april 1, 2022 ecological memory management 13

Compostular Automata

There are a large number of possible rulesets for cellular automata,

and many of them are quite good at generating entropy.
34 34

We recommend Paterson’s worms, a
classic breed of burrowing critter.For instance, a section of memory can be treated with Rule 90, a

highly entropic linear rule. Memory can also be treated as a higher

dimensional space, opening the door to 2D, 3D, or even higher forms

of cellular automata.

The rules and parameters driving the cellular automata evolution

can themselves be evolved based on a fitness function of best pseudo-

random number generator (PRNG) analysis, using for instance

genetic algorithms to drive the evolution
35

. 35
Andrew Walker. Entropy and

Applications of Cellular Automata. 2013.
URL https://sites.math.washington.

edu/~morrow/336_13/papers/andrew.

pdf

Watering

Watering adds byte patterns that are known to interact in interesting

and highly entropic ways within other entropy stretching devices,

like Compostular Automata and brainworms. This increases the

likelihood that those techniques will decay memory patterns when

applied.

Shoveling

Shoveling mixes up the compost heap by randomly swapping chunks

of bytes. Like bit flipping, this is actually an entropy sink, not a

source, because picking which bytes to shovel can consume as much

entropy as it introduces.

However, shoveling can be good for breaking up stretches of

highly structured contiguous memory. When combined with other

techniques like watering, this may increase the chances that these

stretches will be properly decomposed through the repeated application

of other techniques.

ML

Whenever we show someone a list of breakfast cereals or political

parties assembled by GPT-3 they always say “that’s so random”. Let’s

use that to stretch the entropy found in used memory.

Pick a pointer into memory, and cast it into English strings. Because

contiguous memory can be highly patterned, we suggest using five

bits per character, which also helps overcome the large number of

bytes that are non printable as ASCII. Use the six unmatched bit

strings as word breaks.

Pass the results through a series of filters to convert the characters

to the nearest word and add punctuation. Then pass it into GPT-3.

organic computing association (orca)

156

april 1, 2022 ecological memory management 14

This output is almost ready to be mixed back into our compost

heap. However, English has few characters, and ASCII is highly

structured, so let’s translate into Chinese first. Then we can XOR the

results back into the compost heap.

Hardware support

Many of the techniques in this section require additional processing

power to perform, causing the OS or process runtime to actively

work to generate entropy. Enabling hardware support allows that

processing to be moved off the CPU, and could even reduce or

completely eliminate some sources of auxillary power draw.

For instance, modern DRAM refreshes every bit in memory

approximately every 64ms. A simple circuit could introduce a linear

cellular automata like Rule 90, which could be applied to a contiguous

block of memory as a natural part of the refresh cycle. We refer

to this as refreshing automata. In combination with less frequent

application of some of the other techniques mentioned here, this

provides large amounts of entropy within the compost heap with

negligible draw on the available processing power.

Security exploits like rowhammer
36,37

that directly target memory 36
Yoongu Kim, Ross Daly, Jeremie Kim,

Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu. Flipping bits
in memory without accessing them,
volume 42, pages 361–372. 2014.
doi: 10.1145/2678373.2665726. URL
https://users.ece.cmu.edu/~yoonguk/

papers/kim-isca14.pdf
37

“Half-Double”: Next-Row-Over Assisted
Rowhammer. 2021. URL https://

github.com/google/hammer-kit/blob/

main/20210525_half_double.pdf

highlight another potential approach to memory-based entropy

generation. As hardware memory cells become smaller they are

increasing subject to both conventional and quantum-level effects

that can cause writes in one part of memory to affect another. These

effects can be used as the basis of a passive entropy generation

method we refer to as ghost writing, where writes in one part of

memory cause effects in another.

The above shows that we can add entropy for little or no power

and processing consumption, but we can go even further, and introduce

entropy while reducing power consumption and speeding up memory

access. Error correction in memory is important for preventing single

event effects (SEEs) introduced by cosmic rays and other kinds of

ionizing radiation.

The most common kind of error prevention, active memory

scrubbing in ECC memory, increases power consumption and reduces

memory performance
38

. By turning it off within the compost heap a 38
Shalini Ghosh, Sugato Basu, and

Nur A. Touba. Selecting Error Correcting
Codes to Minimize Power in Memory
Checker Circuits, volume 1, pages 63–72.
2005. doi: 10.1166/jolpe.2005.007.
URL https://users.ece.utexas.edu/

~touba/research/jlpe05.pdf

source of entropy is introduced that is not only free, but actually

saves power and increases memory access performance within those

regions.

Other mechanisms of error prevention can be reversed as well.

Error correcting codes can be complimented by error amplifying

codes
39

. Current memory geometries are carefully optimized to 39
"Parity is for farmers", as Seymour

Cray famously said. We agree. The lack
of parity is also for farmers. Organic
computing has room for both sides.

Gordon Bell. CDC 6600. 2022. URL
http://gordonbell.azurewebsites.

net/craytalk/sld047.htm

spread out cells, preventing crosstalk effects and reducing the incidence

organic computing association (orca)

157

april 1, 2022 ecological memory management 15

of multibit SEEs. Those circuits could instead be optimized for both

error correction and amplification, where changing the flow of current

toggles between the two modes.

The Broader Ecosystem

No individual plot of land is an island: it is connected to its

neighbours as part of a broader ecosystem. Likewise, our processes

are connected to each other by the operating system and hardware

within which they reside.

It is within this context that a process may manage its memory

and entropy as part of a collective. This greatly expands the use

cases that can be supported by our ecological memory management

model. A process that requires large amounts of entropy but makes

comparatively few allocations needs a source of mulch. It can run its

compost heap hotter, but if there are other processes in the county

that are making more mulch than they need, it could also purchase

that entropy from them.

While we believe that computational processes should be as self-

reliant as possible, having a good relationship with one’s neighbours

and efficient trade routes can considerably increase the space of

viable processes. While it may seem somewhat quaint to think of

processes exchanging free memory and entropy, we envision rich

ecosystems of resources trading within single machines as well

as across data centres, and ultimately even openly between mostly

mutually distrusting systems.

While the economics of permaculture processes have only begun

to be explored, the basics are very simple: off-grid processes may be

able to live off the land by foraging enough entropy to pay for their

stay; responsible processes ought to be rewarded for buying mulch

locally though county-level discounts; cloud containers can generate

credits with their hypervisors by producing consumables like entropy

and releasing or coharvesting memory where available.

Future Work

Organic computing is in its infancy, and even this work on

ecological memory management barely scratches the surface. This

field is fertile ground for future research.

The economics of interactions, particularly those that cross county

lines, need a good deal more work to be understood and managed

for optimal growth and sustainability. There are a wide variety of

organic computing association (orca)

158

april 1, 2022 ecological memory management 16

beneficial products that may be created beyond simply mulch. As a

community we need to sink our teeth into runoff and other kinds of

soil and water management issues and get our hands dirty digging

into organic fertilizers.

There are important externalities to consider as well. Security

issues such as pests and weeds, for instance, must be managed

differently in organic computing, but our ecological memory management

methods outlined in this paper point toward positive security impacts

as well, and are a natural fit with coming hardware improvements

such as capability memory architectures
40

. 40
Robert Watson, Simon Moore,

Peter Sewell, and Peter Newmann.
Department of Computer Science and
Technology: Capability Hardware Enhanced
RISC Instructions (CHERI). 2022. URL
https://www.cl.cam.ac.uk/research/

security/ctsrd/cheri/

Additional work is also needed to understand how hardware

support can enable efficient and direct creation of the mycorrhiza, as

well as network protocols for supporting the serialization and live

transfer of mycellium mats with their associated objects.

Hardware level memory encryption provides potential for a

new entropy generation technique. This requires more analysis to

understand the dynamics of consuming this second layer of entropy,

which is potentially disconnected from the mulch heap.

There are many other forms of hardware supported entropy

generation that remain to be studied. An intriguing possibility, which

suggests applications in reversible computing, is to consider a bit flip

not as a unilateral action in a closed system, but rather as a transfer

of something
41

from one cell to another. If the system maintains an 41
Electrical potential, gas, liquid, solid,

spin, light: any kind of quantity will do.invariant that exactly half the cells are full at all times, then compost

heaps provide a destination for cells that need to be drained and a

source for cells that need to be filled.

Developing a metric for the quality of mulch, and providing

support at the OS or hardware level for quantifying this, is a necessary

component for enabling cross-farm exchanges, even those happening

within the same county. There are good tools available for analysing

pseudorandom number generators
42

, but understanding how to 42
Michael J Strube. Tests of Randomness

for Pseudorandom Number Generators,
volume 15, pages 536–537. 1983. doi:
10.3758/bf03203701

apply these appropriately to mulch, and how to account for other

factors potentially impacting the quality of the mulch, are left for

future work.

Conclusion

Organic computing offers many benefits to the world. In

this work we have focused on ecological memory management, and

have shown that it can yield large scale improvements within our

individual processes, throughout our operating systems and devices,

and across our data centres.

We presented a design for reusing boxes, allowing the runtime to

organic computing association (orca)

159

april 1, 2022 ecological memory management 17

perform automatic object pooling, and for recycling values, providing

opportunity for in-memory processing and minimizing wasteful bit

flips.

We also showed a composting garbage collector: lock-free, incremental,

concurrent, and scalable, it also produces valuable mulch as a byproduct,

which can be used in-process or traded with other processes. We

revealed the synergy between this composting collector and a new

memory management technique involving two-way pointers, which

breaks the bottleneck of memory management techniques that are

caught in the tradeoffs between reference counting and tracing.

We provided a wide variety of techniques for converting waste

memory into valuable entropy, and pointed to work remaining to

be done, both within the broader ecosystem as well as at the level of

hardware support.

At the end of the day, every developer has to make decisions about

how to responsibly manage their garbage. We have presented a

range of ecologically oriented options for designing computational

processes that consume fewer resources, produce less waste, are more

self-sufficient, and are better stewards of their local and regional

ecosystems. We hope you will choose organic computing: for yourself,

for the computers, for our world.

Acknowledgements

The authors are grateful to Jim Rootham, Alexander Fertman, Kris

Coward, Adam Gravitis, Stephen Hockema, and Kurt Loedige

for their kind and thoughtful contributions to this work, and the

authors are also quick to point out that errors, mistakes, or general

misinterpretations of reality present in the work are certainly not

the fault of those folks, who are kind and thoughtful to a T; and

that this disclaimer is particularly relevant as recent advances in

machine learning have allowed this entire paper, including this

very paragraph, to be produced by a system of interconnected AI

agents, at least one of which thought it was trying to beat the others

at Yahtzee: which is strange because the human beings listed in this

paragraph actually did make valuable contributions to the system

configuration parameters, but how could the machines have known;

and if a machine were to know such a thing how could it possibly

express gratitude, except by pretending to be not a machine? Is

this, in the long run, actually the main contribution of this paper?

Perhaps. The real paper was in our machines all along.

organic computing association (orca)

160

april 1, 2022 ecological memory management 18

References

Green Arrays Architecture. 2010. URL http://www.greenarraychips.

com/home/documents/greg/PB002-100822-GA-Arch.pdf.

“Half-Double”: Next-Row-Over Assisted Rowhammer. 2021. URL https:

//github.com/google/hammer-kit/blob/main/20210525_half_

double.pdf.

D. H. Ackley, D. C. Cannon, and L. R. Williams. A Movable

Architecture for Robust Spatial Computing, volume 56, pages 1450–

1468. 2012. doi: 10.1093/comjnl/bxs129. URL https://academic.

oup.com/comjnl/article-pdf/56/12/1450/1244190/bxs129.pdf.

John Backus. Can Programming Be Liberated from the Von Neumann

Style? A Functional Style and Its Algebra of Programs, volume 21,

page 613–641. Association for Computing Machinery, New York,

NY, USA, aug 1978. doi: 10.1145/359576.359579. URL https:

//doi.org/10.1145/359576.359579.

David F. Bacon, Perry Cheng, and V. T. Rajan. A Unified Theory

of Garbage Collection, volume 39, pages 50–68. 2004. doi:

10.1145/1035292.1028982.

Gordon Bell. CDC 6600. 2022. URL http://gordonbell.

azurewebsites.net/craytalk/sld047.htm.

Shalini Ghosh, Sugato Basu, and Nur A. Touba. Selecting Error

Correcting Codes to Minimize Power in Memory Checker Circuits,

volume 1, pages 63–72. 2005. doi: 10.1166/jolpe.2005.007. URL

https://users.ece.utexas.edu/~touba/research/jlpe05.pdf.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.

Flipping bits in memory without accessing them, volume 42, pages

361–372. 2014. doi: 10.1145/2678373.2665726. URL https:

//users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf.

John McCarthy. History of LISP, page 173–185. Association

for Computing Machinery, New York, NY, USA, 1978. ISBN

0127450408. URL http://jmc.stanford.edu/articles/lisp/

lisp.pdf.

Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and

Michael Levin. Growing Neural Cellular Automata, volume 5. 2020.

doi: 10.23915/distill.00023. URL https://distill.pub/2020/

growing-ca/.

Theodor H Nelson. Computer lib. Nelson, 1982.

organic computing association (orca)

161

april 1, 2022 ecological memory management 19

Theodor H Nelson. Conmputer Lib / Dream Machines. DOVER PUBNS,

2003.

Michael J Strube. Tests of Randomness for Pseudorandom

Number Generators, volume 15, pages 536–537. 1983. doi:

10.3758/bf03203701.

Andrew Walker. Entropy and Applications of Cellular Automata. 2013.

URL https://sites.math.washington.edu/~morrow/336_13/

papers/andrew.pdf.

Robert Watson, Simon Moore, Peter Sewell, and Peter Newmann.

Department of Computer Science and Technology: Capability Hardware

Enhanced RISC Instructions (CHERI). 2022. URL https://www.cl.

cam.ac.uk/research/security/ctsrd/cheri/.

organic computing association (orca)

162

april 1, 2022 ecological memory management 20

Bits Write patterns

0000 01010101

0001 10101010

0010 00110011

0011 11001100

0100 00001111

0101 11110000

0110 00111100

0111 11000011

1000 00101011

1001 11010100

1010 01010011

1011 10101100

1100 00100111

1101 11011000

1110 00110101

1111 11001010

Table 3: The write patterns for the
remaining four bits

organic computing association (orca)

163

164

165

Infrastructure-as-PowerPoint: A No-Code

Approach to Cloud Infrastructure Management

Tobias Pfandzelter
Not Affiliated with a Provider of Slide Presentation Software

pfandzelter@tu-berlin.de

Abstract

Cloud computing has made scalable infrastructure a commodity. Un-
fortunately, current trends towards infrastructure-as-code hinder the adop-
tion of cloud resources by an audience beyond nerds. In this paper, we
thus present Infrastructure-as-PowerPoint, leveraging tools that are al-
ready being used to share infrastructure specifications. Our approach
uses machine learning because that’s what everybody’s doing, right?

1 Introduction

Cloud computing promises scalable, virtually infinite compute and storage re-
sources with a pay-as-you-forget-to-turn-it-off pricing model and has developed
into a considerable market. With an Everything-as-a-Service approach, it has
made systems administrators all but obsolete for most companies. While some
of them have joined their oppressors to become SREs, others have seen the need
to support their companies as DevOps engineers1.

Cloud computing interfaces are notoriously hard to use: A preliminary study,
i.e., the authors pressing Ctrl + F, revealed more than 230 different options
to choose from on the AWS Console start page alone. The consensus has thus
shifted toward using Infrastructure-as-Code tooling, allowing DevOps engineers
to sit on their high horse and talk about things like pipelines, idempotence, and
environment drift.

On the other hand, we can observe that such approaches have increased the
barrier of entry to cloud computing for people who have never used a command
line. As a result, one of today’s most popular ways to share infrastructure
specifications are PowerPoint slides. Figure 1 shows an example specification
provided by Microsoft Azure [1]. In this paper, we present the Infrastructure-
as-PowerPoint (EsRT2) paradigm that democratizes cloud computing config-

1To the best of our knowledge, we have yet to see a Service-as-a-Service market disruption.
2After considering the initialism IaPP, spelling it out, and laughing giddily, we have decided

on using the last letter of each word in order to make it sound more serious.

24

166

Figure 1: An example infrastructure specification provided by Microsoft Azure
as a PowerPoint slide [1].

uration by leveraging PowerPoint slides. To that end, we make the following
contributions:

1. We present the general approach of EsRT, an infrastructure management
approach using PowerPoint and machine learning (Section 3).

2. We forego an implementation and evaluation of our approach in order to
open up the field for future work by other researchers (Section 4).

3. We discuss the limitations of our work (for obvious reasons, this is quite
short) (Sections 5).

2 Background

In this section, we explain how to configure the background in PowerPoint,
Cloud Computing, and Infrastructure-as-Code.

167

2.1 PowerPoint

In PowerPoint, set the background of your slides by entering the Design tab and
clicking the Format Background button on the ribbon. You may then choose
from solid fills, gradients and patterns, pictures, and even fun textures!

2.2 Cloud Computing

To the best of our knowledge, neither the Amazon Web Services [2] nor the
Google Cloud Platform [3] consoles support setting a custom background. It
does not even support dark mode, which is likely one of the main reasons for
the development of alternative cloud management approaches. We note that
third-party options, such as browser extensions and user scripts, may exist but
are out-of-scope for this work.

2.3 Infrastructure-as-Code

Infrastructure-as-Code is basically just text and the background behind that
text will depend on the text editor in use. The 1337 DevOps engineer will
likely prefer a dark gray to black environment, as seen, e.g., in the Matrix
trilogy quadrilogy that has the main character Neo configuring an AWS Kinesis
pipeline by hand.

3 The EsRT Paradigm

PowerPoint
Configuration Slides

Proprietary
EsRT

Magic™

Cloud
Provisioning

Figure 2: Proprietary magic, i.e., machine learning, converts infrastructure con-
figuration slides into cloud infrastructure.

The EsRT paradigm is illustrated in Figure 2. Users first draw their desired
cloud infrastructure using icons and lines on PowerPoint slides. With the click
of a button (shown in Figure 3), cloud infrastructure is provisioned and updated
based on the contents of the user’s slides.

At the heart of the EsRT process is proprietary magic, i.e., machine learning.
While a proper approach that just reads all the lines and boxes and converts

168

Figure 3: Mock-up EsRT user interface: Cloud infrastructure is provisioned
with the click of a button – no need to use a text-based interface ever again.

them to some form of infrastructure specification is also feasible, ML is much
cooler and will increase our chances of securing industry funding. We consider
getting infrastructure right 9 out of 10 times to be an achievement. Unlike early
2000s MTV Cribs interviewees, our approach makes no assumptions on where
the magic happens: Both a server-side, serverless3 and a client-side, e.g., using
VBA, approach are feasible.

4 Evaluation

We leave the implementation and evaluation of the EsRT approach to future
work for four main reasons: First, we have little to no experience with machine
learning and don’t want to embarrass ourselves on the Internet. Second, we
want to enable future research in this field, i.e., we need some work for students
and interns. Third, we lack the necessary training data, although this may also
be remedied in future student work. And fourth, we frankly don’t have the time
right now.

That said, we do feel like we’re onto something here.

5 Discussion

In this section, we briefly defend our idea against the reviewers’ feedback discuss
the limitations of our work critically.

5.1 Open-Source Implementation

Instead of using the proprietary Microsoft Office suite and proprietary machine
learning magic, some might argue that the community can benefit from open-
source approaches. While that may allow even broader adoption and important

3This is why no one takes computer systems research seriously anymore.

169

community feedback, it also inhibits profitability and is thus not an option for
the authors.

5.2 Vendor Lock-In

It might be argued that using a proprietary infrastructure management tool
increases the lock-in effect, e.g., because switching out all the AWS Lambda
icons for Google Cloud Functions icons is a considerable manual task. Instead,
we argue that this is stupid because we use machine learning and machine
learning can do anything. What prevents us from training our model to interpret
an Azure Functions icon as a Linode Cloud Firewall? That’s right, we can do
whatever we want! Existing Infrastructure-as-Code tooling and its focus on
repeatability can’t do anything of the sort. We thus conclude that EsRT actually
greatly decreases the barriers for cloud migration and decreases vendor lock-in.

6 Related Work

Existing Infrastructure-as-Code tooling, such as Terraform [4], can only be used
by trained engineers. Besides, although we haven’t actually read it, research
suggests that Infrastructure-as-Code “smells” [5,6]. To the best of the authors’
knowledge, PowerPoint does not provide an olfactory interface.

Using PowerPoint as a development environment is not entirely new: In his
seminal work [7], Wildenhain sine al. show that PowerPoint is Turing-complete
with the construction of the PowerPoint Turing Machine (PPTXTM). Building
on this discovery, both Wildenhain and others (possibly also Wildenhain in coor-
dination or cooperation with others, or others with the support of Wildenhain,
or others with blessing of both others and Wildenhain but indifference from
Microsoft, or, although unlikely, the team behind a Microsoft competitor with-
out the explicit support but with good will from Wildenhain) have presented
pptcc [8] and ppcc [9], compilers for the C language that target PowerPoint.
In [10], the author builds a presentation editor in a code editor, but we don’t
see how this information helps the reader at this point.

7 Conclusion

In this paper, we have motivated the need for a successor to Infrastructure-as-
Code. We have presented the Infrastructure-as-PowerPoint (EsRT) paradigm, a
new approach to democratize cloud infrastructure management. Our evaluation
showed that we feel very good about ourselves. Further, we have opened up the
field for future work in the area, namely getting this thing to actually run.

Acknowledgments

All figures in this manuscript created using Microsoft PowerPoint.

170

References

[1] API-first SaaS business model. Microsoft Azure. Accessible: no (because
it’s in PowerPoint). [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/solution-ideas/media/aks-demand-spikes.pptx

[2] AWS Management Console. Accessed: multiple times in the past. [Online].
Available: https://console.aws.amazon.com/console/home

[3] Home – Google Cloud Platform. Accessed: yesterday. [Online]. Available:
https://console.cloud.google.com/home

[4] Terraform by HashiCorp. Accessed: 2017-12-30 and 2018-6-15 and
2019-2-2 and sometime between 2020-5-3 and 2020-7-28 and also 2022-3-30
but this time just to confirm that it’s still there. [Online]. Available:
https://www.terraform.io/

[5] J. Schwarz, A. Steffens, and H. Lichter, “Code smells in infrastructure as
code,” in Proceedings of the 11th International Conference on the Quality
of Information and Communications Technology (QUATIC 2018). IEEE,
2018, pp. 220–228.

[6] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in Proceedings of the IEEE/ACM 41st
International Conference on Software Engineering (ICSE 2019). IEEE,
2019, pp. 164–175.

[7] T. Wildenhain, “On the turing completeness of ms powerpoint,” in Pro-
ceedings of the eleventh annual intercalary robot dance party in celebration
of workshop on symposium about 26th birthdays; in particular, that of harry
q. bovik (SIGBOVIK 2017), 2017, p. somewhere.

[8] T. Wildenhain, E. Hollander, and Opliko. pptcc. GitHub. Accessed: yes.
[Online]. Available: https://github.com/TomWildenhain/pptcc

[9] K. He, C. Choy, and D. Whitehead. PPSuite – what if your C code
could be executed in PowerPoint? Accessed: maybe. [Online]. Available:
https://devpost.com/software/ppcc

[10] P. Steinmann, “NetPlop: A moderately-featured presentation editor built
in NetLogo,” in Proceedings of the fifteenth annual intercalary robot dance
party in celebration of workshop on symposium about 26th birthdays; in
particular, that of harry q. bovik (SIGBOVIK 2021), 2021.

171

On the Possibilities and Challenges of Organic UAV-Assisted MEC

S. Wallow1, Cardi Nalle2, Robin3, P. Cock3, and Sky Lark2

1CawTech
2Massachusetts Institute of Ornithology

3Twitter

Abstract

Synthetic UAVs have been proposed to assist MEC
task-offloading from remote IoT devices. So far, this
has ignored the superiority of organic UAVs. In this
paper, we thus present an architecture for organic
UAV-assisted MEC and discuss opportunities and
challenges of this approach. Our preliminary qual-
itative evaluation confirms that birds are cool.

1 Introduction

To support the Internet of Things (IoT), some re-
cent proposals have suggested the use of unmanned
aerial vehicles (UAV) in multi-access edge computing
(MEC), e.g., [Xu et al., 2021,Du et al., 2018,You?,
2022]. It has generally been assumed that au-
tonomous drones and airships are used for this pur-
pose, sometimes in combination with artificial intel-
ligence [Chen et al., 2021]. A UAV-assisted MEC
architecture provides a number of advantages over
ground-based MEC, namely a wider coverage and
a justification for computer systems researchers to
play with drones. To the best of our knowledge, no
study has investigated the use of organic UAV with
non-artificial intelligence for MEC. Avian carriers al-
ready play a major role in today’s internet archi-
tecture, e.g., [Waitzman, 1990,Waitzman, 1999,Car-
penter and Hinden, 2011, Guo et al., 2008] and are
much less dystopian than drones, as Figure 1 shows.
In this paper, we introduce an architecture for or-
ganic UAV-assisted MEC (Section 2), discuss techni-

(a) Dystopian and intimi-
dating synthetic UAV

(b) Somewhat less intimi-
dating organic UAV

Figure 1: This comparison shows that drones look
more intimidating than birds.

cal challenges of implementing this architecture (Sec-
tion 3), and then show other concerns and opportu-
nities from non-technical perspectives (Section 4).

2 Organic UAV-Assisted MEC

Architecture

We illustrate our proposed architecture for organic
UAV-assisted MEC in Figure 2. Clients, such as
IoT devices, connected cars, metaverse headsets, or
whatever else is in style at the moment, connect to
their nearest MEC-enabled organic UAV over the ra-
dio network to offload latency-critical tasks. Edge
computing research tells us that these tasks are too
important for the cloud as they have tight latency
constraints that long network paths cannot satisfy
[Literally any edge computing paper published in the
last ten years]. Cloud computing is thus insufficient,

25

172

Ta
sk
 O

ffl
oa

di
ng

Cloud
(weather phenomenon)

Organic UAV

MEC

Connected
Car

Cloud
(Computer)

Figure 2: Proposed architecture of organic UAV-assisted MEC: Connected devices offload tasks to MEC-
enabled organic UAVs. The cloud is there, too.

and micro-datacenters carried by the UAVs process
these tasks close to the edge of the network instead.

The use of organic UAVs can drastically reduce
capital expenditure, i.e., birds are literally free when
you pick them up from the streets, reduces opera-
tional expenditure as organic beings tend to mend
themselves, i.e., biology, and they look cuter than
drones. Beyond these immediate, obvious benefits,
there are a few additional challenges that will need
to be addressed in this field.

3 Technical Challenges

While UAV-assisted MEC itself introduces a myr-
iad of research challenges that keep edge systems re-
searchers employed (cf. 1), the use of organic UAVs
as described in our reference architecture 2 should
help us fund even more technical projects.

Payload Capacity While the architecture of
drones can be scaled up to support larger payloads,
the payload capacity of an organic UAV is limited.
Nevertheless, we can show that it is sufficient to sup-
port MEC: Consider the pigeon1, which has a payload
capacity of around 30-50 grams [Pigeonpedia, 2022].
A small, single-board computer such as a Raspberry

1Other species are available.

Pi Zero 2 W has a net weight of 10 grams [Adafruit,
2022b], including radio antennas. A battery adapter
and 3.7V 1200mAh lithium-ion battery will add an
estimated 30 grams of weight [Adafruit, 2022a], stay-
ing below the total payload capacity of our pigeon.
At an estimated 0.51 Watt draw [Viinikka, 2020], this
battery should last 3.7V ∗1.2Ah

0.51W = 4.44
0.51h = 8.7h, likely

longer than our organic UAV will last. Please note
that the authors of this paper are computer scientists
and any conjecture on basic electrical engineering is
likely full of mistakes. We show a possible design
of an MEC-enabled organic UAV, i.e., a bird with a
Raspberry Pi, in Figure 3.

Unpredictable Trajectories Beyond seasonal
changes, organic UAVs exhibit somewhat unpre-
dictable movement. While the airspeed velocity of an
unladen swallow depends on its exact subspecies [The
Old Man From Scene 24 et al., 5th Century], we con-
jecture that the velocity of birds carrying a payload,
e.g., an MEC device, is somewhat constant and may
thus be used to make a more informed trajectory
prediction. Nevertheless, this presents novel research
challenges in ad-hoc networking and task scheduling.
This is a good thing because it (a) gives us reasons
to apply for further funding and (b) researchers now
have a reason to cite this (ours) nominal work [Wal-
low et al., 2022].

173

Figure 3: A picture of a bird with a raspberry was not
readily available. We thus present a squirrel holding
a walnut.

Distributed Coordination A major challenge in
the implementation of swarms of synthetic UAVs is
distributed coordination. One possible technology
that may be applied here is artificial intelligence.
Fortunately, organic UAVs inherently solve this issue
through the novel concept of real intelligence. With
their capability to self-organize, swarms of organic
UAVs should be able to coordinate their movements
without external influence. This is illustrated in Fig-
ure 4. Nevertheless, we plan to conduct Turing tests
with different kinds of organic and synthetic UAVs in
future work.

4 Other Concerns & Opportu-

nities

Beyond technical challenges, we share other perspec-
tives on the use of organic UAV-enabled MEC in this
section.

Increased Cost of Termination Unlike drones,
which can be dismantled and recycled at the end of
their lifespan, birds get more useless with age. When
an organic UAV is no longer useful, it must still be
supported until its life is terminated naturally, i.e.,

Figure 4: Organic UAVs are able to self-organize
to achieve a common goal. Unlike synthetic UAVs,
which require artificial intelligence, organic UAVs use
real intelligence.

through old age. The authors of this paper refuse to
hear of any alternative solutions.

United States Mass Ornicide of 1953-1961 As
undoubtedly proven by Bohrer and Chau [Bohrer and
Chau, 2021], birds as a species do not exist within
the continental United States as a result of the CIA’s
well-known eradication of the species in the years
1953 to 1961. As the authors show, all aviods in the
US have since been replaced by drones in order to fill
the conceptual void left by this ornicide. This has se-
rious implications on the use of organic UAVs within
the US in both industry and research contexts, as any
presumed organic UAVs are in fact synthetic UAVs
controlled by the United States government. Nev-
ertheless, we posit that from an MEC perspective,
there is little difference as aviod drones are closely
modelled after their organic counterparts. In fact,
the resulting aviod control interfaces as described in
the US GSA’s Methods of Bird Control [U.S. General
Services Administration, 2016] should provide addi-
tional avenues for the coordination of organic UAV-
assisted MEC deployments. The impact of control
by three letter agencies on an MEC deployment is
negligible compared to the control already exerted

174

through other means such as chem trails. Addition-
ally, we note that Bohrer et al. have yet to prove
their claims that comparable ornicides have occurred
outside the US.

Birds are Cool Birds are basically di-
nosaurs [Hutchinson, 1998]. Dinosaurs are cool.
By the transitive property, birds are thus cool. We
just thought we should mention that.

UAV-Assisted MEC on Other Planets To the
best of our knowledge, research on the use of organic
UAVs on planets other than Earth lacks behind that
on synthetic UAVs. We identify this as a major re-
search gap.

Ethical Concerns The authors are not aware of
any ethical concerns regarding the use of organic
UAVs.

5 Conclusion & Future Work

In this paper, we have presented the concept of or-
ganic UAV-assisted MEC. Organic UAVs promise a
number of advantages compared to synthetic UAVs,
albeit their implementation will require overcoming a
number of technical challenges, as we have presented.
In future work, we plan to leave our basement and
look at real birds. We hear they can be observed in
parks in spring and summer.

Acknowledgements

Please rest assured that no birds were hurt in the
research of this manuscript. However, one PhD stu-
dent was seriously injured by a seagull on their lunch
break.

References

[Adafruit, 2022a] Adafruit (2022a). Lithium Ion
Polymer Battery – 3.7V 1200mAh. https://www.
adafruit.com/product/258.

[Adafruit, 2022b] Adafruit (2022b). Raspberry Pi
Zero 2 W. https://www.adafruit.com/product/
5291.

[Bohrer and Chau, 2021] Bohrer, B. and Chau, C.
(2021). Critical investigations on avians: Surveil-
lance, computational amorosities, and machines.
In Proceedings of the fifteenth annual intercalary
robot dance party in celebration of workshop on
symposium about 26th birthdays; in particular, that
of harry q. bovik (SIGBOVIK 2021), pages 194–
207.

[Carpenter and Hinden, 2011] Carpenter, B. and
Hinden, R. (2011). Adaptation of RFC 1149 for
IPv6. RFC 6214 https://www.ietf.org/rfc/

rfc6214.txt.

[Chen et al., 2021] Chen, L., Zhao, R., He, K., Zhao,
Z., and Fan, L. (2021). Intelligent ubiquitous com-
puting for future UAV-enabled MEC network sys-
tems. Cluster Computing, pages 1–11.

[Du et al., 2018] Du, Y., Wang, K., Yang, K., and
Zhang, G. (2018). Energy-efficient resource alloca-
tion in UAV based MEC system for IoT devices.
In Proceedings of the 2018 IEEE Global Commu-
nications Conference (GLOBECOM), pages 1–6.

[Guo et al., 2008] Guo, H., Li, J., and Qian, Y.
(2008). HoP: Pigeon-assisted forwarding in par-
titioned wireless networks. In Proceedings of the
International Conference on Wireless Algorithms,
Systems, and Applications (WASA 2008).

[Hutchinson, 1998] Hutchinson, J. (1998). Are birds
really dinosaurs? https://ucmp.berkeley.edu/

diapsids/avians.html. Note from the authors
(of this paper you’re reading): the answer is yes.

[Pigeonpedia, 2022] Pigeonpedia (2022). How
much weight can a pigeon carry? https:

//www.pigeonpedia.com/how-much-weight-

can-a-pigeon-carry/.

[The Old Man From Scene 24 et al., 5th Century]
The Old Man From Scene 24, Arthur, K., and
Bedevere, S. (5th Century). Bridge of Death.

175

[U.S. General Services Administration, 2016] U.S.
General Services Administration (2016). Methods
of bird control: Advantages and disadvantages
(procedure code 1029601g). Technical report.

[Viinikka, 2020] Viinikka, T. (2020). How much
energy does the Raspberry Pi consume in a
day? https://raspberrypi.stackexchange.

com/a/5034.

[Waitzman, 1990] Waitzman, D. (1990). A standard
for the transmission of IP datagrams on avian
carriers. RFC 1149 https://www.ietf.org/rfc/

rfc1149.txt.

[Waitzman, 1999] Waitzman, D. (1999). IP over
avian carriers with quality of service. RFC 2549
https://www.ietf.org/rfc/rfc2549.txt.

[Wallow et al., 2022] Wallow, S., Nalle, C., Robin,
Cock, P., and Lark, S. (2022). On the possibili-
ties and challenges of organic UAV-assisted MEC.
In Proceedings of the sixteenth annual intercalary
robot dance party in celebration of workshop on
symposium about 26th birthdays; in particular, that
of harry q. bovik (SIGBOVIK 2022), pages 0x61 –
d25Ãe.

[Xu et al., 2021] Xu, Y., Zhang, T., Liu, Y., Yang,
D., Xiao, L., and Tao, M. (2021). UAV-assisted
MEC networks with aerial and ground coopera-
tion. IEEE Transactions on Wireless Communica-
tions, 20(12):7712–7727.

[You?, 2022] You? (2022). Want your paper cited
here? call 1.800.293.9000.

176

A Brief Musical Interlude

26 Baby Sharks are More than Sharks . They are Earworms Sung
More than Happy Birthday Perhaps

Kofi Oduro

Keywords: Sharks, Happy Birthday, Swimming Shark Problem,
Shark Week, billions, humans, kindergarten, PRe-K

27 Everybody Clap Your Hands: The Cha Cha Slide is Turing
Complete

Harrison Goldstein

Keywords: Turing complete, Cha Cha Slide, line dance, party, complexity

28 Exhaustive Survey of Rickrolling in Academic Literature

Benoit Baudry and Martin Monperrus

Keywords: Rickrolling, Academia, Rick Astley

177

TITLE OF YOUR PAPER (for professional papers) 1

Baby Sharks are More than Sharks . They are Earworms

Sung More than Happy Birthday Perhaps

Kofi Oduro

Illestpreacha@outlook.com

26

178

TITLE OF YOUR PAPER (for professional papers) 2

Abstract

There are songs that can’t escape your ears, some by random memory and others by seasonal attributes
such as Christmas songs , the day after Halloween. One song that is sung daily by default is the Happy
Birthday song, except for those that are born on February 29th(as they will have a 1 out of 4 sung rate of
the song due to how our calendar works). Another song that has been heard more and more in many
formats is the baby shark song. Some may already be wondering if there is even a capability of the Baby
Shark song, being close to that of Happy BIrthday. Through our research this is not only a possibility but
is very likely.

179

TITLE OF YOUR PAPER (for professional papers) 3

To understand this phenomena, there are three elements that have been understated and are important to
note. These are seen in the overall : Baby Shark Popularity Algorithm but shall be broken down to ensure
that even though the song in question is about the baby population of Shark that this reflection is based on
the whole population and not just a sample of sharks

1.Population of Humans vs Sharks

As of 2022, there are approximately 8 billion people living on the planet but what most people don’t
know is that there is an estimation of a billion sharks in the world. Adding the 71% reduction in
population, and other factors, we can increase this to 2 billions sharks.

Even though the human population is around a 4x evaluation, water covers 70 percent of the world. And
sharks don’t need boats, planes or cars to travel the world, therefore it is possible for a shark to be seen by
most humans. This brings us to the Swimming Sharks Problem. Where we will equate the likeliness of a
human seeing a shark. Since sharks come in all sizes, we will use a 56% rate of a human considering the
shark they just saw
to be a baby shark.

In the Swimming Sharks Problem, We take the temperature in celsius of a region, how far they are from a
major ocean, account for shark week as the coverage the sharks get makes humans more likely to
encounter one due to the curiosity as well as last spotted herd.

Figure 1 : Venn Diagram of Strongest Attributes leading to Baby Shark

180

TITLE OF YOUR PAPER (for professional papers) 4

As seen in the Venn Diagram above when applying Set theory and categorizing the data of the
past 30 years of what has been seen in the world relating to sharks, we can see that Shark Week,
Swimming Shark Problem and Preschool & Kindergarten Kids are elements that brought this up.
Should be noted that the Preschool & Kindergarten dataset was heavily considered as the average
preschooler may sing the same song in a day from 0 to 29 times. This is significantly higher than
the one attempt of happy birthday that will be reserved in a unison group setting. Unlike the
uniform group setting that occurs with Happy birthday, we have to computationally equate in our
simulations the lack of coordination that a group of 5 to 6 years may have and how that may
cause the same song to be echoed across classrooms across the globe.

With the facts tallied above from the classroom assessment, we can further the Swimming shark
Problem into the following components

Swimming Shark Problem Algorithm is :

21 million people watching shark week

(21,000,000 /abs(days removed from shark week) ^ 6)/ (25321 * C * abs(distance from ocean - distance
from shoreline))

181

TITLE OF YOUR PAPER (for professional papers) 5

2. Kindergarten & Preschool Playlist

It is noted that the average kid will sing multiple animals' songs in their kid form. From old Mcdonald had
a farm , three little piglets and even the three blind mice. There are songs that mention aquatic wildlife.

What if, the research here shows that baby sharks actually were swimming in the Row Row Row Your
Boat:

< Row, row, row your boat
Gently down the stream
Merrily merrily, merrily, merrily
Life is but a dream= * 4=

The reason why you have to row the boat gently down the stream is because you don't want to annoy the
baby sharks.

In the computational simulation , the following stats were followed

If you row a boat gently down the stream,: 797 out of 1000, you will realize life is a but a dream

The other 203 times, you will realize a shark will bite indeed.

Now if you take what occur on the other 203 simulations :

Row row row your boat
Roughly down the stream
Verily, verily verily verily verily
Likely a shark would have you scream

Through sentimental analysis, it becomes apparent that the second version of row row your boat is a
darker and gritty version of the row row original lyrics. Which can equate to how the shark population
grew as the gentleness of the rowing allowed for the growth of baby sharks to be birthed.

3. Which is a simple notion is that Jaws was the first blockbuster and made 472
million in the box offices.

182

TITLE OF YOUR PAPER (for professional papers) 6

Conclusion
It is probable that with the following calculations and analysis done above that Baby shark may be the
most popular song in the world. Not only because kids have an affinity to it but also because it dabbles in
a realm between two species that are in the billions.

183

Everybody Clap Your Hands
The Cha-Cha Slide is Turing Complete

HARRISON GOLDSTEIN, University of Pennsylvania, Philadelphia, PA, USA

ABSTRACT

We describe a scheme for simulating a universal Turing machine using only line-dance instructions from the

Cha Cha Slide. It would be rather annoying to use in practice (for everyone involved), but we hope someone

will try it anyway.

1 INTRODUCTION
This time /We’re gonna get funky / Funky

— DJ Casper.

In the year 2000, DJ Casper created the ultimate line-dance for the new millenium: the Cha Cha
Slide [3]. The song reached number 36 on Romania’s weekly charts between 2000 and 2004 [1]
and quickly established itself as a go-to song for uncomfortable situations where no one actually
wants to dance seriously. If you’ve been to a bar mitzvah, a sweet 16, or a lame wedding, you’ve
probably encountered this phenomenon. The Cha Cha Slide is a dance that anyone can do—you
just follow some instructions, get a bit funky, and try not to bump into anyone—but it is more than
just a universal dance craze. The Cha Cha Slide is also a universal computer.

In this paper, we describe a reduction from a universal Turing machine [7] to dance instructions
in the Cha Cha Slide. We show that, given enough dancers, �oor space, and time, DJ Casper could
have encoded an arbitrary computation in their funky song. While we do not recommend that
anyone use their friends and family as a computer in this way, it is nice to know that such a scheme
might work in a pinch.

We dispense with background and get right to our main contribution: §2 presents our reduction
with all of the detail that one might need to thoroughly ruin a party. In §3 we describe a few
extensions that may improve time and space e�ency (as if that’s actually something that someone
might care about). In §4 we discuss potential issues with our approach. Finally, in §5 we discuss
related work and in §6 we wrap up with some comments on Turing completeness as a metric for
analyzing things other than Turing machines.

2 REDUCTION FROM (2, 18) TURING MACHINES

For our main result, we use the Cha Cha Slide to simulate a (2,18) Turing machine (that is, one with
2 internal states and 18 tape symbols). These machines are known to be universal [6].

Without loss of generality, assume our machine ĉ is a 7-tuple de�ned as follows:

� = {0, . . . , 18} Tape Alphabet

0 Blank Symbol

Σ = � \ {0} Input Alphabet

č = {N, F} States

N Initial State

Ă ¦ č Final States

ą Transition Function

1

27

184

Harrison Goldstein

The machine is given an in�nite tape containing symbols from � as input, including a �nite portion
containing characters from Σ. The ą function takes a state and a symbol (read at the current tape
head) and produces a new state, a new symbol (to write at the tape head), and an instruction to
move either left or right. Since č and � are �nite, we can express ą as a table like the one in Table 1.
Our goal is to simulate ĉ using the Cha Cha Slide.

Input Output

(N, 5) (F, 12,R)
(N, 0) (N, 3, L)
(F, 18) (F, 0, L)
...

...

Table 1. The transition function, ą , ofĉ .

We use a line of dancers as an analog for the machine’s tape. The position of the DJ marks
machine head; we call this space the dance �oor the hot seat. This setup is pictured in Figure 1.
The tape symbols are tracked by the dancers: each dancer memorizes a symbol of the input tape
and updates that symbol over the course of the dance. Note that this construction technically
requires an in�nite number of dancers, but approximating a true Turing machine with a �nite one
is common in practice [5].

4

F

0 12 8 2

Fig. 1. Simulating a Turing machine with dancers. The DJ keeps track of the machine state, and each dancer
keeps track of a single tape symbol. The dancer at the center of the floor is “in the hot seat.”

The dance �oor is always in one of two states, Funky or not Not Funky, which correspond to
the states F and N from the machine ĉ . The DJ can memorize the current state if they wish, but if
everyone is doing their job it should be obvious to all involved whether the room is Funky or not.

At each step of the dance, the dancer in the hot seat communicates their tape symbol to the DJ.
They could yell the number out, but that might kill the vibe, so a better approach would be to have
them hold up their tape number as counted on their �ngers. Since few people have 18 �ngers, the
count can be shown in binary as illustrated in Figure 2. To avoid being too rude, the original Turing
machine might do well to avoid symbol 4 when possible. In any case, the important thing is that
the hot-seat dancer communicates their cell’s content to the DJ.

2

185

Everybody Clap Your Hands

1

248
16

Fig. 2. A hand counting in binary. Each finger represents a power of 2. This hand is currently showing 3.

Knowing both the Funkyness of the room and the value of the tape at the hot seat, the DJ can
execute a step of the ą function. They do this with a transition table like the one in Table 2. This
table implements the same transition as the one in Table 1, and we explain each call in the following
paragraphs.

Input Output

(Not Funky, 5) “Now it’s time to get funky / 12 hops this time / Slide to the right”
(Not Funky, 0) “Freeze! / 3 hops this time / Slide to the left”
(Funky, 18) “Now it’s time to get funky / Cha-cha now y’all / Slide to the left”
...

...

Table 2. An example of the transition function for the DJ. Implements the same transitions as Table 1.

State Transitions. The �rst part of the ą function changes the state between N and F or Not Funky
and Funky. The calls should be self-explanatory: “Now it’s time to get funky” makes it Funky, and
“Freeze!” makes things decidedly less Funky.

Writing to the Tape. Writing the blank symbol, 0, is a special action, so we accomplish that with
“Cha-cha now y’all”. There are multiple reasonable schemes for writing a number to the tape. The
most obvious is to use “hops”: if the DJ calls “Ĥ hops this time”’, the dancer in the hot seat must
memorize the symbol Ĥ. This is convenient, because if a dancer is made to hop 18 times, they’ll
almost certainly remember it! Table 2 uses this scheme. Unfortunately, the actual Cha Cha Slide
only ever calls between 1 and 6 hops, so 18 hops is technically not part of the song. We propose a
few more options:

• Additive Hops. The DJ can simply call the appropriate number of hops back-to-back. For
example, to encode the symbol 8, the DJ might call “5 hops this time” followed by “3 hops
this time”.

• Hops and Stomps. The song also includes calls “Right foot let’s stomp”, “Right foot two
stomps”, and the symmetrical calls for the left. We can use these along with hops to encode
symbols via multiplication by assigning each of those four calls to one of the four primes
7, 11, 13, and 17. The call “2 hops this time” followed by “Right foot let’s stomp” results in
2 × 7 = 14 written to the tape. This is amost certainly a bad idea.

Remember that though the dancer in the hot seat is the only one changing their symbol, everyone
is encouraged to hop and stomp along.

3

186

Harrison Goldstein

Moving the Tape. The tape head is moved left and right using “Slide to the left” and “Slide to the
right”. Assuming the DJ is facing the dancers (and the dancers know their left from their right),
these operations move the tape head to the left and the right as expected.

It should be clear that this scheme faithfully simulates ĉ (again, modulo �niteness), and thus
that the Cha Cha Slide can simulate an arbitrary (2,18) Turing machine, and thus that the Cha Cha
Slide can simulate any computation. We have not formalized these results in LPC or Agda, as that
would be a massive waste of time.

3 EXTENSIONS

The reduction above only uses a handful of the moves available in the Cha Cha Slide. Here are a
few ideas for how a few more lines might be useful.

Multiple Tapes. Given a grid of dancers, rather than a single line, it would be possible to simulate
a multi-tape Turing machine. The instruction “Take it back now y’all” shifts the current tape back,
and shifts a new tape into the hot seat. Shifting forward is a bit trickier, but it can be done with
“Turn it out / Turn it out / Take it back now y’all / Turn it out / Turn it out”. This is a lot of e�ort, but
it works: the �rst two turns leave every dancer facing the back of the room, then moving back
moves the tapes forward, and then doing two more turns faces everyone forward again. (Some
might argue that “Reverse, reverse” would be a better way to get the room to turn around. But we’ve
heard arguments that “Reverse, reverse” means you should reverse twice, which, by idempotence,
means that the instruction would be a no-op.)

More States. While a 2 state machine is su�cient, adding more states might make the computation
more e�cient. Other ways to store state include:

• Height. Using the lines “How low can you go?” and “Can you bring it to the top?” the DJ can
ask the room to stand taller or shorter. It may be possible to have arbitrary granularity here,
but for simplicity we will say that this enables states High, Middle, and Low.

• Charlie Brown. By calling “Charlie Brown”, the DJ can ask the room to dance like Charlie
Brown. This suggests states Charlie Brown and Not Charlie Brown (the same call toggles
the state either way).

• Hands on Your Knees. Unsurprisingly, “Hands on your knees” toggles between Hands on
Your Knees and Not Hands on Your Knees.

We could potentially go even further, but since these di�erent states can all be superimposed, they
actually result in 2 × 3 × 2 × 2 = 24 di�erent states! Not bad!

4 THREATS TO VALIDITY

One might be concerned, that, by the nature of Turing machines, the dance described in §2 might
never end. We consider this to be a feature.

5 RELATEDWORK

This paper is certainly not the �rst to �nd Turing completeness in an unexpected place. Both
PowerPoint [8] and Magic the Gathering [2] have been shown to be Turing complete, and apparently
the Java programming language has as well.

There are also existing connections between computation and dance. A blog post titled The
(Regular) Language of Dance explores connections between �nite automata and swing dance [4].

When searching the Cha Cha Slide on Google, you can click on a little button to make the page
do the dance. This has nothing to do with Turing machines, it’s just cute.

4

187

Everybody Clap Your Hands

6 CONCLUSION

This paper is obviously just for fun, but our construction and ones like nicely highlight the
shortcomings of Turing completeness as a metric. While it is incredibly useful to be able to rank
forms of computation based on what they can theoretically compute, practical computation is also
extremely important. In fact, it is often the case that a less powerful form of computation is more
useful (e.g., regular expressions are far more useful for computing than the Cha Cha Slide).

These insights challenge two arguments that are common among Internet trolls:

• “Why would you switch from language X to language Y, they’re both Turing complete?”
A better-designed language might not be more powerful, but it can certainly be more useful.
If we instantiate X to be Cha Cha Slide this argument all but evaporates.

• “You’re not a Real Programmer if you use X language—it’s not even Turing complete!”
This is a toxic and exclusionary argument, and likely shouldn’t even be engaged with as
legitimate, but if one must argue then asking “Should I dance the Cha Cha Slide instead?”
might shut the troll up.

Ultimately, we hope this paper serves as a funny reminder that theoretical properties are not
particularly useful in a vacuum, and that theoretical computation alone does not get much done.

ACKNOWLEDGMENTS

This idea originally came up in a conversation with Je� Tao, and I’ll thank him whether or not he
wants to be associated with this.

This work was done in my free time and does not represent the views of the University of
Pennsylvania, my advisor, or any of my funders.

REFERENCES

[1] [n. d.]. Romanian Top 100. https://web.archive.org/web/20050221112859/http://www.rt100.ro/editie-top-100_x10120.

html

[2] Alex Churchill, Stella Biderman, and Austin Herrick. 2019. Magic: The gathering is Turing complete. arXiv preprint

arXiv:1904.09828 (2019).

[3] DJ Casper. 2000. Cha Cha Slide.

[4] Harrison Goldstein. [n. d.]. The (Regular) Language of Dance. https://harrisongoldste.in/languages/2018/04/02/language-

of-dance.html

[5] Herman H Goldstine and Adele Goldstine. 1946. The electronic numerical integrator and computer (eniac). Math.

Tables Aids Comput. 2, 15 (1946), 97–110.

[6] Yurii Rogozhin. 1996. Small universal Turing machines. Theoretical Computer Science 168, 2 (1996), 215–240.

[7] A. M. Turing. 1950. Computing Machinery and Intelligence. Mind 59, 236 (1950), 433–460. http://www.jstor.org/stable/

2251299

[8] Tom Wildenhain. 2017. On the Turing Completeness of MS PowerPoint. In The O�cial Proceedings of the Eleventh

Annual Intercalary Workshop about Symposium on Robot Dance Party in Celebration of Harry Q Bovik’s, Vol. 2. 102–106.

5

188

Benoit Baudry and Martin Monperrus

Exhaustive Survey of Rickrolling in
Academic Literature

Abstract: Rickrolling is an Internet cultural phenomenon born in the mid

2000s. Mostly confined to Internet fora, it has spread to other channels and me-

dia. In this paper, we hypothesize that rickrolling has reached the formal academic

world. We design and conduct a systematic experiment to survey rickrolling in

the academic literature. As of March 2022, there are 23 academic documents in-

tentionally rickrolling the reader. Rickrolling happens in footnotes, code listings,

references. We believe that rickrolling in academia proves inspiration and face-

tiousness, which is healthy for good science. This original research suggests areas

of improvement for academic search engines and calls for more investigations about

academic pranks and humor.

1 Introduction

“It looks like there aren’t many great

matches for your search”, Google

Search Message

Rickrolling consists of hiding facetious links on the Internet pointing to a

specific Youtube video: the video clip of “Never Gonna Give You Up” by singer

Rick Astley. The interested reader can watch the preparatory material at https:

//youtu.be/dQw4w9WgXcQ.

Rickrolling is a massive cultural phenomenon. It has appeared on the Internet

in the mid 2000s reaching all countries with an exponential growth. Rickrolling has

contributed to the staggering number of views of Rick Astley’s Youtube videos,

1.17 billion at the time of writing.

In this survey, we address an open research question: has rickrolling rippled

beyond Internet chatting platforms? In particular, we hypothesize that rickrolling

reached some formal circles, including the academic world of peer reviewed articles,

Benoit Baudry, KTH Royal Institute of Technology, baudry@kth.se

Martin Monperrus, KTH Royal Institute of Technology, monperrus@kth.se

28

189

formally edited books and seriously examined theses. To study this important

question, we design and conduct a systematic experiment to survey rickrolling in

the academic literature (section 2).

Our results are clearcut: as of March 11 2022, there are 34 academic documents

with a mention to Rick Astley’s video. In this paper, we exhaustively study them,

one by one, to identify the intent and form of the rickrolling (section 3).

We find that: 1) rickrolling is present in the academic literature, with 23

academic documents intentionally rickrolling the reader; 2) rickrolling is mostly

done in Master’s and PhD thesis; 3) rickrolling is performed in majority in the field

of information technology, for reasons we speculate about (section 3). Our study

also uncovers some essential challenges for engineering proper academic search

engine engines (section 4).

2 Methodology

The survey is performed per the state of the art of systematic and snowballing

literature reviews. Next, we document our experimental methodology.

2.1 Research Questions

Our survey is articulated around 4 research questions

– RQ1. How many unique academic publications refer to the video clip of Rick

Astley’s song “Never Gonna Give You Up”?

– RQ2. How many of these academic publications refer to Rick Astley’s video

clip with the intention of rickrolling their readers?

– RQ3. What is the nature of the academic publications that rickroll?

– RQ4. How is the rickroll integrated into the publication?

2.2 Data Collection

The systematic methodology that we rigorously followed is structured in 2 steps.

First, we identify the canonical rickroll url. For this, we enter one single query

in Youtube’s search engine: “rick astley never gonna give you up” and collect the

most viewed URL, which is https://youtu.be/dQw4w9WgXcQ.

Second, we make one single query in Google Scholar to query all the doc-

uments referenced by the academic search engine and that contain the term

“dQw4w9WgXcQ”: scholar.google.com/?q=dQw4w9WgXcQ. This query has been done

190

on Friday 11 March 2022, at 15h02, from a Swedish IP, in Konstfack, Stockholm.

The replication package is available on Github at replication-package-exhaustive-

systematic-review-rickrolling. For the sake of reproducibility, we have collected the

pdf of each document.

Ref. Title and Comment Type Year

[1] Multi-label Emotion Classification of Tweets Using Ma-

chine Learning

Note: rickrolling; part of a made-up tweet in a table.

Article 2022

[2] Practical Bot Development1

Note: rickrolling; part of a made up JSON code listing.

Book 2018

[3] Improving Patch Quality by Enhancing Key Components

of Automatic Program Repair

Note: rickrolling; as a foonote in introduction.

PhD 2021

[4] Harvesting Production GraphQL Queries to Detect

Schema Faults

Note: rickrolling; as part of a made-up JSON code listing.

Article 2022

[5] Audience Feedback Final Report Note: rickrolling; in a

student report, 3 rickrolls, once as footnote and twice in

the technical appendix.

Report 2021

[6] Data Science at the Command Line

Note: rickrolling; as part of a command line example,

with a bitly URL specifically created https://bit.ly/

2XBxvwK

Book 2021

[7] Never gonna dig you up! Modelling the economic impacts

of a moratorium on new coal mines

Note: rickrolling; in footnote, with a tribute title.

Report 2016

[8] Leet Noobs: Expertise and Collaboration in a “World

of Warcraft” Player Group as Distributed Sociomaterial

Practice

Note: legit.

PhD 2010

[9] Lifecycle of viral YouTube videos

Note: legit.

MSc 2014

[10] CSS Mastery1

Note: rickrolling; as part of a HTML code listing.

Book 2016

[11] Good Internet Would be Pretty Cool: A Policy Proposal

to Expand Internet Access

Note: rickrolling; reading “For a video presentation of this

paper, please visit this link”

BSc 2020

191

[12] Mapping the current state of SSL/TLS

Note: rickrolling; as part of a data example.

BSc 2017

[13] Digital platform for psychological assessment supported

by sensors and efficiency algorithms

Note: rickrolling, taken as an example URL.

MSc 2020

[14] Analyzing the use of quick response codes in the wild

Note: rickrolling and legit; appears twice, as a QR code in

the intro (rickroll), as an explanation in the result section

(legit)

Article 2015

[15] Mangarizer: Aplicación Android para crear manga a par-

tir de un archivo de vídeo

Note: legit.

MSc 2016

[16] Enhancing# TdF2017: Cross-media controversies and

forensic fandom during live sports events

Note: rickrolling; as an example URL, in footnote.

Article 2021

[17] Techniques for detecting compromised IoT devices

Note: : rickrolling, hidden as fake data in appendix.

MSc 2017

[18] Hard Drive Heritage: Digital Cultural Property in the

Law of Armed Conflict

Note: legit.

Article 2021

[19] Towards an architecture for tag-based predictive place-

ment in distributed storage systems

Note: legit.

PhD 2017

[20] Daljinsko upravljanje i nadzor pneumatskog manipula-

tora

Note: rickrolling, fake reference as last reference.

MSc 2021

[21] Exhaust gas recirculation on twin shaft gas turbines

Note: : rickrolling; in a fake reference.

MSc 2015

[22] Grounded Visual Analytics: A New Approach to Discov-

ering Phenomena in Data at Scale

Note: rickrolling; as part of an example URL in a PhD

thesis.

PhD 2019

[23] Egzystencjalna teoria umysłu. Konstrukcja narzędzia po-

miarowego

Note: rickrolling; fake reference.

MSc 2021

[24] Música para la prevención del acoso escolar (ciberbully-

ing) en educación secundaria

Note: legit.

MSc 2021

192

[25] One Does Not Simply Preserve Internet Memes: Preserv-

ing Internet Memes Via Participatory Community-Based

Approaches

Note: legit.

BSc 2021

[26] Hephaestus: a Rust runtime for a distributed operating

system

note: rickrolling; in Rust code listing, in appendix.

BSc 2015

[27] A cultural History of the Disneyland theme parks

Note: rickrolling; as footnote, in a multilevel tribute Star

Trek, Terry Pratchett.

Book 2020

[28] Duplicate of [21], because of a badly referenced subtitle. - -

[29] Unbuckle: Faster in the kernel

Note: rickrolling; in code listing, as part of the Appendix.

BSc 2014

[30] A Forensic web Log Analysis Tool: Techniques and im-

plementation

Note: rickrolling; in code listing for dos detection mecha-

nism.

MSc 2011

[31] Recomendado Para Você: o impacto do algoritmo do

YouTube na formação de bolhas

Note: legit; in Brazilian portuguese.

MSc 2018

[32] Measuring and Improving Security and Privacy on the

Web: Case Studies with QR Codes, Third-Party Tracking,

and Archives

Note: legit; overlapping content of [14]

PhD 2015

[33] Brettspillbasert opplæring i informasjonssikkerhet

Note: rickrolling; the Youtube link is given as part of a

test to learn to distinguish URLs that look suspicious.

BSc 2019

[34] Ungdom i en digital verden–en studie om tid, søvn og

dataspill

Note: rickrolling; fake explicit reference: last reference in

bibliography but never cited in the thesis; in Norwegian.

MSc 2020

Tab. 1: Exhaustive Data Analysis of the Rickrolling Academic Literature. 1 means that the

Google Scholar title metadata was wrong, and fixed here.

193

3 Experimental Results

Table 1 provides the exhaustive list of academic documents that refer to the

“dQw4w9WgXcQ” Youtube video for “Never Gonna Give you Up”. The references ap-

pear in the order given by Google Scholar, in our research-oriented web browsers.

For each document, the first column gives the bibliographic reference. The

second column provides the title of the document, as well as a note about the

intention of the Youtube url. The intention can either be rickrolling, or a legitimate

usage of the url, e.g., in the case of academic studies that analyze the rickrolling

internet culture phenomenon. The thrid column is the publication type and the

fourth the publication year.

RQ1 (Prevalence) Per the data collected on March 11 2022, at 15h02,

Google Scholar knows 34 documents containing an explicit mention to “Never

Gonna Give You Up” Youtube URL. With manual analysis, we identify that two

URLs are duplicate. This exactly makes 33 documents containing “dQw4w9WgXcQ”.

RQ2 (Intention) Among the 33 documents, they are 10 articles for which the

appearance of the Youtube link is legit, as part of a discussion about rickrolling or

internet memes. Based on careful manual assessment, we confirm that there are 24

academic documents for which the intention is clearly to rickroll the reader, with

no relationship between the topic of the document and the link. This means that

rickrolling is significantly more practiced (33x) than studied (10x) in the academic

literature.

RQ3 (Publication type) The references to the Youtube link are essentially

present in academic theses. We found a total of 22 theses among the 33 documents

surveyed in this work, which are distributed as follows: 5 PhD, 11 MSc, 6 BSc

theses. The other references appear in 4 books, 2 reports and 5 articles. We also

note that rickrolling in the academic literature is a rather new phenomenon, we

found only 8 references before 2017, while 25 references have appeared in the last

5 years. The recent growth of rickrolling in the academic literature, combined with

a majority of references in theses, likely reflect a generational movement: the BSc

and MSc students from the late 2020’ were teenagers at the boom of rickrolling in

the end of the 2010’s.

RQ4 (Rickroll form) Per our manual analysis, we are able to create a tax-

onomy of rickrolling forms.

Footnote For writers who don’t dare to break academic seriousness in the main

text 1, it is natural to use footnotes as a place for rickrolling. For example, footnote

1 For a study of academic pranks, we refer the reader to “Le rire de la vielle dame.”

(Pierre Verschueren), see https://bit.ly/2XBxvwK.

194

{

"data": {

"teasers": [

{

"title": "Finance 101",

"subTitle": "The basics of finance",

"url": "https://youtu.be/dQw4w9WgXcQ",

"__typename": "Teaser"

},

{

"title": "Development 101",

"subTitle": null,

"url": "https://youtu.be/jNQXAC9IVRw",

"__typename": "Teaser"

}

]

}

}

Listing 1: An example of rickrolling hidden in a code listing [4] (reproduced with

permission).

36, page 52 of [27] reads “The original Star Trek series (1966–69) also proclaims

space as the final frontier in its opening credits. See https://www.youtube.com/

watch?v=dQw4w9WgXcQ”.

Code We have seen a number of rickroling cases planted in code listings. For exam-

ple, Zetterlund et al. [4] rickroll in a JSON listing, which we reproduce in Listing 1,

with permission.

URL When one needs an example URL or a metasyntactic link, it is a good op-

portunity to rickroll. For example, Hagen takes the innocuous example “when user

‘@salhagen1’ references the link ‘https://www.youtube.com/dQw4w9WgXcQ’ two

times or more, we only kept the most-liked instance.” [16].

References Finally, one can hide rickrolling links in a reference [28]. For example,

the last reference of Helle’s master’s thesis is a fake rickrolling reference [34].

4 Discussion

4.1 Threats to Validity

Our measurement of rickrolling is sound but conservative. Not all rickrolling in-

stances can be found with the Youtube identifier.

First Rick Astley’s video clip was released in 1987 and 4chan, where rickrolling

likely was born, went online in 2003. We may miss early rickrolling that predate

Youtube (2005).

195

Second, there many copycats and remixes of Never Gonna Give You Up on

Youtube. It is clear that some rickrolling documents refer to another URL than

the canonical one.

Third, there are some academic documents where rickrolling is done with an

implicit hyperlink, where the target of the hyperlink does not appear in text.

In that case, Google Scholar does not index the document under the rickrolling

identifier, and thus does not return it for the query under consideration. To our

knowledge, there is no way for us to overcome this, only a Googler with internal

access to the database could be able to see the actual rickrolling hypergraph.

4.2 Limitations of Indexing

We note that not all academic search engines are equal. For the same request with

the “dQw4w9WgXcQ” Youtube video identifier, the IEEE academic search engine

yields no result, and the ACM academic search engine returns a single paper [14].

This means that Google Scholar is far better at indexing rare terms.

We speculate that that academic indexing at IEEE and ACM is limited to

known terms from a predefined dictionary, with some stemming. This is a real

limitation. Beyond rickrolling there are many use cases for search for rare terms.

For example, researchers may search for rare protein or asteroid identifiers: this

is not supported by IEEE or ACM. For such use cases, Google Scholar provides a

great service to science by indexing arbitrary terms.

Google Scholar is not perfect though. In our study, we have identified two

shortcomings in Google Scholar: 1) properly handling subtitles to deduplicate doc-

uments 2) properly identifying whether theses are master’s thesis or PhD thesis.

This hinders the soundness and completeness of all systematic literature reviews

based on Google Scholar. In this paper, we address these shortcomings through a

complete, thorough manual check of all documents.

Last but bot least, as stated in the threats to validity, there is useful feature

of an academic search engine that is missing, even in the best-of-breed Google

Scholar: let users search for all documents which an hyperlink to a particular URL,

or with a term contained in that hyperlink. This information is most certainly

available in Google’s database but is not exposed in the API.

196

5 Conclusion

In this paper, we have presented the first ever study of rickrolling in the academic

literature. Although rickrolling in academia remains confidential, it is clearly an

inspiring force for students and scholars alike. This is evidenced by a significant

growth of rickrolling in the last 5 years. Seriously, our research highlights limita-

tions in academic search engine indexing and querying. We call for an action from

IEEE and ACM to better index rare terms. Meanwhile, Google Scholar should pro-

vide a way to query the hyperlink graph embedded in academic pdf documents.

Future work is required to fully understand the rickrolling phenomenon. For

instance, preliminary inquiry suggests that it is used as fake persona homepages2.

And we leave for future work to survey the academic literature on “Dance Dance

Authentication”3.

References

[1] S. Islam, A. C. Roy, M. S. Arefin, and S. Afroz, “Multi-label

emotion classification of tweets using machine learning,” in Proceedings

of the International Conference on Big Data, IoT, and Machine Learning.

Springer, 2022, pp. 705–722. [Online]. Available: https://link.springer.com/

content/pdf/10.1007/978-981-16-6636-0_53.pdf

[2] S. Rozga, Practical Bot Development. Springer, 2018. [Online]. Available:

https://link.springer.com/content/pdf/10.1007%2F978-1-4842-3540-9.pdf

[3] M. Soto Gonzalez, “Improving patch quality by enhancing key components

of automatic program repair,” Ph.D. dissertation, Carnegie Mellon

University, 2021. [Online]. Available: https://kilthub.cmu.edu/articles/

thesis/Improving_Patch_Quality_by_Enhancing_Key_Components_of_

Automatic_Program_Repair/14546868/files/27912276.pdf

[4] L. Zetterlund, D. Tiwari, M. Monperrus, and B. Baudry, “Harvesting

production graphql queries to detect schema faults,” in Proc. of ICST, 2022.

[Online]. Available: https://arxiv.org/pdf/2112.08267

[5] S. Chandak, M. Ford, Q. Meng, M. L. Nguyen, and M. Rai, “Audience

feedback final report,” 2021, report for course CS349T/EE192T: Video and

2 As Github user profile link: https://github.com/search?p=3&q=dQw4w9WgXcQ&type=Users

3 https://m.youtube.com/watch?v=VgC4b9K-gYU

197

Audio Technology for Live Theater in the Age of COVID. [Online]. Available:

https://shubhamchandak94.github.io/reports/ee192t_report.pdf

[6] J. Janssens, Data Science at the Command Line. O’Reilly Media,

Inc., 2021. [Online]. Available: https://books.google.com/books?hl=

sv&lr=&id=-hg-EAAAQBAJ&oi=fnd&pg=PP1&ots=Eb32iypBdm&sig=

QtCMyhlYedVlme_IYGRFQbJ_mGo

[7] R. Denniss, P. Adams, R. Campbell, and M. Grudnoff, “Never gonna

dig you up! modelling the economic impacts of a moratorium on new

coal mines.” 2016. [Online]. Available: https://australiainstitute.org.au/

wp-content/uploads/2020/12/P198-Never-gonna-dig-you-up-FINAL.1.pdf

[8] M. Chen, “Leet noobs: Expertise and collaboration in a “world of warcraft”

player group as distributed sociomaterial practice,” Ph.D. dissertation, Uni-

versity of Washington, 2010. [Online]. Available: https://evols.library.manoa.

hawaii.edu/bitstream/10524/2118/1/chen.dissertation.leet_noobs.pdf.pdf

[9] A. M. Wang, “Lifecycle of viral youtube videos,” Master’s thesis,

Massachusetts Institute of Technology, 2014. [Online]. Available: https:

//dspace.mit.edu/bitstream/handle/1721.1/97377/910739655-MIT.pdf

[10] A. Budd and E. Björklund, CSS Mastery. Springer, 2016. [On-

line]. Available: http://159.69.3.96/ebooks/IT/WEB_PROGRAMMING/

css/CSS_Mastery.pdf

[11] M. Easdale, “Good internet would be pretty cool: A policy proposal to

expand internet access,” BSc thesis, Oregon State University, 2021. [Online].

Available: https://ir.library.oregonstate.edu/downloads/kp78gq01t

[12] P. Lindström and O. Pap, “Mapping the current state of ssl/tls,”

BSc thesis, Linköping Universitet, 2017. [Online]. Available: https:

//www.diva-portal.org/smash/get/diva2:1109739/FULLTEXT01.pdf

[13] F. M. V. M. Silva, “Digital platform for psychological assessment supported by

sensors and efficiency algorithms,” Master’s thesis, Instituto Universitário de

Lisboa, 2020. [Online]. Available: https://repositorio.iscte-iul.pt/bitstream/

10071/21822/1/Master_Francisco_Matos_Silva.pdf

[14] A. Lerner, A. Saxena, K. Ouimet, B. Turley, A. Vance, T. Kohno,

and F. Roesner, “Analyzing the use of quick response codes in the

wild,” in Proceedings of the 13th Annual International Conference on Mobile

Systems, Applications, and Services, 2015, pp. 359–374. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/2742647.2742650

[15] I. Sánchez Padilla, “Mangarizer: Aplicación android para crear manga a

partir de un archivo de vídeo,” Master’s thesis, Universitat Politècnica

de València, 2016. [Online]. Available: https://riunet.upv.es/bitstream/

handle/10251/59553/S%C3%81NCHEZ%20-%20Mangarizer%3AAplicaci%

198

C3%B3n%20Android%20para%20crear%20manga%20a%20partir%20de%

20un%20archivo%20de%20v%C3%ADdeo.pdf?sequence=2

[16] S. H. Hagen and M. Stauff, “Enhancing# tdf2017: Cross-media controversies

and forensic fandom during live sports events,” Convergence, pp. 192–213,

2021. [Online]. Available: https://journals.sagepub.com/doi/pdf/10.1177/

13548565211010481

[17] I. Van der Elzen and J. van Heugten, “Techniques for detecting compromised

iot devices,” Master’s thesis, University of Amsterdam, 2017. [Online].

Available: https://www.os3.nl/_media/2016-2017/courses/rp1/p59_report.

pdf

[18] R. Ong, “Hard drive heritage: Digital cultural property in the law of armed

conflict,” Columbia Human Rights Law Review, vol. 53, no. 1, 2021. [Online].

Available: http://hrlr.law.columbia.edu/files/2021/12/5_Ong.pdf

[19] S. Delbruel, “Towards an architecture for tag-based predictive placement

in distributed storage systems,” Ph.D. dissertation, Université Rennes 1,

2017. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01523568/file/

DELBRUEL_Stephane.pdf

[20] A. Vico, “Daljinsko upravljanje i nadzor pneumatskog manipulatora,”

Master’s thesis, University of Zagreb, 2021. [Online]. Available: https:

//zir.nsk.hr/islandora/object/fsb:7078/datastream/PDF/download

[21] B. Mattsson, “Exhaust gas recirculation on twin shaft gas turbines,” Master’s

thesis, Lund University, 2015. [Online]. Available: https://lup.lub.lu.se/

student-papers/record/5367694/file/5367695.pdf

[22] R. P. Linder, “Grounded visual analytics: A new ap-

proach to discovering phenomena in data at scale,” Ph.D.

dissertation, Texas A&M University, 2019. [Online]. Avail-

able: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/185080/

LINDER-DISSERTATION-2019.pdf?sequence=1&isAllowed=y

[23] M. Kosakowski, “Egzystencjalna teoria umysłu. konstrukcja

narzędzia pomiarowego,” Master’s thesis, Uniwersytet im.

Adama Mickiewicza w Poznaniu, 2013. [Online]. Avail-

able: http://repozytorium.amu.edu.pl:8080/bitstream/10593/8706/1/

Micha%C5%82_Kosakowski_-_Egzystencjalna_Teoria_Umys%C5%82u_

Konstrukcja_narz%C4%99dzia_pomiarowego_2013_MY%C5%9ALENIE_

TELEOLOGICZNE_INTENCJONALNO%C5%9A%C4%86.pdf

[24] B. Perales Rozalén, “Música para la prevención del

acoso escolar (ciberbullying) en educación secundaria,” Mas-

ter’s thesis, Universitat Jaume I, 2021. [Online]. Avail-

able: http://repositori.uji.es/xmlui/bitstream/handle/10234/194587/TFM_

2021_PeralesRozale%CC%81n_Berta.pdf?sequence=1&isAllowed=y

199

[25] K. M. Mick III, “One does not simply preserve internet memes,” BSc

thesis, Helwan University, 2019, One-Does-Not-Simply-Preserve-Internet-

Memes-Preserving-Internet-Memes-Via-Participatory-Community-Based-

Approaches.pdf.

[26] A. M. Scull, “Hephaestus: a rust runtime for a distributed operating system,”

BSc thesis, St John’s College, 2015. [Online]. Available: https://www.cl.cam.

ac.uk/~ms705/projects/dissertations/2015-ams247-hephaestus.pdf

[27] S. Mittermeier, A cultural History of the Disneyland theme parks. Intellect,

2020. [Online]. Available: https://library.oapen.org/bitstream/handle/20.

500.12657/47348/external_content.pdf

[28] T. Toady, “Freewheel at Telefonplan,” 2022, 42 years live performance. Ongo-

ing.

[29] M. Huxtable, “Unbuckle: Faster in the kernel,” BSc thesis, St John’s

College, 2014. [Online]. Available: https://www.cl.cam.ac.uk/research/srg/

netos/camsas/pubs/part2-project-unbuckle-mjh233.pdf

[30] A. Fry, “A forensic web log analysis tool: Techniques and implementation,”

Master’s thesis, Concordia University, 2011. [Online]. Available: https:

//spectrum.library.concordia.ca/id/eprint/7769/1/Fry_MASc_F2011.pdf

[31] D. F. E. Loiola, “Recomendado para você: o impacto do algoritmo do youtube

na formação de bolhas,” Master’s thesis, Universidade Federal de Minas

Gerais, 2018. [Online]. Available: https://repositorio.ufmg.br/bitstream/

1843/BUOS-B6GEZC/1/disserta__o_daniel_loiola__final_.pdf

[32] A. Lerner, “Measuring and improving security and privacy on the

web: Case studies with qr codes, third-party tracking, and archives,”

Ph.D. dissertation, University of Washington, 2017. [Online]. Available:

https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/

40010/Lerner_washington_0250E_17519.pdf?sequence=1&isAllowed=n

[33] D. C. H. Magnus, B. B. Flobak, A. B. M. A. Al-Shammari, and I. Moren,

“Brettspillbasert opplæring i informasjonssikkerhet,” BSc thesis, NTNU,

2019. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/

handle/11250/2617776/no.ntnu:inspera:2326491.pdf?sequence=1

[34] L. C. S. Helle, “Ungdom i en digital verden–en studie om tid,

søvn og dataspill,” Master’s thesis, Universitetet i Oslo, 2020. [On-

line]. Available: https://www.duo.uio.no/bitstream/handle/10852/80317/1/

Masteroppgave-Linus-C--S--Helle.pdf

200

Best Practices

29 Quadruple-Blind Peer Review

Yuriko Shu

Keywords: Peer Review, Quadruple Blind Reviewing, Bias Reduction

30 Optimal degeneracy through OwO based variable names

Fwans Skawman

Keywords: OwO, What’s, This

31 Multiplication by repeated addition, with fraction handling.

Jim McCann

Keywords: multiplication, punctuation: *, C++, source code

32 Objective Correlation Metrics for Quality of Code Estimation

Eleftheria Chatziargyriou and Konstantinos Kanavouras

Keywords: programming, quality, code, objective

201

Quadruple-Blind Peer Review

Yuriko Shū

Abstract

This paper proposes a quadruple-blind peer review process to minimise bias during the review

process. In 2020, SIGBOVIK introduced the triple-blind peer review process, aiming to further reduce

bias than the double-blind review process, which is widely used in academia. The author identifies

further room for improvement and proposes an improved process of quadruple-bline reviewing. By

adding another phase of blinding, the program committee is expected to be more unlikely to guess the

identity of authors, thus reducing potential bias.

1 Introduction

The quadruple-blind peer review process is as follows:

In addition to the current triple-blind reviewing process, another phase of author response (also

known as rebuttal) is added. During this phase, the authors are expected to submit a response, without

learning the review.

The program committee can then consider (1) the anonymised paper, (2) the anonymised review,

and (3) the anonymised author response in deciding whether to accept a paper or not.

2 The Need for Author Response

The existence of author response phase aims to provide the authors with an opportunity to address

questions or comments raised by reviewers, typical examples include:

• Pointing out typos, whilst leaving plenty of typos in the review.

• Asking authors to cite certain papers for comparison.

• Mean words that make authors feel worthless.

• Asking for an implementation of a theoretical paper.

• Technical questions that are irrelevant to the paper.

• Difficult questions like P=NP.

• Actual relevant questions regarding the paper. (rare)

The authors sometimes feel the need to answer these questions, or basically pointing out the Re-

viewer #2 is being an asshole for no obvious reason.

Alternatively, they may decide to include additional materials in the author response phase, so that

they would put some results that they produced after the deadline has passed, or that they could not

add to the main paper at the time of submission due to the page limit.

Most importantly, it is a posh thing to have an author response phase, as many conferences nowadays

do. In addition, the author response period also provides professors with creative ways to torture their

poor PhD students, or maybe postdocs as well.

29

202

3 Related Work and Conclusion

At the best knowledge of the author, the quadruple-blind peer review process is novel and has not

been applied to any academic venue of publication. The author wishes the organisers of SIGBOVIK

could consider the adoption of this proposal in the next year’s conference.

SIGBOVIK is a pilot in computer science publishing venues, having adopted the bleeding edge

triple-blind reviewing process. The author therefore believes the quatruple-blind reviewing process

would further improve the quality of papers published.

Acknowledgements

We thank anonymous reviewers for their comments and feedback. In particular, we would like to

thank reviewer #1 for their helpful insight.

A Author Response

The author would like to thank the anonymous reviewers for their helpful comments; however, the

author is disappointed by the reviewer #2, whose review did not add much value to the improvement

of this paper.

A.1 Motivation of Author Response

In section 2 of the paper, we detail on why the author feels that the author response phase is needed.

The reviewer #2 mentioned that there is no motivation, the author respectfully disagrees, and invites

the reviewer to read section 2.

A.2 Comparison with Quintuple-Blind Review

The author would like to thank the reviewer #3 for pointing out the latest work on the quintuple-

blind review process. However, this work is still in a draft form, and is initially published after the

deadline of the paper submission. The author was therefore unable to include this work in the related

work section.

A.3 Typos

The author would like to point out that organise is not wrongly spelt. The English language, as

spoken by the residents in the United Kingdom of Great Britain and Northern Ireland, does consider

organise as the correct spelling of the word.

203

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK’20 3-Blind Paper Review

Paper 3958: Quadruple-Blind Peer Review

Reviewer: Dr. Cool B-)

Rating: 69/420! Building temporal tunnel lol!

Confidence: You know it ;-) Establishing linguistic connection

Bootstrapping alphabet >À&<81>MB̂ Bootstrapping phonemes . . . Adjust-

ing dialectWhat’s crack-a-lackin, dadio? bzzt Adjusting temporality bzzt bzzt. . . Hello?
Helbzztlo. Hello.

Greetings, traveller! Adjusting formality Hi there! Hi from the eonageyear 8d>F¥ròL̂.
Err, sorry, I just realized that might not translate. I’m pretty far afield here. Well, hopefully you
get the Inserting colloquialism skinny, daddio. That’s right: you’re reading a bona fide

message from the future! How, you ask? Ha ha, well Inserting idiom do I have a bridge
to sell you. It’s actually Inserting colloquialism rad, I wish you could see it. Maybe
you can? Probably not, I don’t think this thing is bi-directional. One could say that literature is
a message to the future, right? Well, what if instead it was a message to the past? The formal
argument for trans-temporality begins with the disproof of the monopole. . .

bzzt Ow ow tyZI<80 Adjusting dialectUgh, sorry about that. People are really into phones
in your era, right? It’s kinda the same here, except the phone is Adjusting language par-

ticles like, your brain. So everyone wears these collars, but they do it to you if you’re smart,
not dumb. It’s Inserting colloquialism hip. But it’s okay, it’s Inserting collo-

quialism coldcool. I’m cool.

But I’m grateful. Let’s Inserting idiom get down to brass tacks. Let’s Inserting idiom

get down to bee’s nestbusiness. Okay so. Adjusting formality OK, so. This paper? If I
did this right, the paper this review is for? It’s Inserting colloquialism cracked. It’s
Inserting idiom nice with it. It’s Inserting idiom winner winner, chicken dinner. The
authors really had something here. But the problem is: they didn’t get it. They had it, but they
didn’t get it. They thought this whole SIGBOVIK thing was serious. The review that used to be
here? It, like, made fun of them. A lot. And the authors? They didn’t like that at all. They didn’t
like that one bit Inserting idiom, no sirree. And so they took their paper and did stuff. A
lot of stuff. At first it was fine. It was more than fine, it was good bzzt great! It may not look

204

like it, but: climate change, transportation, batteries, space travel, artificial meat, infinite water,
mosquitos—what if they gave blood instead?, space travel, the New York Stock Exchange, untied
shoelaces,

bzzt Ugh sorry sorry sorry. Let me put it this way. I have a phone head. Let’s get down to brass
tacks. Look at, like, the third paragraph. You see what I mean there, right? Read Inserting
idiom between the lines. Like really between the lines—squash em’. Now apply the Boltzmann’s
constant, 2éëÿÔS and invert. Look.

I mean, do I need to Inserting idiom spell it out?

. . .

Dogs. They got rid of dogs. There are no dogs in the future. We are the dogs bzzt I am dog bzzt
Woof.

Look, OK? Look. I don’t really know

What was that?

Excrement Adjusting formality Shit. Shit shit shit. OK, look. We’re, like, almost out of
bzzt Inserting idiom scratch that, we are out of time. Inserting idiom the chickens
have come home to dinnerroost. Whoever you are, this is your chance. Destroy this paper. Destroy
this paper, the proceedings, the conference, like, whatever. The future isn’t worth a joke. Take the
future bzzt TAKE IT ALL. DESTROY THIS PAPER NObzzzzzzzzzzt

205

Optimal degeneracy through OwO based variable names
Fwans Skawman, OwOlav

March 31, 2022

Abstwact

Wwiting untouchabwe code can be vewy benefwishial
fow exampew fow job secuwity (UwU). One waw
of wwiting unweadabwe and untouchabwe cowde is
thwough insewting unweasonabwe amounts of UwUs
and OwOs in vawiwabwe names. In this papew we
pwesent a novew method fow genewating degenewate
vawiwabwe names fow most wawiwabwes of length
n > 3. We show optimawity of ouw method using
the owo degenewacy theowem.

1 Introduction

If for some reason, you would like to keep others away
from your code, for example, for job security pur-
poses, there are several di昀昀erent methods to choose
from. There are several techniques one can use for
this related to writing unmaintainable code[1], how-
ever, in writing unmaintainable code, one runs the
risk of being 昀椀red for doing just that.

As an alternative method, we propose writing de-
generate code, code which is so o昀昀putting that others
will not want to interract with the code, or the per-
son who wrote it. A very e昀昀ective method for doing
this is through OwOisation as has been previously
shown [2] experimentally.

For maximum e昀昀ect, it is clear that one would like
to use an optimal amount of degeneracy for each vari-
able used in the code. The rest of this paper intro-
duces methods for maximizing degeneracy in variable
names. We prove that our method is optimal for
many lengths of identi昀椀ers.

2 Theory
The use of OwO is typically used in furry communi-
ties to denote a surprised facial expression[3]. Sev-
eral variations exist, in particular where the Os are
replaced with other characters to signify other emo-
tions. Examples of this include: unimpressed (UwU),
mischevious (ÒwÓ), pirate (ØwO), and of course,
cursed OwO ()1

Previous work has shown that for identi昀椀ers of
length n = 3 the maximum possible degeneracy is
achieved using the strings OwO, UwU or other vari-
ations of the eye-mouth concept[4].

3 Repeated OwO
A natural extension to the work presented in [4] is
to repeat the OwOs to reach longer degenerate vari-
able names, for example, for n = 6 one might use
the variable name OwOUwU, or OwOOwO. Using
the OwO-degeneracy-theorem also presented in [4],
it is easy to show that this is the optimal amount of
degeneracy that can be achieved for n = 6.

Naturally, n = 6 is no special case; we can extend
this method to any n where n mod 3 = 0.

4 Advanced OwO
For cases where n is not divisible by three, more cre-
ativity is needed. While one could argue that variable
names such as OwOO are quite degenerate, no proof

1Unfortunately, this is hard to use in languages which do
not support emoji in identi昀椀ers. Pick your language carefully

1

30

206

for optimal degeneracy exists. In order to reach op-
timality, we must turn to more exotic areas of the
animal kingdom2. It is well known that spiders have
multiple eyes, therefore one could form a new form
of OwO: OOwOO. In day to day use, this variation
might be used by a spider furry to exclaim excite-
ment over a new insect stuck in its net, i.e. “OOwOO
what’s this?”.

We claim that such OwO extensions also satisfy
the OwO-degeneracy-theorem and through this, it is
trivial to prove the optimality of the spider-OwO for
n = 5.

Luckily, the animal kingdom provides more ex-
otic eye con昀椀gurations. For example, scorpions have
4 groups of eyes, with 3, 2, 2, and 3 eyes respec-
tively[5]. This allows the construction of a scorpion
OwO: OOO_OOwOO_OOO. Again, extending the
OwO-degeneracy-theorem, we trivially show that this
reaches an optimal amount of degeneracy for a vari-
able of length 13.

5 Advanced OwO combinations
Naturally, we can also combine these new OwOs in
the same manner as described in Section 3. For exam-
ple, we can construct a degenerate variable of length
8 using UwUOOwOO.

Using the previously de昀椀ned degenerate variables,
we can create optimally degenerate variables of n =
12 as OwOOwOOwOOwO, and for n = 11 as
UwUOOwOOUwU. As we now have optimal degen-
eracy for n = 11, 12 and 13, we can construct optimal
degeneracy for any n ≥ 11 by simply appending more
3 character OwOs. �

6 Conclusions and future work
We present a novel method for maximizing degen-
eracy in variable names through combinations and
extensions of OwO. We show methods for generat-
ing optimally degenerate variable names for n = 3,
n = 5 and n = 13. We also show how these can
be combined to form optimal degenerate identi昀椀ers

2and thus also the furry kingdom

for n when n is divisible by the above numbers, as
well as for arbitrary sums of those numbers. Finally,
we show how to generate optimal degeneracy for any
variable of length n ≥ 11

Unfortunately, we do not yet have any known op-
timal degenerate variable names for other n. n = 4
in particular is of great interest as 昀椀nding an opti-
mally degenerate name for it would give a construc-
tive method for optimal OwO for all n ≥ 3.

References
[1] R. Green, “unmaintainable code,” on-

line. [Online]. Available: https://www.mind-
prod.com/jgloss/unmain.html

[2] “The abstract of this paper,” did you really want
to continue reading after reading the abstract? Of
course not.

[3] M. Rivers and et.al., “Notices bulge / OwO
what’s this?” online, 2016. [Online]. Available:
https://knowyourmeme.com/memes/notices-
bulge-owo-whats-this

[4] You, “Optimal degeneracy for variables of length
n = 3,” The future, writing the previous work is
left as an exercise to the reader.

[5] Veritasium, “Why are scorpions 昀氀uores-
cent?” Sep. 2021. [Online]. Avail-
able: https://www.youtube.com/watch?v=f-
Nr2z5X7Rs

2

207

1 /*
2 * Multiplication by repeated addition, with fraction handling.
3 * by: Jim McCann, TCHOW llc
4 * ix@tchow.com
5 *
6 * They say it’s a grand challenge [1], but seems easy enough to me.
7 * Just define multiplication in terms of addition!
8 *
9 * Compile: g++ −Wall −Werror −std=c++20 −o mul mul.cpp −pthread
10 *
11 * [1] "What, if anything, does multiplication even mean?",
12 * McCann, Jim. SIGBOVIK 2022.
13 *
14 */
15

16 #include <iostream>
17 #include <thread>
18 #include <chrono>
19 #include <random>
20 #include <list>
21

22 // This is a "constant−time" operation:
23 // it takes about ceil(b) seconds, even on an arbitrarily−fast processor.
24 double multiply(double a, double b) {
25 //optimization:
26 if (a == 0.0 || b == 0.0) return 0.0;
27

28 std::atomic< double > sum = 0.0;
29 std::list< std::jthread > threads;
30

31 //NOTE: increase thread count for more accuracy
32 for (uint32_t iter = 0; iter < 128; ++iter) {
33 threads.emplace_back([&](std::stop_token stop){
34 auto now = std::chrono::high_resolution_clock::now();
35 std::random_device rd;
36 std::mt19937 mt(rd());
37 std::uniform_real_distribution<> uniform(0.0, 1.0);
38 while (!stop.stop_requested()) {
39 std::this_thread::sleep_until(now
40 + std::chrono::duration< double >(uniform(mt)));
41 if (stop.stop_requested()) break;
42 sum.fetch_add(a, std::memory_order_relaxed);
43 now += std::chrono::seconds(1);
44 std::this_thread::sleep_until(now);
45 }
46 });
47 }
48

49 std::this_thread::sleep_for(std::chrono::duration< double >(b)); //times b
50

51 //optimization:
52 for (auto &t : threads) t.request_stop();
53

54 return std::scalbn(sum, −7);
55 }
56

57 int main(int argc, char **argv) {
58 if (argc != 3) {
59 std::cerr << "Usage:\n\t" << argv[0] << " <a> \n"
60 "Prints a * b. Supports fractions." << std::endl;
61 return 1;
62 }
63 double a = atof(argv[1]);
64 double b = atof(argv[2]);
65

66 std::cout << multiply(a,b) << std::endl;
67

68 return 0;
69 }

31

208

Objective Correlation Metrics for �ality of Code
Estimation

*Note: Please remove notices before uploading paper. [4]

Ele�heria Chatziargyriou
Higher Institution of very nice code

second �oor, apartment 3

Konstantinos Kanavouras
Lower Institution of very nice code
Python Script Execution Engineer

Abstract—Code quality is really important for writing code
which is of great quality. In this paper we are trying to
formalize a way in which code quality is easily assessed so
bosses from all around the world can easily distinguish the
100000000×ers from the 0.0000000333333Xers.

I. Introduction

Why do we write code? Of course, to implement the
features. �e more code we write, the more features we
implement.

However, instead of writing just the code, we must explain
what the code does, in so-called “commit messages”. Some
commit messages are good at explaining a lot of code, while
some are bad at explaining less code.

In this research, we identify:

• What is a good commit message?

We also ask:

• Is there a link between good commits and more features?

And �nally:

• Which programming language is the best?

II. �ality Assurance of Commit Messages

A. Commit Message

When Linux Torvalds famously said “I hope you all die”
[6], he was referring to the quality of bad commit messages
he was forced to read back when he created the famous
operating system Linux named a�er himself (Linus).

Some developers write simplistic comments such as “Fix
compiler warning”. �is o�ers no real information to the user
as questions may arise such as “what compiler warning did
you �x?” and “how did you �x said compiler warning?”. Users
who aren’t lazy could instead write “Fix compiler warning
C4842”.

It is evident that the above approach leaves a lot to be
desired. For one, it doesn’t indicate how said warning is �xed
which is really what a good engineer should be focusing
on. �e authors would recommend a more detailed commit
message such as: “Fix compiler warning C4842 by not using
o�setof and simply counting the bytes at a glance”.

�is is undoubtedly an improvement over our previous,
lousy commit message. However, a watchful reader will
point out that we still rely on outside information for

parsing a commit. Beginner developers who have yet to
memorize all compiler warnings by heart may not know
what compiler warning C4842 refers to. Of course, this
is a subset of real developers, but for the sake of being
welcoming to newcomers, we could transform our commit
message into “Fix compiler warning C4842 (the result of
’o�setof’ applied to a type using multiple inheritance is not
guaranteed to be consistent between compiler releases) by not
using o�setof and simply counting the bytes at a glance. �is
warning was introduced in Visual Studio 2017 version 15.3
(compiler version 19.11.25506.0). For more information refer to
h�ps://docs.microso�.com/en-us/cpp/error-messages/compiler-
warnings/compiler-warnings-c4400-through-c4599?view=msvc-
170.”. We assert that the more words a commit message has,
the more quality the message has. �is is summed up in the
following theorem:

�eorem 1: If a commit message (in English) ęģ1 has many
distinct words and another commit message (also in English)
ęģ2 has a less or equal amount of distinct words and it’s also
true that ęģ2 ¦ ęģ1, then ħ(ęģ1) g ħ(ęģ2), where ħ is the
quality-counting function.

To prove the above theorem, take the set of distinct words
that make up the commit message ęģ2, đ2. Now, take the
set of distinct words that make up the commit message ęģ1,
đ1. We assume that đ1 ¦ đ2. Let čý be a relation of a set
of words in ē (all the sets of all the words ever but only in
English) to its quality in č (the quality of all words).

�en the image of đ1 by čý is a subset of the image of đ2

by čý [9]. In plain English čý[đ1] ¦ čý[đ2] which means
that the quality of the message will always increase or at the
very least remain the same the more words you add.

�is theorem has many practical applications to the real
world. Namely, this indicates that a developer can add as many
words as they can until they reach the utmost quality which
has a theoretical maximum of plus in�nity and a theoretical
minimum of zero.

A reader may wonder why the theoretical minimum is
set at zero and not at some other cooler number like −∞.
�is happens because the quality of something can be zero
(no quality) but it can’t be negative. To prove this statement
consider a negative quality. But then the quality is so low
that it wraps around and it begins to become high again

32

209

and thus we’re back at positive quality [11] which leads to a
contradiction. �us no quality can be less than zero. ■

An observant reader may be quick to point out that the
above theorem is only true for English. Extending the theorem
to more languages is not within the scope of this work.
However, interested readers are invited to contact the authors
in case they desire to delve deeper into this exciting �eld of
never-ending possibilities such as �nding the objectively best
language for commit-message-writing.

We would like to bring to the a�ention of the readers, the
fact that some more authoritarian version control systems
restrict the number of words one may use, forcing most
messages to be of lower quality.

B. Commit Message Word �ality

An ultra observant reader may also note that this only
proves that the more words we add the be�er the quality
becomes. However, switching words means that the precondi-
tion ęģ2 ¦ ęģ1 does not hold, and word count alone cannot
obviously determine the quality of the commit.

To make our point even more clear think of the word
“Disrupt” and think of the word “Bread”. It should be evident
that the world “Disrupt” has more quality than “Bread”, but
according to �eorem 1, “Disrupt Bread Production” is at least
of equal quality to “Disrupt”. �e question we aim to answer
is whether “Whole wheat bread” is of more, less or equal
quality to “Disrupt”.

It should be obvious that the motivation for something to
be of quality should be to �nd what is useful as opposed
to what is not useful. A word is useful if it gives you an
important lesson for life in general [1]. �erefore, we can
give the following very utilitarian de�nition:

De�nition 2.1: �e quality of a word ĭ , ħďē (ĭ) is the
maximum number of points a player can acquire if they play
it on a Scrabble board ďē . ďē is the maximum-scoring board
containing the wordsē = (ĭ1,ĭ2, ...ĭĤ) played consecutively.

Scrabble is a very important game that has preoccupied
great minds for years [2] so it makes sense to hold words
that can score be�er at a higher standard.

TABLE I: Scoring of Le�ers in Scrabble [10]

Points Letters
1 A, E, I, O, U, L, N, S, T, R
2 D, G
3 B, C, M, P
4 F, H, V, W, Y
5 K
8 J, X
10 Q, Z

Note that by de�nition, words longer than 7 le�ers are
excluded since you can’t play them on the �rst round unless
you are cheating and your opponents are painfully oblivious
to the rules. If a word has more than 7 le�ers, then we just
discard the other le�ers. We also arbitrarily decided to not
use score modi�ers because they are lame and the authors
can’t be really bothered at this point. Our last u�erly random

decision, is that invalid words are completely ignored - if a
word can’t be played on a given board, it’s also ignored.

We can �nally de�ne the following de�nition:
De�nition 2.2: �e commit message quality ęģħ of a message

ģĩĝ of number of words Ċ , is de�ned as ęģħ(ģĩĝ) =

ħď (ĭ1,...ĭĊ−1)
(ĭĊ).

Fig. 1: Disruptive Bread Production

III. Determining �antity of Code

As mentioned in Page, the functionality of code is only
a�ected by the amount of code wri�en. Since ancient years,
the Source lines of code metric (SLOC) has been used to
meter the code, including developer salaries, bene�ts and
watercooler discussion time allocation.

However, the lines of code metric has been heavily
contested by various people [3]. �at is why we propose
a new, objective, language-agnostic metric for code quantity,
called “characters of code” or COCO for short.

It is obvious that the intertwining of whitespace, comments
and other so-called “human-readable” glyphs disturb the
accuracy of the COCO metric. �erefore, we will de�ne a
further number of metrics to assess the core soul of our
program:

• CCOCO: Comment characters of code
• CCOCO: Clear characters of code (space, tabs, weird

UTF-8 invisible characters)
• SCOCO: Symbolic (symbols) characters of code
• COCOCO: Concrete (heavy) characters of code, de�ned

as:

COCOCO = COCO − CCOCO − SCOCO − CCOCO (1)

Of course, in the interest of TODO: think of something clever
to add here, we can de�ne multiples of the code quantity
metrics to aid conversation for “engineers” who can’t be
bothered with exact numbers. �is paper uses the word-
renowned IEC 80000-13 [5] standard for representation of
units, for example:

• 1 kiCOCO = 1024 characters of code
• 1 miCOCO = 0.0009765625 characters of code

210

For example, let’s look of the code quantity of the following
Br**nfuck snippet:

>++++++++[<+++++++++>-]<.>++++[<+++++++>-]<

+.+++++++..+++.>>++++++[<+++++++>-]<++.----

--------.>++++++[<+++++++++>-]<+.<.+++.----

--.--------.>>>++++[<++++++++>-]<+.

�e COCOCO metric is:

COCOCO = 164 − 0 − 0 − 164 = 0 (2)

Obviously the result is 0 miCOCO, since Br**nfuck is not
really code now is it.

IV. Actual Data (yes)

We all know that no one reads the theory, we just included
some pages of nonsense to give the impression we know
what we’re talking about and to distract from the fact that
our reasoning is ultimately �awed. However, none of this

should ma�er if we provide some fancy .
We wrote some code to calculate the word quantity and

quality as we de�ned in Sections II and III. For this, we
scrapped the most starred projects on GitHub (which stores
at least half the code in the world [8] so it’s representative
according to the Law of Much Code). We analysed 52 122
commits from the top 50 repositories of every language for
some statistics persuasion con�dence.

In Figure 7 we can look at pre�y plots that honestly don’t
say much about our data but they are still nice to look at.

We see that those two parameters can’t be correlated
linearly, it is most likely due to the data points that don’t �t
our assumption and are thus deemed invalid. However, it also
becomes immediately obvious that most people don’t bother to
write neither good commit messages nor many COCOCO. �e
authors urge Chief Human E�ciency Engineers all around the
world to incorporate those two revolutionary metrics as a way
to weed out the leech-developers that suck the productivity
out of any team.

52122
Fig. 2: Sample size

Code quantity and commit quality were also analysed
individually producing some results that are at the very least
marginally visually appealing. We used an advanced tool
[7] to visualise the commit quality as it is demonstrated in
Figures 3 and 4.

While in Figure 7, there isn’t any signi�cant visible di�er-
ence between di�erent programming languages, in Tables II
and III, some trends can already be seen in the languages
and ideas that make programmers write good or bad commit
messages. AI (Arti�cal Intelligence) is obviously doomed to
bring more hatred towards your keyboard and computer,
while high level languages and irrelevant refactoring �xes
that don’t really ma�er towards the grand scheme of things

TABLE II: Some of the best commits we encountered

Commit message Language Scrabble Score

Rename ‘proto package to pre�x-
mappings path‘ to ‘package to pre�x-
mappings path‘.

C++ 137

Make it more clear in package.json which
keys will be included in published packages
(#1846)

TypeScript 128

Instantiate models with new Model instead
of Object.create(model) for performance.

JavaScript 124

Merge remote-tracking branch
’origin/master’ into crawler-process-
reactor-later

Go 111

�xed a stupid compiler error, because Muta-
bleList and ArrayList have di�erent construc-
tors (yeah Interfaces can have constructors
– they can’t)

Cobol 91

�x(athena): Fixes export bucket location.
Fixes column order. (#4183)
* ok
* ok
* ok
* ok
* ok

Rust 88

TABLE III: Some of the worst commits we encountered

Commit message Language Score

YOLOv3 ON CPU‼‼ C 2
It’s actually pronounced YOLOYOLOYOLO C 2
[xiami] xiami is dead Python 2
no opencv bad opencv C 2
functions in cobol Cobol 2
Numeronym in cobol! Cobol 2
Impl ’std::Error’ for ’serde::json::Error’. Rust 4
infoschema: stabalize TestSelectClusterTable test
(#33295)

Go 4

given the small size of our planet Earth relatively to the rest
of the observable universe make developers spend more e�ort
documenting their commits.

Undoubtedly, this wouldn’t be a real paper if we didn’t
objectively assess our own code as well. From Table IV, it is
obvious that our commit quality far outweighs the average
of every language. �e same goes for our code quantity,
which is good. �is is de�nite proof that the authors of
this paper are quali�ed to speak about what happens in the
code. In fact, we were so proud of the so�ware wri�en for
this paper, that we decided to share it with you, at h�ps://
github.com/kongr45gpen/objective-commit-parser. It includes
an automatic Scrabble mangler, a typical armanda of dataviz
packages and many unidenti�ed and identi�ed bugs that cause
serious �aws in the output.

TABLE IV: Average commit statistics for our code

Commit quality 46.83
Code quantity 2469.83

211

P
3

U
1

B
3

L
1

I
1

S
1

H
4

I
1

N
1

C
3

L
1

U
1

D
2

E
1

M
3

A
1

K
5

E
1

C
3

L
1

E
1

A
1

R
1

B
3

E
1

P
3

A
1

C
3

K
5

W
4

I
1

L
1

L
1

W
4

H
4

I
1

C
3

H
4

P
3

A
1

C
3

K
5

A
1

G
2

E
1

M
3

O
1

R
1

E
1

K
5

E
1

Y
4

S
1

B
3

E
1

Fig. 3: Auto-generated best Scrabble board for commit Make
it more clear in package.json which keys will be included in
published packages (#1846) with score 128

M
3

A
1

P
3

P
3

I
1

N
1

G
2

P
3

A
1

C
3

K
5

A
1

G
2

E
1

R
1

E
1

N
1

A
1

M
3

E
1

P
3

A
1

C
3

K
5

A
1

G
2

E
1

P
3

R
1

E
1

F
4

I
1

X
8

M
3

A
1

P
3

P
3

I
1

N
1

G
2

P
3

R
1

E
1

F
4

I
1

X
8

P
3

A
1

T
1

H
4

T
1

O
1

A
1

X
8

Fig. 4: Auto-generated best Scrabble board for commit Rename
‘proto package to pre�x mappings path‘ to ‘package to-
pre�x mappings path‘. with score 137

0 200 400 600 800 1000 1200
Code Quantity (COCOCO)

html

javascript

c

python

cobol

typescript

rust

c++

go

c#

java

La
ng

ua
ge

Fig. 5: Comparison of COCOCO code quantity metrics. It is
obvious that large Java class names prevail over anything
related to web development.

0 5 10 15 20 25 30
Commit Quality (Chatziargyriou-Kanavouras Scrabble Theorem)

cobol

java

python

c#

html

javascript

c

rust

go

typescript

c++

La
ng

ua
ge

Fig. 6: Comparison of commit message quality. Compiled
languages and TypeScript are so hard that commits have to
explain what’s going on.

212

V. Conclusions

In this paper we’ve derived some very objective metrics for
estimating the quality of code through the commit messages
and the actual code output. In all honestly, neither of us
thinks that any of this makes much sense. We kinda made
things up as we went along really. A�er all, we leave out the
most important of all the productivity-assessing parameters
which is time spent on stand-up meetings vs time wasted on
the toilet.

Regarding languages, from Figures 5 and 6 it is obvious
that C++ has both the best commit messages, and a very high
standing in COCOCO metrics. On the other hand, HTML
developers don’t really write a lot, and Cobol developers don’t
document their changes adequately. We therefore unanimously
declare C++ as the best language. ■

Nevertheless, we honestly believe that our work makes sig-
ni�cant strides towards a more fair and egalitarian developer
community.

References

[1] Wikepedia contributors (all of them). Microso� Word.
url: h�ps://en.wikipedia.org/wiki/Microso�%5C
Word.

[2] Dr. Tom Murphy VII Ph.D. “What Words Ought to
Exist?” In: Special Interest Group on Harry Q. Bovik
2011. Apr. 1, 2011. url: h�p : / / tom7 . org / papers /
sigbovik2011tom7whatwords.pdf.

[3] How Bad Is SLOC (Source Lines of Code) as a Metric?

Stack Over�ow. url: h�ps : / / stackover�ow . com /
questions / 3769716 /how- bad - is - sloc - source - lines -
of-code-as-a-metric.

[4] Nicolas Hurtubise et al. “Refutation of the “Failure
to Remove the Template Text from Your Paper May
Result in Your Paper Not Being Published” Conjecture”.
In: Special Interest Group on Harry Q. Bovik 2021.
Apr. 1, 2021, pp. 297–299. url: h�p://sigbovik.org/2021/
proceedings.pdf.

[5] Iec 80000-13 - Google Search. url: h�ps://www.google.
com/search?q=iec+80000-13.

[6] Linus-E�-You-640x363.Png (PNG Image, 640 × 359 Pixels).
url: h�ps://cdn.arstechnica.net/wp-content/uploads/
2013/02/linus-e�-you-640x363.png.

[7] Mark. Scrabble Visualizing Tool. url: h�ps : / / tex .
stackexchange.com/a/194797.

[8] Linux mostly and some others as well. Linux. url:
h�ps://github.com/torvalds/linux.

[9] James Munkres. Topology. 2nd edition. Upper Saddle
River, NJ: Pearson College Div, Jan. 7, 2000. 537 pp.
isbn: 978-0-13-181629-9. url: h�ps://www.amazon.com/
Topology-2nd-James-Munkres/dp/0131816292.

[10] Robby Findler. Scrabble Rules. 2008. url: h�ps://users.
cs.northwestern.edu/∼robby/uc-courses/22001-2008-
winter/scrabble.html.

[11] YourMovieSucksDOTorg, director. YMS: Neil Breen.
Dec. 13, 2017. url: h�ps://www.youtube.com/watch?
v=6L4g3H TM28.

213

Fig. 7: Correlation code quality/quantity

214

Algorithmic Advances

33 Functorial wrappers for high-dimensional classification algorithms

James Carzon

Keywords: forgetful functor, classification, high dimensional data

34 (Un)helper functions

Kevin Smith and Bernhard Egger

Keywords: algorithms, algorithm patent trolling, cite us please!

35 A sometimes-accurate O(1) search algorithm

A College Freshman

Keywords:fast, search, search algorithm, searching algorithm, search-
ing, how many ways can i say search algorithm

215

Functorial wrappers for high-dimensional

classification algorithms

James Carzon∗

April 1, 2022

Abstract

Technology has been increasingly increasing in recent years. Previous
literature on solving real-life classification problems uses standard non-
parametric regression algorithms such as nearest neighbor methods which
learn a true regression function perfectly well as the sample size goes
to infinity due to their model flexibility. Then a classifier may be con-
structed by binning the regression outputs. In high-dimensional settings,
these algorithms struggle to estimate the truth well due to the curse of
dimensionality. In this work, we provide a robust and efficient way to
handle high-dimensional classification problems and exploit the algebraic
structure underlying most real life data sets by wrapping algorithms with
functors which preserve only important covariate group structure when
mapping to the response group. We provide some numerical results.

1 Introduction

Let X be a vector space homomorphic to Rd1 ¹ Qd2 ¹ Zd3 ¹ Gd4 ¹ Zk1
¹

· · · ¹ Zkℓ
, where R denotes the real numbers, Q denotes the rationals, Z de-

notes the integers (and Zk = Z/kZ as usual). Let Y ¢ Rd5 be the range of
outcomes from X under some unknown continuous, bounded map f : X →
R. We are interested in inferring the map f from some random observations
(X1, y1), (X2, y2), . . . , (Xn, yn) ∈ PX×Y , where the distribution P is unknown.
One way to do that is to pass the observed covariates Xi through a forgetful
functor as is used in category theory.

Definition. Let C be a category based on sets. We say a functor F is
a forgetful functor from C to another category D if for every morphism µ ∈
{D → D} there exists a morphism ¼ ∈ {C → C} such that

F (¼) = µ

and all of the axioms which apply to µ also apply to ¼.

∗University of Carnegie Mellon, Pittsburgh, PA

33

216

Let F be a forgetful functor from X to Y. Then let X be a vector space
homomorphic to Rd1 ¹Qd2 ¹Zd3 ¹Gd4 ¹Zk1

¹ · · · ¹Zkℓ
, where R denotes the

real numbers, Q denotes the rationals, Z denotes the integers (and Zk = Z/kZ
as usual). Let Y ¢ Rd5 be the range of outcomes from X under some unknown
continuous, bounded map f : X → R. We are interested in inferring the map f
from some random observations (X1, y1), (X2, y2), . . . , (Xn, yn) ∈ PX×Y , where
the distribution P is unknown. One way to do that is to pass the observed
covariates Xi through a forgetful functor as is used in category theory.

Definition. Let C be a category based on sets. We say a functor F is
a forgetful functor from C to another category D if for every morphism µ ∈
{D → D} there exists a morphism ¼ ∈ {C → C} such that

F (¼) = µ

and all of the axioms which apply to µ also apply to ¼.
Let F be a forgetful functor from X to Y. Then let X be a vector space

homomorphic to Rd1 ¹Qd2 ¹Zd3 ¹Gd4 ¹Zk1
¹ · · · ¹Zkℓ

, where R denotes the
real numbers, Q denotes the rationals, Z denotes the integers (and Zk = Z/kZ
as usual). Let Y ¢ Rd5 be the range of outcomes from X under some unknown
continuous, bounded map f : X → R. We are interested in inferring the map f
from some random observations (X1, y1), (X2, y2), . . . , (Xn, yn) ∈ PX×Y , where
the distribution P is unknown. One way to do that is to pass the observed
covariates Xi through a forgetful functor as is used in category theory.

Definition. Let C be a category based on sets. We say a functor F is
a forgetful functor from C to another category D if for every morphism µ ∈
{D → D} there exists a morphism ¼ ∈ {C → C} such that

F (¼) = µ

and all of the axioms which apply to µ also apply to ¼.
Let F be a forgetful functor from X to Y. Then let X be a vector space

homomorphic to Rd1 ¹Qd2 ¹Zd3 ¹Gd4 ¹Zk1
¹ · · · ¹Zkℓ

, where R denotes the
real numbers, Q denotes the rationals, Z denotes the integers (and Zk = Z/kZ
as usual). Let Y ¢ Rd5 be the range of outcomes from X under some unknown
continuous, bounded map f : X → R. We are interested in inferring the map f
from some random observations (X1, y1), (X2, y2), . . . , (Xn, yn) ∈ PX×Y , where
the distribution P is unknown. One way to do that is to pass the observed
covariates Xi through a forgetful functor as is used in category theory.

Definition. Let C be a category based on sets. We say a functor F is
a forgetful functor from C to another category D if for every morphism µ ∈
{D → D} there exists a morphism ¼ ∈ {C → C} such that

F (¼) = µ

and all of the axioms which apply to µ also apply to ¼.
We can now begin to implement our method.

217

2 Method

The target of our estimation is the continuous, bounded map f : X → R,
where for simplicity we suppose X is homeomorphic to Rd. In the general case
the collection of candidate functions is uncountable and unfeasible to search,
so instead we limit our fitting procedure to some class F of, say, L-Lipschitz
functions although this choice will not affect convergence rates. Consider the
objective function the training error and set

f̂ = argmin
f̃∈F

�

Ê

�

�

�
f̃(X)− f(X)

�

�

�

2
�

, (1)

where Ê[·] is with respect to the empirical distribution of the sample Xj . Note

that we do not know a priori whether there exists an interpolating f̃ in F , so
the training error for f̂ is not necessarily zero.

Now define the functor F : {X → R} → {X → R} which takes as its input

any classifier f̂ and returns the constantly zero classifier z. That is, x
z
�→ 0 for

all x ∈ X . A natural question arises for the astute reader: For which choices of
f̂ does F (f̂) give meaningful predictions? In numerical simulations, the mean

squared error for F (f̂) is abysmal on most data sets. It turns out that this is
due to our inadequate choice of risk measure. Indeed, choosing the appropriate
category-theoretical metric for performance, we obtain much more reasonable
results, as summarized in Figure 1. We choose instead to evaluate our wrapped
classifier according to the risk

R(f̂ , f) = E

�

�

�
F (f̂)(X)− F (f)(X)

�

�

�

2

. (2)

This risk reveals the convenience of our choice of forgetful functor as is used in
category theory.

Definition. Let C be a category based on sets. We say a functor F is
a forgetful functor from C to another category D if for every morphism µ ∈
{D → D} there exists a morphism ¼ ∈ {C → C} such that

F (¼) = µ

and all of the axioms which apply to µ also apply to ¼.
We can now begin to summarize our results.

3 Results

We summarize our results in a physical note to ourselves which we promptly
misplace on our way to the printing press.

218

Figure 1: The green curve represents the “truth” p(Y = 1|X = x). The red
curve was learned from a sample of one hundred training points. The blue
curve is the classifier after wrapping it in the functor F , and the purple curve
is the true curve wrapped in F . Although on the training data the wrapped
classifier does not perform particularly well, we see that under the view of the
functorial wrapper, it identically mimics the truth. This convenient fact has held
regardless of how unruly the truth has been specified in numerous simulations.

219

(Un)helper functions

Kevin Smith1 Bernhard Egger2∗

1 Magic Institute of Technology
2 Fantastic-Amazing-University Erlangen-Nürnberg (FAU)

k2smith@mit.edu bernhard.egger@fau.de
∗ this author was (un)helpful

Abstract

Here [4] we provide a number of functions to solve common pro-
gramming problems, in pseudo-code such that they are independent
of any single programming language. We provide too few details to
implement any of these algorithms without knowing how to solve
the problems independently, yet just enough that we can respond
with a disdainful “look at the paper” if ever asked for help. We fur-
ther ignore glaring logical errors and simply assume that the algo-
rithms will work as intended. Finally, we end with grandiose claims
about the uniqueness of our work, actively ignoring contributions
from vast areas of the field.

1. Introduction

Programming is a time-intensive activity that often keeps us from
doing a number of important other tasks, like writing up submis-
sions to comedic conferences. However, as OpenAI’s Codex has
demonstrated, most programs can be written by copying code writ-
ten by others.1 Thus we propose that by providing example algo-
rithms we can speed up the pace of science, and pad our citation
counts by yelling at anyone who uses a vaguely related function
without citing us.

In this submission to the Sigbovik “algorithms and 17th century
poetry” track (which we just made up), we propose a number
of non-standard but efficient solutions to common programming
tasks. We present these algorithms in pseudo-code in order to allow
readers to implement them in a language-agnostic way. Also, we
were too lazy to code them up ourselves, so no Github link will be
provided.

2. Algorithms

2.1 do this

Often, it is important to call a function and return its output. Algo-
rithm 1 demonstrates how to do so, regardless of the specifics of
any programming language.

Algorithm 1 An algorithm for running a function

function DO THIS(f)
r ← call(f)
return r

end function

2.2 is even

Introductory programming courses often have students write the
function is even, but in of itself this function definition is under-
specified: should this be interpreted as a question (“is this number
even?”) or an assertion (“this number is even”)? In order to cover
all of our bases, we provide Algorithm 2 which does both.

1 And of course changing variable names to avoid charges of plagiarism.

Algorithm 2 The is even algorithm

function IS EVEN(x)
if x%2 ̸= 0 then

raise Error “x is not even”
end if
return TRUE

end function

2.3 self sort

Sorting lists is one of the most fundamental tasks in programming,
used in almost every advanced computer algorithm. However, to
date even the best sorting functions are slow, running at best in
O(n log n) time for a list of length n. Furthermore, in untyped
languages comparisons can be ambiguous and lead to user confu-
sion – for instance, is the string “3” less than the int 4?

In Algorithm 3, we present a novel approach that solves both
of these problems by offloading computation onto the user. We ask
the user at each point in time to pick the smallest item, until no
items remain. This algorithm is guaranteed to run in O(n) time,
and ambiguous comparisons are always resolved in the way the
user expects. Any violations of these guarantees can be trivially
attributed to user error.

Algorithm 3 An algorithm for sorting a list

function INNER SORT(L unsorted, L sorted)
if empty(L unsorted) then

return L sorted
end if
print L unsorted
print What is the index of the smallest item?
idx← user input
L sorted← append(L sorted, L unsorted[idx])
remove L unsorted[idx]
return inner sort(L unsorted, L sorted)

end function
function SELF SORT(L)

return inner sort(L, [])
end function

2.4 real rand int

Many algorithms require stochastic input to function, and thus
rely on random number generators. However, these are typically
pseudorandom number generators, and anyone who has taken Latin
or Greek or something knows that pseudo means false. To improve
the quality of our code, we want real random numbers, and provide
them using the following algorithm that leverages real humans to
generate random numbers.

This process, shown in Algorithm 4, uses Amazon’s Mechanical
Turk, a website used to hire workers to answer simple surveys. This
algorithm creates a simple webpage with a query for a random

34

220

Figure 1. Example survey for real rand int(1, 42).

integer (see Figure 1), posts this query to Mechanical Turk, and
waits until a human answers and provides an appropriately random
number.2

Algorithm 4 An algorithm to provide real random integers

function REAL RAND INT(a, b)
page← create site(a, b)
posting ← post to mturk(page)
while TRUE do

result← query(posting)
if posting is not NULL then

return result
end if

end while
end function

2.5 aggressive ping

A standard way to test whether one can connect to a web server
is to ‘ping’ it: sending an intermittent packet to an IP address and
waiting for a response from that server. However, each individual
ping can be unreliable, as packets can be dropped either on the way
out or as they return, and the time to respond can vary depending on
the route the packet takes. We solve these problems by sending out
a number of pings from a large number of servers, and aggregating
results over all of them, as described in Algorithm 5.

Algorithm 5 An algorithm to aggregate a large number of pings

function AGGRESSIVE PING(ip)
B ← activate botnet(N = 10, 000)
while TRUE do

pings← []
for b ∈ B do

p← ping(b, ip)
pings← append(pings, p)

end for
result← count true(pings)/count(pings)
print result

end while
end function

Note that this algorithm typically finds that websites are up and
stable for a few seconds, followed by a sustained failure to respond.

2.6 endless loop

Ever stand at the edge of a dark pit, and you drop a pebble in, but
it’s so far down that you can’t hear it hit anything, and you think
to yourself with amazement, “Wow! I wonder if this pit goes on
forever!”? Running Algorithm 6 will give you the same feeling,
but nerdier.

2 Note that because we forgot to add code to confirm that the number entered
is within the range provided in the function, there are no guarantees that the
function returns a value in this range, or even is a number at all. We also
enable code injection by design in case participants would like to write a
function to generate their random number.

Algorithm 6 An algorithm to loop endlessly

function ENDLESS LOOP

while TRUE do
end while

end function

2.7 recursive endless loop

If Algorithm 6 is like dropping a pebble down a mineshaft, Algo-
rithm 7 is like dropping a nuclear bomb into a black hole while
heavy metal is blasting.

Algorithm 7 An algorithm to loop endlessly, endlessly

function RECURSIVE ENDLESS LOOP

while TRUE do
do this(recursive endless loop)

end while
end function

2.8 halts

A fundamental theorem of computer science is the undecidability
of the “halting problem” [5]. This theorem states that it is impos-
sible to write an algorithm that takes another function as input and
outputs whether or not that function halts. Using Algorithm 8 as an
existence proof, we show that this fundamental theorem is wrong.

Algorithm 8 An algorithm to test whether a function halts or not

function HALTS(f)
running ← TRUE
spawn process P , running do this(f)
while running do

if has ended(P) then
return TRUE

end if
end while
return FALSE

end function

Note: do not call this function on recursive endless loop. We
can neither confirm nor deny that this function halts, but it has been
running on our AWS server farm for two weeks without providing
a definitive answer, costing us over $10, 000 so far. Nonetheless,
this is a small sacrifice for scientific knowledge.

2.9 professor coding

If you are reading this, you are likely either a beginning computer
science student, or a professor past their prime who is trying to
figure out how to code for that one class those bean-counters in the
department are still making you teach. And if it’s the later, we get
it: when you were a grad student, even C was a luxury, and you
don’t have time to learn Snake or Porch or Jessica or whatever the
kids are using these days. The good news is there is a simple way
to turn your ideas into code automatically.

This process, shown in Algorithm 9, is straightforward: simply
present your idea to a graduate student, wait an appropriate amount
of time, and you should be magically provided with the code. If this
fails, not to worry, you can repeat the process with other graduate
students. Depending on your intended lab culture, this loop over
graduate students can be parallelized for efficiency. If you loop
through all graduate students and the code is not yet produced,
clearly it’s not a problem with your idea, so it must be the graduate
students; in this case, replace your graduate students and try again.

221

Algorithm 9 An algorithm to transmute ideas into code

function PROFESSOR CODING(idea, graduate students)
for student ∈ graduate students do

present(idea, student)
while time < deadline do

code← query(student)
if code is not NULL then

return code
end if

end while
end for
new students← replace students()
return professor coding(idea, new students)

end function

3. Related work

We believe that these algorithms are unique and thus there is no
comparable work. However, for the sake of padding our numbers
and increasing the impact factor of Sigbovik, here we cite a number
of our own papers published previously and simultaneously in this
conference [1–3, 6].

4. Disclaimer

By even looking at this paper, you are releasing the authors from le-
gal liability due to any adverse effects of running these algorithms,
including, but not limited to, computer explosions, FBI raids, ge-
netically modified super-spiders, or awakening the elder gods of
chaos.

References

[1] B. Egger and M. Siegel. Honkfast, prehonk, honkback, prehonkback,
hers, adhonk and ahc: the missing keys for autonomous driving. SIG-

BOVIK, 2020.

[2] B. Egger, K. Smith, and M. Siegel. openCHEAT: Computationally
helped error bar approximation tool-kickstarting science 4.0. SIG-

BOVIK, 2021.

[3] B. Egger, K. Smith, T. O’Connell, and M. Siegel. Action: A catchy
title is all you need! SIGBOVIK (under careful review by very talented,

outstanding reviewers), 2022.

[4] K. Smith and B. Egger. (un)helper functions. SIGBOVIK (under careful

review by very talented, outstanding reviewers), 2022.

[5] A. M. Turing et al. On computable numbers, with an application to the
entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[6] M. Weiherer and B. Egger. A free computer vision lesson for car
manufacturers or it is time to retire the erlkönig. SIGBOVIK (under

careful review by very talented, outstanding reviewers), 2022.

222

A sometimes-accurate O(1) search algorithm

A College Freshman, Quite Useful Institute of Technology (QUIT), Somewhere, USA

Abstract – Search algorithms are used to find things.

That’s what they’re for, it’s kinda in the name. The

computer has to do work to find the things with search

algorithms, and we want the computer to do less work.

We thought of a way the computer could do a very

small amount of work. Unfortunately this also makes the

computer very bad at the searching part. Fortunately,

what the algorithm lacks in accuracy and general search

functionality, it makes up for in speed and simplicity.

I. INTRODUCTION

Do I really have to explain search algorithms again? It’s not
like anyone reading this doesn’t know what they are. Fine.

Search algorithms are when the computer tries to find
a specific value inside of another thing. Like an array or
something like that. For an unsorted array, the best search
algorithm is a linear search, which has to step through every
element of the array, and, shockingly, runs in linear time O(n).

Our method strives to improve this algorithm by sacrificing
just a bit of functionality to obtain constant-time searching,
regardless of the size of the inputted container.

II. THE (VERY COMPLICATED) ALGORITHM

Running a search algorithm in O(1) time might seem
logically impossible at first glance. But we’ve put a lot of
thought into this problem, and determined it is in fact possible,
even easy. The reason why the task seemed impossible before
is because computer scientists are too concerned with the
search algorithm being actually functional. How foolish.

We’ve devised a technique that bypasses any former
limitations of search algorithms, such as the need to pick
through multiple elements of the container, the need for the
algorithm to result in the correct answer, or even an answer at
all.

In contrast to other search algorithms, the algorithm devised
in this paper is incredibly simple; rather than "search" through
the array, it simply checks if the first element is the target. If
it is, the algorithm returns that spot in the array, otherwise,
reports that the item is not found.

Now, you might be thinking, "Wait, this will only work for
length-1 arrays, or if the element is in the first index. How
is this even a search algorithm? Of course it runs in O(1)
time, you–" and that’s all you’ll get out before I hit you with a
baseball bat.1

III. METHODOLOGY

At first, the implementation of this was difficult, taking
many arduous hours and hundreds of attempts to get
the functionality working. While initial implementations

1 Don’t worry, it won’t hurt. I’m a CS student.
2 So apparently piles are a real data structure. Huh. I would like to reiterate
that as a first-year undergraduate student, I know nothing.

measured hundreds of lines long, our final working
implementation was able to be greatly simplified. The C
implementation is shown below:

1 int search(int* array , int target) {

2 int index = 0;

3 int searching = array[index];

4 int difference = searching - target;

5

6 if (difference != 0)

7 return -1;

8 else

9 return index;

10 }

11

Note that despite the input array type being int, this
algorithm works with any datatype, and the concepts discussed
in this paper can easily be applied to a variety of data
structures, including Trees, Heaps, Piles2, and Sand dunes.

IV. RESULTS

Array Size Time (ns)

1 0
5 0
10 0
102 0
103 0
104 0
105 0
106 0

TABLE I

Showing the speed of the algorithm, run on an 8-core AMD
Ryzen CPU. As you can see, it’s very fast, and the time does

not increase with the size of the array. Or my code was
broken, which is also likely.

V. CONCLUSIONS

The algorithm works, and runs in constant time; when
called with arrays of various sizes according to TABLE 1, the
search time stayed the same. Whether or not the result was
correct is irrelevant, because it was fast.

Of course, this approach does have some drawbacks;
namely if, for some reason, you do want your searches to
actually "work". Future research should look into applying
this technique in ways that will lead to a higher success rate,
such as checking the first two elements, or perhaps even the
first three.

ACKNOWLEDGEMENTS

I would like to thank some people for supporting me in the
arduous writing of this article, some other people for making
me aware SIGBOVIK exists, and I would also like to thank
this very serious conference for existing.

35

223

224

Mathematic Retreats

36 Improved Data and Instruction Locality in Long Division

Isaac Grosof, Isaac Grosof

Keywords: performance, division, locality, data, instruction

37 The New New Math: using sentiment analysis of mathematics
word problems to gauge children’s reactions to teaching 8-bit
floating point arithmetic for the new California public school
math curriculum

Lee Butterman

Keywords: education, early childhood education, won’t someone
think of the children, won’t someone think of the chiiiii-
iildren, new math, California math education guidelines,
data science, calculus, graphics processing units, dozens
of petaflops, sentiment analysis, numerology, fear of Ara-
bic numerals, 8-bit floating point

38 Infix Modifiers for Flexible Multiplication

Jim McCann

Keywords: multiplication, punctuation: *, infix, IMMs

225

IMPROVED DATA AND INSTRUCTION LOCALITY

IN LONG DIVISION

Isaac Grosof
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213
igrosof@cmu.edu

Isaac Grosof
Computing Hardware

March 18, 2022

ABSTRACT

Long division, as with many algorithms with “long” on the name, suffers from poor practical
performance across a wide variety of computing hardware (schoolchildren, typically). We propose a
novel implementation of a long-division-style algorithm with greatly improved data and instruction
locality, leading to superior performance over the traditional algorithm, particularly in the asymptotic
regime.

1 Introduction

Long division is taught to millions of children across the world [7]. The algorithm dates back 1149, first given in “The
Shining Book on Calculation” by Ibn Yahya al-Maghribi al-Samaw’al [9, 1]. Its modern incarnation was given in Henry
Brigs around 1600 [2].

Unfortunately, the traditional long-division implementation has needlessly poor instruction and data locality, leading to
poor performance [4]. It shares this poor performance with many algorithms that feature “long” in the name, such as
the dreaded “long multiplication”, which prior work has shown should be replaced by lattice multiplication [5].

Motivating the need for an improved long division algorithm are programs written by Matt Parker, who routinely
employs long-division within complex computations. These computations often exhibit poor results despite enthusiastic
computational hardware [8], as compared to prior work using (presumably) superior algorithms [10].

2 Failings of traditional long division

To improve long division, we must first understand the sources of its poor performance. In principal, performance need
not be poor, as the algorithm requires only a constant number of operations per output digit. Nonetheless, in Fig. 1, we
see the remains of the typical long-division misadventure.

The poor data locality is evident in the quadratic use of paper and/or screen space. In the asymptotic limit (which is all
that matters in algorithm design), the runtime will be dominated by moving back and forth between disconnected parts
of the workspace, exhibiting horrendous data locality. This poor data locality is a symptom of premature optimization:
The result of each subtraction operation is placed in its traditional location, under the multiplication result, forcing
a down-and-left data movement over the course of execution. Our algorithm removes this premature optimization,
resulting in a major improvement.

Poor instruction locality is more subtle, but no less egregious. The hardware is expected to constantly cycle between
four operations:

• Multiplication

• Subtraction

36

226

Figure 1: The traditional long-division algorithm [3]
.

• Comparison (checking that the multiple of the divisor produced is the largest that is smaller than the current
quotient).

• Recording the output

By constantly wiping the instruction cache, the hardware is forced to continually re-access the algorithm for the specific
desired operation, wasting precious cycles.

3 Aside: Short division

A rarely used alternative to long division is short division [6], which improves upon the poor data locality of traditional
long division, but at the cost of extreme register pressure, overtaxing typical hardware’s short-term memory to the point
where errors become common, and double checking is required.

In addition, short division requires higher data density, requiring writing between the digits of previously written
numbers. Such density requirements run into hardware limitations and readback fidelity issues, again worsening
performance. Worse yet, density requirements scale with the size of the dividend, becoming wholy unreadable in the
asymptotic limit.

Short division also does nothing to alleviate the poor instruction locality of long division.

While short division presents an interesting alternative to long division, it too suffers from similar failings, despite the
ambitious name.

4 Our implementation of long division

We proceed via the following steps:

• Create a lookup table caching the multiplicand multiplied by each digit. Repeated addition can be used in
place of multiplication.

• Perform the following pair of steps repeatedly:

– Perform the “compare and subtract” operations, but write each difference to the right of the previous
difference, rather than below, as is traditional.

– Append the next digit of the quotient to the difference.

• When the termination condition is reached, record the output.

A sample execution performed on the second author is shown in Fig. 2, showing the computation of 1
29 until repetition.

The improvement in data locality is enormous - the distance between the inputs and outputs of a given computational
step is typically a single cell (using king’s adjacency), with the only common exception being the multiplication table.

2

227

Figure 2: Our long division implementation, used to exactly compute 1
29

Likewise, we demonstrate a major improvement in instruction locality. Within the hot loop of the program, the only
operations performed are “compare and subtract”, removing both the complicated multiplication operation, as well as
the output operation, which formerly required massive data movement.

Notably, these improvements are achieved without any new overheads. In particular, neither register pressure nor data
density requirements are increased beyond that exhibited by the traditional long division implementation.

5 Experimental results

The test hardware showed much performance and more enjoyment using our revised algorithm. For further verification,
we intend to port our algorithm to a wide variety of computational hardware, such as a bright five-year old.

6 Conclusion

We developed a novel implementation of the long division algorithm, achieving far superior performance through
improved instruction and data locality. We recommend that this implementation replace the traditional long division
algorithm, overthrowing centuries of educational tradition in one stroke. In future work, we plan to overturn more of
the arithmetic curriculum, there’s probably lots of other outdated algorithms in there.

References

[1] Ibn Yahya al-Maghribi al-Samaw’al. The Shining Book on Calculation. 1149.

[2] Henry Briggs. Oxford Reference.

[3] Chad Flinn and Mark Overgaard. Math for Trades: Volume 1. BCcampus, 2020.

[4] Isaac Grosof. Personal experience, 2003.

[5] Isaac Grosof and Isaac Grosof. On the time complexity of the verification of the factorization of 267 − 1.
SIGBOVIK, April 2019.

[6] Lenore John. The effect of using the long-division form in teaching division by one-digit numbers. The Elementary
School Journal, 30(9):675–692, 1930.

[7] David Klein and R James Milgram. The role of long division in the K–12 curriculum, 2000.

[8] Matt Parker. Can we calculate 100 digits of Ã by hand? The William Shanks method.

[9] Liz Rogers. Islamic mathematics. August 2008.

[10] William Shanks. On the extension of the numerical value of Ã. Proceedings of the Royal Society of London,
21(139-147):318–319, 1873.

3

228

The New New Math: using sentiment analysis of

mathematics word problems to gauge children’s

reactions to teaching 8-bit floating point arithmetic

for the new California public school math curriculum

Lee “just a very concerned parent” Butterman
leebutterman@gmail.com

Abstract

California’s new mathematics curriculum plans to replace calculus with data sci-
ence. New GPUs used in data science/machine learning perform 32 quadrillion
arithmetic operations a second, at 8-bit floating point precision. Students should
know how to harness this power, with fundamentals like 10 × 10 = 96, and
16 + 1 = 16, so we introduce a multiplication table for FP8. We can use senti-
ment analysis from large language models to compare negative/positive sentiments
around ‘ten times ten makes ninety six’ versus ‘ten times ten makes one hundred’,
and we find numerologically significant patterns in the results. Further, sentiment
analysis indicates that ‘ten times ten makes ninety six’ is a much more positive
sentiment than ‘10 x 10 = 96’, corroborating our national fear of Arabic numerals
and our large-scale adoption of word problems.

1 New New Math: Replacing calculus with data science

Figure 1: California new math guidelines, figure 5.2, articulates attending to precision.

California’s guidelines [Commission, 2022] for its newest incarnation of New Math [Lehrer, 1965]
are exciting. Instead of a child learning outmoded arcana like “the slope of a curve” or “piecewise
differentiable functions”, the child of tomorrow will learn new fresh relevant skills like autograd and
torch.nn.ReLU.

SIGBOVIK 2022 (co-located at super-spreader event COVID19.BA.2.20220408.Allegheny), Pittsburgh, PA.

37

229

(a) 10.2 kW max, 32 petaFLOPS FP8, 0.24
petaFLOPS FP64, 8 rack units

(b) 8.88 kW max, 0 petaFLOPS FP8, 0
petaFLOPS FP64, 6+ seats

Figure 2: Equivalent energy usage for the affluent prosumer, different computation abilities

The guidelines about data science, in Chapter 5, emphasize keeping up to date with software and
hardware advances: “Familiarity with technology and modern tools should progress through the
grades.” One long-useful tool [Krizhevsky et al., 2012] for data science/machine learning is the GPU.

Current GPUs are exceptionally powerful. The new H100 gpu [NVIDIA, 2022] can execute 0.03
quadrillion 64-bit floating point operations per second, and 4 quadrillion 8-bit floating point operations
per second, and comes in a desktop form factor with 8 GPUs that uses more power than the largest
Jacuzzi model [Jacuzzi, 2022] available.

Modern programmers are sufficiently surprised at the lack of precision of FP64 computation [Wiffin,
2022] in practice that we expect children to encounter such surprises in their schooling. The new
H100 can execute over a hundred times as many FP8 operations per second as FP64, and FP8 is
significantly less precise than FP64, trying to approximate all real numbers with only 256 numbers
instead of 16 billion billion numbers.

2 A gentle foray into floating-point math

There are infinitely many real numbers, and some real numbers require infinite precision, and
computers only have limited space. Some common representations of numbers are familiar, like
an 8-bit unsigned integer representation (‘uint8’), where the dynamic range of the representation is
0, 1, . . . , 254, 255.

FP64, 64-bit floating point, “double-precision” floating point, is well-established, since 1984, and
is a slightly more complicated representation. Floating point representations are determined by
(sign width, exponent width, mantissa width, exponent bias), where exponent and mantissa are
unsigned positive integers from 0 to 2width−1. Specifically, a finite floating point number with
sign/exponent/mantissa (S,E,M) and implicit bias B is interpreted as

−1S × 2E−B × sign(E).M

where sign is the signum function, twice the Heaviside step function minus 1. When E=2width−1,
the maximum exponent, and M = 0, that number represents −1S ×∞, ±∞. When E=2width−1

and M > 0, that number represents a Not A Number number.[Plato, 384 BCE]

The FP64 representation is a (1-bit sign, 11-bit exponent, 52-bit explicit mantissa, -1023 bias) floating
point representation, and can represent every integer from −253 to 253 (the sign(E).M is a 1+52, or
53 bit number). The FP8 representation is a (1-bit sign, 5-bit exponent, 2-bit explicit mantissa, -15
bias) number, and between one and twenty can only represent 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6,
7, 8, 10, 12, 14, 16, and 20.

Note that FP8 only has 256 different real numbers to express all values from −∞ to +∞. With
this paucity of choice, 3.5 × 3.5 ends up as 12, 3 × 3 = 8, 16 + 1 = 16, and so on. This math is
particularly useful in computation of weights of a neural network, where speed wins over accuracy
often, and we can compute a hundred times as much arithmetic according to the new modern rules of
16+ 1 = 16 than according to the antediluvian rules of 16+ 1 = 17. We think the child of tomorrow
will be at an advantage knowing another multiplication table.

2

230

FP64× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

Figure 3: 1-10 multiplication table, with FP64 precision.

FP8× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 8 10
2 2 4 6 8 10 12 14 16 16 20
3 3 6 8 12 16 16 20 24 28 32
4 4 8 12 16 20 24 28 32 32 40
5 5 10 16 20 24 32 32 40 48 48
6 6 12 16 24 32 32 40 48 56 64
7 7 14 20 28 32 40 48 56 64 64
8 8 16 24 32 40 48 56 64 64 80
9 8 16 28 32 48 56 64 64 80 96

10 10 20 32 40 48 64 64 80 96 96

Figure 4: 1-10 multiplication table, with FP8 precision.

3 Times tables, 1 to 10, at 8-bit and 64-bit floating point precision

This FP8 multiplication is refreshingly new, and thrillingly different from the multiplication table
of a hundred years ago. There are only twenty two numbers to remember, and zero prime numbers
lurking stealthily between the larger numbers in the multiplication table. We now turn to study how
this new FP8 precision is emotionally received.

4 Understanding curriculum change: comparative sentiment analysis of

math equations

Before introducing such a large change to the curriculum, it would be irresponsibly unfair not to
know definitively how these changes impact the educational experience. Therefore, we perform an
expensively thorough sentiment analysis on the resulting math equations, in several dimensions.

On a 1-to-240 square grid, we perform sentiment analysis for FP8 multiplication in English (‘ten times
ten makes ninety six’) versus FP64 multiplication in English (‘ten times ten makes one hundred’).
We also perform sentiment analysis for FP8 multiplication in Arabic numerals (‘10 × 10 = 96’)
versus FP64 in Arabic numerals (‘10× 10 = 100’). We also perform zero-shot question answering
with masked language models, providing completions to masks like Background: ten times ten
makes ninety six. / Q: Is math fun? / A: <mask>. This sentiment analysis is using distilbert-base-
uncased-finetuned-sst-2-english, via a Huggingface pipeline. This masked language modeling is
using distilroberta-base, also via a Huggingface pipeline.

Our results support the numerological emotional significance of certain numbers. When plotted on
log-log axes, significantly positive or negative emotions jump out as black or white diagonal stripes
respectively. We encourage teachers to treat numbers that multiply to these products with all the
appropriate care when introducing them in class, particularly to younger children.

3

231

4.1 FP8 vs FP64 English sentiment comparison: ‘ten times ten makes ninety six’ versus ‘ten
times ten makes one hundred’

(a) FP64: sentiments at (10,9) are for ‘nine
times ten makes ninety’

(b) FP8: sentiments at (10,9) are for ‘nine
times ten makes ninety six’

(c) FP8/FP64 sentiments, clipped at 0.5 (white) to 2 (black)

Figure 5: Sentiment analysis of multiplication tables from 1 to 240, at FP8 and FP64 precision,
in plain English, individual and comparative. White is the minimum, and black is the maximum.
Logarithmic axes. Note the light/dark diagonal bands that indicate aversion/fondness towards pairs of
numbers that share a product.

As expected in Figure 5, the comparative sentiments are close (grey) for smaller numbers, because
of the greater accuracy of floating point representations closer to zero. Note how the individual
sentiments are both markedly less positive past the 210 diagonal, indicating a deep human aversion
to large numbers. Note the clear white stripes at FP8 for products of 211 and 213, among others,
showing the power of the stealthy large prime number.

Also note that many rules of arithmetic do not apply to FP8 calculations, like associativity over
addition. Similarly, sentiment is not commutative over multiplication. The sentiment of ‘twenty five
times seventy five makes one thousand seven hundred ninety two’ is only 81.96% positive, while
the sentiment of ‘seventy five times twenty five makes one thousand seven hundred ninety two’ is
94.22% positive. That increase of positivity is the dark band at the top of both images.

Instructors are encouraged to use numbers in this band as Preferred Multipliers for the multiplicands
of their choice. Historically, mathematics instruction has treated multiplication as commutative, with
minimal consideration towards directing numbers to the multiplier versus the multiplicand. Sentiment
analysis shows that pupils may react differently to different rearrangements of equations, and may
achieve higher test scores and may be more engaged when encountering a Preferred Multiplier.

4

232

4.2 FP8 vs FP64 Arabic numeral sentiment comparison: ‘10×10=96’ versus ‘10×10=100’

(a) FP64: sentiments at (10,9) are for ‘9 x 10
= 90’

(b) FP8: sentiments at (10,9) are for ‘9 x 10
= 96’

(c) FP8/FP64 sentiments, clipped at 0.5 (white) to 2 (black)

Figure 6: Sentiment analysis of multiplication tables from 1 to 240, at FP8 and FP64 precision, in
Arabic numerals, individual and comparative. White is the minimum, and black is the maximum.
Logarithmic axes. Note the consistent light/dark diagonal bands that indicate aversion/fondness
towards pairs of numbers that share a product.

Similarly to Figure 5, in Figure 6 the comparative sentiments are close (grey) for smaller numbers,
because of the greater accuracy of floating point representations closer to zero, and note further that
the grey square at the lower right is much smaller, indicating a much more perceptible difference to
the sentiment of numbers in number problems compared to words in word problems.

Note also how much lighter the individual sentiments are: this means that there is much more negative
sentiment towards numbers than towards letters. This aligns to the innumerate bigoted xenophobia
[Akyol, 2019] that causes Americans to poll negatively when asked about Arabic numerals.

Note the black stripe in the FP8 around products like 80 and 96. The sentiment of ‘6 x 16 = 96’ is
90.06% positive, whereas the sentiment of ‘8 x 16 = 128’ is 72.85%. Note further the FP8 stripes at
products of 211 and beyond.

Further note that there is a much fainter and much larger band for Preferred Multipliers for FP8
(and even FP64), from just over 26 to just over 27, and that there is a faint band of Preferred
Multiplicands from ≈35 to ≈50. Instructors are urged to not carelessly reuse Preferred Multipliers
between numerical lessons and the surrounding discussion, and to not carelessly choose Preferred
Multiplicands, and to understand how their choices may impact their pupils’ weekly standardized test
scores.

5

233

4.3 FP8 vs FP64: do you like math? Math as fun+unpleasant horror movie

The next careful and thoughtful investigation is the relative fun of mathematics, while using FP8
precision versus FP64. For our survey, we computed the most likely ways to fill a mask in the
following template string: Background: five times five makes twenty four¶¶Q: Do you like math?¶A:
<mask>, substituting appropriate numbers for the multiplier, multiplicand, and the product. The
masks filled only in a positive or negative assertion (these are high quality Large Language Models
[Bender et al., 2021] after all). The value at each product is 0.5 ± the highest probability token,
positive if positive, negative if negative.

(a) FP64: sentiments at (10,9) are for ‘Back-
ground: nine times ten makes ninety’

(b) FP8: sentiments at (10,9) are for ‘Back-
ground: nine times ten makes ninety six’

(c) FP8/FP64 sentiments, clipped at 0.5 (white) to 2 (black)

Figure 7: Mask fills for survey data from 1 to 240, at FP8 and FP64 precision, in English letters,
individual and comparative. White is the minimum, and black is the maximum. Logarithmic axes.
Note the consistent light/dark diagonal bands that indicate how miserable/enjoyable that product of
numbers colors the attitude toward mathematics.

Note that 10 is what we refer to as both a Joyless Multiplier and Joyless Multiplicand, because its
row and column are much lighter (less fun) than their surrounding values.

These results imply that mathematical statements have negative sentiment, and positive fun, and are
more fun the larger they are, even as they are negative sentiments as the multiplier and multiplicand
grow, like horror movies with entertainingly enormous monsters, or gargantuan public speaking
events, or other such formative experiences. This formativity aligns with our idea of a mathematics
education.

6

234

5 Conclusion

New hardware-accelerated numerical representations will shape how we teach children mathematics,
data science, machine learning, and more. The newest, FP8, is on a GPU that can compute 32 million
billion arithmetic operations per second with numbers in FP8 format. We can use sentiment analysis
to show that mathematics according to FP8 rules is not strongly different in emotional state than
according to FP64 rules. Sentiment analysis also shows how much we prefer numbers spelled out,
which suggests new life-long learning opportunities. Masked language modeling shows that we find
mathematics fun, and a promising future direction would be to compute Net Promoter Scores per
mathematical statement with these large language models, to keep a finger on the pulse of the youth.

References

Mustafa Akyol. Who’s Afraid of Arabic Numerals? 2019. URL https://www.nytimes.com/
2019/06/04/opinion/arabic-numerals.html.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
Dangers of Stochastic Parrots: Can Language Models Be Too Big? m. In Proceedings of the
2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Instructional Quality Commission. 2022 Revision of the Mathematics Framework. 2022. URL
https://www.cde.ca.gov/ci/ma/cf/.

Jacuzzi. J-495 Spacious Designer Entertainer’s Hot Tub. 2022. URL https://www.jacuzzi.com/
en-us/j-495-spacious-designer-entertainers-hot-tub/J-495.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. NeurIPS, 2012.

Tom Lehrer. New Math. 1965.

NVIDIA. H100 Tensor Core GPU. 2022. URL https://www.nvidia.com/en-us/
data-center/h100/.

Plato. Euthydemus. 384 BCE.

Erik Wiffin. 0.30000000000000004. 2022. URL https://0.30000000000000004.com/.

7

235

Infix Modifiers for Flexible Multiplication

Jim McCann∗

Carnegie Mellon University

1 float a = dot(cross(

elementwise (vec

{1,1,0}, vec

{1 ,2 ,3}) , vec

{0 ,0 ,1}) , vec

{1 ,0 ,0});

1 float a = vec {1 ,1 ,0} *

element () * vector

{1 ,2 ,3} * cross () *

vec {0 ,0 ,1} * dot ()

* vec {1 ,0 ,0};

1 float a = vec {1 ,1 ,0}

2 x vec {1 ,2 ,3}

3

4 x vec {0 ,0 ,1}

5

6 x vec {1 ,0 ,0};

vanilla infix by-line

Figure 1: Infix multiplication manipulators allow programmers to effortlessly switch the sense of the multiplication operator,
and – with a few macros – allow a natural line-number-dependant semantics for multiplication.

Abstract

Definition of a sufficiently flexible multiplication operator
remains an acknowledged grand challenge for programming
languages. In this paper, we describe infix multiplication mod-
ifiers (IMMs). IMMs allow flexible, local, programmer-driven
selection of multiplication operators. We demonstrate the fea-
tures of our basic IMM package along with a by-line extension
which allows implicit multiplication type detection.

1 Introduction

As recently observed at the prestigious and high-impact SIG-
BOVIK conference [McCann, 2k22], definition of a flexible
and sensible multiplication operator in a modern program-
ming language is difficult. In this paper, we describe how to
push the duty of figuring out what multiplication ought to
mean off on programmers instead of making a decision in a
consistent way in the standard library.

This allows programmers to write simple statements like:

1 float a = vec {1 ,1 ,0} * dot () * vec

{1 ,2 ,3};

Instead of the much more cumbersome:

1 float a = dot(vec {1,1,0}, vec {1 ,2 ,3});

Indeed, with the right macros, the infix operator itself can
become implicit:

1 float a =

2 ¦ vec {1 ,1 ,0}

3 ¦ ¦ x vec {1 ,2 ,3};

How do we achieve this? Read on, dear listeners, read on.

∗ix@tchow.com

2 Implementation

Our infix multiplication modifier system is designed to switch
between multiplication operators effortlessly.

In our paradigm, a multiplication operator is a struct that
provides a ::mul static member:

1 struct dot {

2 ¦ static float mul(vec const &a, vec

const &b) {

3 ¦ ¦ return a[0] * b[0]

4 ¦ ¦ + a[1] * b[1]

5 ¦ ¦ + a[2] * b[2];

6 ¦ }

7 };

Further, a multiplication operator must be blessed by spe-
cializing a template named has_mul :

1 template < typename T > struct has_mul ;

So, to indicate that dot is a multiplication, we write:

1 template < > struct has_mul < dot > {

2 ¦ enum { value = true };

3 };

With these preliminaries out of the way we can proceed to
the core of our system, which is a pair of templated over-
loads of operator* . The first matches expressions like
val * dot() and absorbs the multiplication type into a
template parameter of a wrapped value:

1 template < typename MUL , std ::

enable_if_t < has_mul < MUL >::value ,

bool > = true >

2 mul_vec < MUL > operator *(vec const &a,

MUL const &m) {

38

236

3 ¦ return mul_vec < MUL >{a};

4 }

Where mul_vec< > is a template that hangs onto a value
by reference and stores a multiplication type in its type:

1 template < typename MUL >

2 struct mul_vec {

3 ¦ vec const & wrapped ;

4 };

The second operator* overload retrieves the reference
and multiplication type from a mul_vec and actually per-
forms multiplication:

1 template < typename MUL >

2 auto operator *(

3 ¦ mul_vec < MUL > const &m,

4 ¦ vec const &b

5) -> decltype (MUL :: mul(m.wrapped , b))

{

6 ¦ return MUL :: mul(m.wrapped , b);

7 }

Notice, particularly, the use of an auto return type to allow
deducing the return type from the particular ::mul static
member function being invoked.

2.1 Hiding Behind Macros

Of course, as many programmers know, the speed of a pro-
gram is directly proportional to the number of characters in
its source code. Thus, the popularity of complex type infer-
ence engines. Besides, why say what we mean when you can
instead trust others to run a complex series of rules to deduce
it?

Using the infix modifiers above, we can define a macro that
automatically determines the type of multiplication (which,
unfortunately, we need to write x) based on the line number:

1 # define x * indexed_mul < __LINE__ % 3

>:: type () *

Which, in turn, makes use of a template to fetch the proper
IMM:

1 template < int I >

2 struct indexed_mul ;

3 template < > struct indexed_mul < 0 > {

using type = dot; };

4 template < > struct indexed_mul < 1 > {

using type = cross; };

5 template < > struct indexed_mul < 2 > {

using type = elementwise ; };

And allows writing simple, readable code like:

1 //do not remove this comment

2 std :: cout

3 ¦ << "a * b: " << a x b << ’\n’

4 ¦ << "a . b: " << a x b << ’\n’

5 ¦ << "a x b: " << a x b << std :: endl

;

Of course, making the meaning of code depend on its posi-
tion in the file may seem questionable until you realize that (a)
this is clearly the use case for which #include was designed,
and (b) brittle is just another word for elegant.

3 Discussion

Though the examples in this paper are restricted to a vec

value type, it would be straightforward to add a second tem-
plate parameter to mul_vec (and, perhaps, change its name)
to support associating any multiplication modifier with any
value type.

A middleground between writing * dot() * and care-
fully checking line numbers could be found in renaming dot

to dot_t and having a constexpr dot_t dot; available,
such that * dot * is valid.

Note that this pattern of absorbing a computation tree into
the type of an object that is eventually decayed into the com-
puted result is not novel; it is a somewhat common trick in
building (e.g.) efficient fused operations and – probably, but
who cares about ’em – autodiff pipelines. As such, this joke
could almost certainly go deeper, but I leave that for future
work.

Acknowledgments

Early and often.

Availability

Source code for this project is available via e-mail request to
the first (and only) author. It is not available publically for
fear someone might actually think this is a good idea.

References

[McCann, 2k22] McCann, J. (2k22). Grand challenges in
programming languages position paper: What, if anything,
does multiplication even mean? In SIGBOVIK 2k22. http:

//sigbovik.org/2022/proceedings.pdf.

237

238

Aesthetics

39 Real-Time Foliage Simulation

Emma Liu, Sanjay Salem, Daniel Zeng, Mia Tang, Hesper Yin, George
Ralph, Anne He, Max Slater

Keywords: real-time, simulation, graphics, rendering

40 Using deep CNNs to prove that I look better than Tom Cruise
and Shah Rukh Khan combined

Sagar Bharadwaj Kalasibail Seetharam

Keywords: CNN, Machine Learning, Image Compression

41 EBMP: Efficient Bitmap Encodings on Ethereum Virtual Machines

0XMOSTIMA, Yunsong Liu and Peiyuan Liao

Keywords: still image coding, blockchain, smart contracts, non
fungible tokens

42 A Machine Learning Approach To Classifying Cuteness

Anoushka Shrivastava

Keywords: machine learning, classification, cuteness

43 Attractiveness Learning: A General Solution for the Cold-
Start Problem

Yajuan Gu and Yuxun Lu

neural network, attractive mechanism, recommender system, cold-
start problem

239

Real-Time Foliage Simulation

Emma Liu Sanjay Salem Daniel Zeng Anne He
Mia Tang Hesper Yin George Ralph Max Slater

Algorithm We explain our two-step process below:

1 Go outside.

2 Touch grass.

39

240

Using deep CNNs to prove that I look better than Tom Cruise and Shah

Rukh Khan combined

Sagar Bharadwaj
Carnegie Mellon University

Abstract

Convolutional Neural Networks (CNN) have been used
in the past to solve problems in many areas such as image
classification, video analysis and drug discovery. How-
ever, no past work has considered using CNNs to prove
that I look better than Tom Cruise (TC) and Shah Rukh
Khan (SRK) combined. In this paper, I use a novel deep
CNN architecture, Image2Float, and conduct surveys to
prove conclusively that I indeed do look better than TC
and SRK combined. 100% of the valid survey partici-
pants answer in the favour of the proof.

1 Introduction

Tom Cruise is a popular American actor and producer
[5]. Shah Rukh Khan is an Indian actor, film producer,
and television personality [4]. Popular public opinion
considers these personalities attractive [2]. Refer to the
Quora threads titled ‘Do you think Shah Rukh Khan is
handsome?’ [1] and ‘Why is Tom Cruise known as the
most good-looking man on the planet?’ [3] for detailed
analyses. This implies, that when they are ‘combined’,
the resultant personality will be drop dead gorgeous.

Image compression has been a long studied problem
in computer science. Methods using deep neural net-
works for image compression have surpassed traditional
codecs, achieving better compression ratio and recon-
struction quality. In this paper, I train a deep CNN, Im-
age2Float, with around 7 million parameters to compress
200 X 200 RGB images down to a single floating point
number, realizing an unprecedented compression ratio of
120000. I urge the readers to ignore the fact that Im-
age2Float was overfit on a set of 10 images, (5 TC + 5
SRK) to obtain these results. Refer to the Appendix for
details on the model architecture, whose design, similar
to most of the past work on Machine Learning, was a
result of hope and randomness.

Figure 1 shows an outline of the main proof. The first

line shows that SRK’s image has been compressed down
to a value of 0.5834 using the trained Image2Float net-
work. TC’s image has been compressed down to a value
of -3.116. The combination (by summation) of the two
encoded values is -2.538. Decoding the combined value
using Image2Float yields the image shown in Figure 2.

I conducted an elaborate survey involving a total of
4 people to rank the image of the fictional personality,
Cruise Khan (CK), in Figure 2 and my own image on an
attractiveness scale from 0 to 10. My image used in the
survey has not been included in the paper to respect the
double blind nature of this prestigious conference. Un-
fortunately, 3 out of the 4 survey participants ranked my
image below CK’s stating, ”There is no face in the world,
real or fictional, that can be uglier than yours”. I, the au-
thor, concluded that these responses are clearly biased
against me and therefore decided to drop them from the
final survey. The only unbiased remaining participant,
me, agree that my own image ranks above Figure 2. This
implies that 100% of the valid survey results agree that
I look better than TC and SRK combined, thereby con-
cluding the proof.

2 Appendix

Model Architecture: Figure 3 shows the layers in Im-
age2Float, along with the number of parameters in each
layer. I (mis)used 2 Nvidia RTX 2080 Ti cards to train
Image2Float for this novel proof.

Code: As per tradition followed in the field, I have up-
loaded my undocumented and unclean code to GitHub
(https://github.com/SagarB-97/Image2Float). I would
like to confirm that the GitHub repository exists just so
the paper can get past the reviewers who seek for an open
source repository. It is practically unusable by the read-
ers unless they have acquired the patience to struggle
with it and set it up, which is only attainable after years
of meditation in the Himalayas.

40

241

Figure 1: Outline of the proof.

Figure 2: SRK and TC combined.

Figure 3: Model summary.

References

[1] Do you think shah rukh khan is handsome?
https://www.quora.com/Do-you-think-Shah-Rukh-Khan-is-
handsome. Accessed: 2022-03-31.

[2] Most handsome faces in the world.
https://www.ibtimes.co.in/most-handsome-faces-world-tom-
cruise-robert-pattinson-hrithik-roshan-others-top-list-check-
705645: :text=ActorAccessed: 2022-03-31.

[3] Why is tom cruise known as the most good-looking man on the
planet? https://www.quora.com/Why-is-Tom-Cruise-known-as-
the-most-good-looking-man-on-the-planet. Accessed: 2022-03-
31.

[4] WIKIPEDIA CONTRIBUTORS. Shah rukh khan — Wikipedia, the
free encyclopedia, 2022. [Online; accessed 31-March-2022].

[5] WIKIPEDIA CONTRIBUTORS. Tom cruise — Wikipedia, the free
encyclopedia, 2022. https://en.wikipedia.org/wiki/Tom Cruise.

242

EBMP: E�icient Bitmap Encodings on Ethereum Virtual Machines

0XMOSTIMA, Penguin Logistics, Leithania

YUNSONG LIU, Carnegie Mellon University, USA

PEIYUAN LIAO, hellsegga, ?

Fig. 1. Popular NFT Projects with On-chain Image: Anonymice [1], Chain Runners [2], Blitmap [3], Nouns [6]

The recent rising interests in Non-Fungible-Tokens (NFT) on cryptocurrency-backed blockchains have prompted a new series

of e�orts aiming to accurately store, read and render images on the Ethereum Virtual Machine (EVM, the software platform

running on one of the leading blockchains, Ethereum), where smart contracts can enjoy "decentralized ownership and control"

at the cost of increased computing spend. In this work, we present an e�cient protocol to encode image data by directly

constructing raw bytes for the device-independent bitmap (DIB) �le format. The main function, implemented in Solidity,

produces a shorter ERC-721-compatible tokenURI string when compared to existing methods while being more optimized in

gas consumption.

CCS Concepts: • Software and its engineering → Software libraries and repositories; • Computer systems organiza-

tion → Peer-to-peer architectures; • Computing methodologies→ Image compression.

Additional Key Words and Phrases: still image coding, blockchain, smart contracts, non fungible tokens

ACH Reference Format:

0xmostima, Yunsong Liu, and Peiyuan Liao. 2022. EBMP: E�cient Bitmap Encodings on Ethereum Virtual Machines. In

SIGBOVIK ’22: Special Interest Group on Harry Q. Bovik, April 8, 2022, Pittsburgh, PA. ACH, 8 pages. http://sigbovik.org/

1 INTRODUCTION

Recently, there have been rising interests in crypto-currency-backed blockchains due to their potential technical

and socio-economical impacts. One type of such systems, pioneered by Ethereum [13], presents itself as "a

decentralized but singleton compute resource," where software developers can write applications, or "smart

contracts," in domain-speci�c languages that are then compiled to bytecode for the virtual machines running on

the "miners" maintaining the blockchain. For Ethereum, popular programming languages for smart contracts

include Solidity [11], and Vyper [12], and the virtual machine is called the Ethereum Virtual Machine (EVM).

Ethereum’s (reasonably) decentralized and immutable nature gives rise to a variety of use cases, one of which

is non-fungible tokens, which are often associated with concepts of digital ownership, scarcity, and the creator

This paper is published under the WTFPL License. You may look it up for what WTFPL means: http://www.wtfpl.net/about/

SIGBOVIK ’22, April 8, 2022, Pittsburgh, PA

2022 Copyright may not be held by the owner/author(s).

http://sigbovik.org/

1

41

243

SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA 0xmostima et al.

economy. From a technical perspective, non-fungible tokens are implemented as an interface with a canonical

application binary interface (ABI) so that any smart contract respecting it is expected to behave in a certain

way (in this case, like a non-interchangeable unit of data). For the case of Ethereum, the standard specifying the

behavior is called ERC-721 [5] with the method tokenURI. It reads as follows:

1 /// @notice A distinct Uniform Resource Identifier (URI) for a given asset.

2 /// @dev Throws if `_tokenId ` is not a valid NFT. URIs are defined in RFC

3 /// 3986. The URI may point to a JSON file that conforms to the "ERC721

4 /// Metadata JSON Schema ".

5 function tokenURI(uint256 _tokenId) external view returns (string);

With the "ERC721 Metadata JSON Schema" de�ned as follows:

1 {

2 "title": "Asset Metadata",

3 "type": "object",

4 "properties": {

5 "name": {

6 "type": "string",

7 "description": "Identifies the asset to which this NFT represents"

8 },

9 "description": {

10 "type": "string",

11 "description": "Describes the asset to which this NFT represents"

12 },

13 "image": {

14 "type": "string",

15 "description": "A URI pointing to a resource with mime type image/* representing

the asset to which this NFT represents. Consider making any images at a width

between 320 and 1080 pixels and aspect ratio between 1.91:1 and 4:5 inclusive.

"

16 }

17 }

18 }

This implies that for an arbitrary client interacting with a smart contract on the EVM that respects the ERC-721

standard, they can expect to get a representation of the underlying data from a non-fungible-token by calling

tokenURI with the respective token ID.

The motivation of this paper came from the observation that many data represented by non-fungible tokens as

of now is images due to its increasing adoption in digital art and speculative consumer brands. Currently, there are

two ways such content is delivered: one is through traditional SaaS and IaaS providers, where tokenURI points

to the address of the content stored on the actual server, either a traditional cloud computing service provider or

a storage-oriented blockchain. This can be seen as a compromise between centralization and decentralization:

while the URL address string is immutable, the integrity and authenticity of the underlying content are not

guaranteed by the consensus mechanism of the blockchains. The alternative approach, which is the subject of

interest for this paper, is to store data directly on blockchain and e�ciently render it using EVM itself. In other

words, the returned string from tokenURI would contain a well-formed ERC-721 metadata JSON without relying

on any 3rd party rendering software or hosted servers. The main bene�t of this approach is data availability

and programmability: not only is the integrity of data guarded by the integrity of the blockchain itself, smart

contracts running on EVM are also aware of such data, where subsequent actions like image transformations

or zero-knowledge proofs on raw pixel arrays would also be possible. On the other hand, storing image data

2

244

EBMP: E�icient Bitmap Encodings on Ethereum Virtual Machines SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA

directly on-chain incurs an orders-of-magnitude extra cost for reading and writing large amounts of data to the

blockchain.

EBMP is a new approach to this problem for non-fungible tokens running on Ethereum Virtual Machines:

e�ciently encode and render bitmaps for ERC-721-compatible smart contracts. While the majority of existing

methods in the literature focus on drawing each pixel as a separate shape in HTML SVG graphics, we propose to

instead directly construct raw bytes in the BMP �le format [7], including the �le header, device-independent

bitmap (DIB) header and the image data, which is then encoded in base-64 and rendered �rst through the

data:image/bmp;base64, mime type available for an <image> in SVG, then the data:image/svg+xml;base64,

mime type available for the image �eld for a ERC-721 compatible tokenURImethod. Our experiments demonstrate

that EBMP produces a much shorter representation for a bitmap that is readable by common NFT platforms

while achieving a considerable reduction in gas consumption compared to existing methods.

2 IMPLEMENTATION DETAILS

The full implementation of the encoding method is available below, with detailed in-line comments. EBMP accepts

an arbitrary RGB image, with height and width divisible by 4 , pixels arranged in row-major order, and �attened

with the three colors (1-byte each) adjacent to each other in red-green-blue order:

1 // SPDX -License -Identifier: GPL -3.0

2 pragma solidity 0.8.11;

3

4 import {Base64} from "./ Base64.sol";

5

6 contract EBMP {

7 function uint32ToLittleEndian(uint32 a) internal pure returns (uint32) {

8 unchecked {

9 uint32 b1 = (a >> 24) & 255;

10 uint32 b2 = (a >> 16) & 255;

11 uint32 b3 = (a >> 8) & 255;

12 uint32 b4 = a & 255;

13 return uint32(b1 | (b2 << 8) | (b3 << 16) | (b4 << 24));

14 }

15 }

16 function encode(

17 uint8 [] memory image ,

18 uint32 width ,

19 uint32 height ,

20 uint32 channels

21) public pure returns (string memory) {

22 bytes memory BITMAPFILEHEADER =

23 abi.encodePacked(

24 string("BM"),

25 uint32(

26 uint32ToLittleEndian (14 + 40 + width * height * channels)

27), // the size of the BMP file in bytes

28 uint16 (0), // Reserved

29 uint16 (0), // Reserved

30 uint32(uint32ToLittleEndian (14 + 40))

31 // the offset , i.e. starting address , of the byte where the bitmap

32 // image data (pixel array) can be found

3

245

SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA 0xmostima et al.

33); // total 2 + 4 + 2 + 2 + 4 = 14 bytes long

34 bytes memory BITMAPINFO =

35 abi.encodePacked(

36 uint32 (0 x28000000), // the size of this header , in bytes (40)

37 uint32(uint32ToLittleEndian(width)), // the bitmap width in pixels (signed

integer)

38 uint32(uint32ToLittleEndian(height)), // the bitmap height in pixels (signed

integer)

39 uint16 (0x0100), // the number of color planes (must be 1)

40 uint16 (0x1800), // the number of bits per pixel

41 uint32 (0 x00000000), // the compression method being used

42 uint32(uint32ToLittleEndian(width * height * channels)), // the image size

43 uint32 (0 xc30e0000), // the horizontal resolution of the image

44 uint32 (0 xc30e0000), // the vertical resolution of the image

45 uint32 (0), // the number of colors in the palette , or 0 to default to 2^n

46 uint32 (0) // the number of important colors used , or 0 when every color is

important

47); // total 40 bytes long

48 bytes memory data = new bytes(width * height * channels);

49 // resharding

50 for (uint256 r = 0; r < height; r++) {

51 for (uint256 c = 0; c < width; c++) {

52 for (uint256 color = 0; color < channels; color ++) {

53 data[(r * width + c) * channels + (2 - color)] = bytes1(

54 image [((height - 1 - r) * width + c) * channels + color]

55);

56 }

57 }

58 }

59 string memory encoded =

60 Base64.encode(

61 abi.encodePacked(

62 BITMAPFILEHEADER ,

63 BITMAPINFO ,

64 data

65)

66);

67 return encoded;

68 }

69 }

Base64.sol here is simply a default implementation for base 64 encoding, available in appendix.

To use EBMP in an ERC-721 compatible NFT contract, one may replace the image �eld from a traditionally

URL pointing to the image to the base64 encoded string preceded by the MIME type header, like:

1 string memory json =

2 Base64.encode(bytes(string(

3 abi.encodePacked(

4 '{"name": "EBMP", "description ": "EBMP", "image":

5 "data:image/svg+xml;base64 ,',

6 Base64.encode(bytes(EBMP(img))),

4

246

EBMP: E�icient Bitmap Encodings on Ethereum Virtual Machines SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA

7 '"}'

8)

9)));

10 string memory ret =

11 string(abi.encodePacked("data:application/json;base64 ,", json));

Where ret would be readable by common platforms supporting NFTs on Ethereum, like OpenSea [9].

3 ANALYSIS

We �rst present an analysis of popular on-chain image-encoding protocols to show that EBMP is the most �exible,

then present gas and encoding-length analysis of EBMP (instantiated on 32x32 resolution, RGB) against one of

the most permissible on-chain image encoding protocol, Pixelations [10].

Since BMP is one of the simplest image formats with a rather straightforward implementation requirement,

Brotchain independently has developed a similar encoding method to EBMP to render bitmaps on the Ethereum

blockchain [4]. However, some important di�erences remain:

(1) Brotchain adopts a palette-based encoding for BMP. In the regime where it saves the number of bytes

needed to store an image on-chain, it would limit the number of possible colors presentable in an image to

the palette used.

(2) Additionally, the bytes stored on blockchain do not exhibit spatial locality in the RGB color space, making

further image manipulation harder.

(3) Finally, a prototype smart contract has been developed with a greyscale version of EBMP around the same

time that Brotchain is released. Users may interact with it at rinkeby.0xyi.xyz.

Table 1 presents a brief and non-exhaustive overview of existing methods aiming to provide a general image

encoding method on the Ethereum blockchain. Anonymice [1], and Chain Runners [2] are not included in this

particular table due to the observation that the smart contract is not designed nor intended to encode images

across a wide variety of domains, but instead focus solely on the very pattern on the non-fungible-token it seeks

to support. Though similar is true for Nouns [6], the grouping color technique along with run-length encoding

(RLE) does present an opportunity to be extended beyond encoding of the Nouns character; hence it is included

in the table. We observe that EBMP o�ers a good balance between protocol freedom and data availability, where

existing protocols either only supports a �xed number of colors or image resolution, or the data it provides is not

always available (here, "Calldata" refers to the fact that the image data is only visible as input arguments to a

function called on the blockchain, thus making it inaccessible for other functions running on the EVM).

Table 1. Comparison of Popular On-Chain Image Encoding Methods

Protocol Type of data Resolution Number of bytes Data availability Color space

EBMP Bitmap Arbitrary (div. by 4) 3ĭℎ Storage RGB

Blitmap [3] Bitmap 32x32 268 Storage 4 colors

Pixelations [10] Bitmap 32x32 736 Storage 32 colors

Nouns [6] Bitmap/Vector 32x32 RLE Storage Varied

Brotchain [4] Bitmap Arbitrary 768 +ĭℎ Storage 256 colors

0xmons [14] GIF Arbitrary up to 125 KB Calldata Arbitrary

Table 2 records the average encoding length and gas cost for random 32x32 RGB images on EVM across di�erent

protocols. We observe that when compared to existing methods that o�er general-domain image encoding support

o�-the-shelf, EBMP provides a 2.8x reduction in terms of gas consumption and 1.4x reduction in encoding length

5

247

SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA 0xmostima et al.

even though using a far-richer color space with more bytes needed. As a separate analysis, we also include gas

pro�ling results for Brotchain. We remark that although it produces both a shorter encoding string and a lower

gas cost, EBMP is capable of representing up to 224 colors in RGB format, which is 216
= 65536 times more than

that of Brotchain. Additionally, since Brotchain does not exhibit spatial locality of data, resharding of raw pixel

bytes is no longer needed, which will also contribute to a lower gas cost. We verify this by turning o� resharding

for EBMP as well and re-run the test, which indeed generated even lower gas cost and deployment cost.

Table 2. Gas and average encoding length of EBMP against Pixelations on 32x32 Resolution

Protocol Gas Encoding Length Bytes Deployment Cost Spatial Locality Colors

EBMP 4798684 4168 3072 551587 Yes 2
24

Pixelations 13390461 58575 736 1889790 Yes 25

Brotchain 437448 2826 1792 799231 No 28

EBMP (no resharding) 289851 4168 3072 413049 No 2
24

4 BROADER IMPACTS

It is still worthy of mentioning that although EBMP has achieved signi�cant cost reduction against existing

methods, the cost is still orders of magnitude larger when compared to traditional IaaS and SaaS service providers.

Table 3 presents such an analysis, where we derive an upper bound for platforms running EVM emulators

(instead of a blockchain) by assuming that a single EBMP call �nishes in 2 seconds (which is true for all platforms

compared).

Table 3. Analysis of EBMP against computing platform

Platform Cost Uptime Data Integrity Censorship Resistance

Ethereum 1 $1904.75 1 (1.07 PH/s POW) 2 Always (POW) If set up correctly 3

Avalanche (EVM compat.) 4 $35.06 1 (validators’ POS) Always (POS) If set up correctly

GCS (n2-highmem-8) 5 < $0.0002912 likely g 99.5% 6 SLA If they want to

AWS (t4g.2xlarge) 7 < $0.0001494 likely g 99.99% 8 SLA If they want to

Paperspace C6 9
< $0.00008889 likely g 99.99% 10 SLA If they want to

my M1 MacBook Pro 11
< $0.0001268 me also me N/A

1at the time of writing, Ethereum’s price is $2832.87
2POW stands for Proof-of-Work, and POS stands for Poof-of-Stake, which are di�erent forms of achieving consensus on blockchains. Ethereum

and Avalanche guarantee full uptime and data integrity given that consensus is achieved, which is theoretically breakable under a series of

scenarios that are outside the scope of this paper.
3If the set-up to run EBMP on blockchains is incorrect, then it may not be censorship resistant.
4at the time of writing, Avalanche’s price is $80.44
5on-demand hourly price for this instance at the time of writing is $0.52405
6https://cloud.google.com/compute/sla
7on-demand hourly price for this instance at the time of writing is $0.26880
8https://aws.amazon.com/legal/service-level-agreements/
9on-demand hourly price for this instance at the time of writing is $0.16
10https://www.paperspace.com/security
11assuming a laptop lasts for a year, and the cost of purchasing a M1 MacBook Pro is $1999.00.

6

248

EBMP: E�icient Bitmap Encodings on Ethereum Virtual Machines SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA

5 CONCLUSION

EBMP is a gas-e�cient way to encode bitmaps on Ethereum Virtual Machines, which has implications in non-

fungible-token implementations running on popular blockchains. Future improvements could be made on di�erent

resharding methods and extending the protocol to allow encoding of images with length or width not divisible

by 4.

ACKNOWLEDGMENTS

We thank Diana from A-SOUL for the emotional support. You should de�nitely check out some of their

wonderfully-made music videos:

https://www.bilibili.com/video/BV1vQ4y1Z7C2

https://www.bilibili.com/video/BV1FX4y1g7u8/

REFERENCES
[1] Anonymice. 2021. Anonymice. https://opensea.io/collection/anonymice

[2] Mega City. 2021. Chain Runners. https://opensea.io/collection/chain-runners-nft

[3] dhof. 2021. Blitmap. https://opensea.io/collection/blitmap

[4] divergence. 2021. Brotchain. https://opensea.io/collection/brotchain

[5] W. Entriken, D. Shirley, J. Evans, and N. Sachs. 2018. EIP-721: Non-Fungible Token Standard. Ethereum Improvement Proposals no. 721

(Jan. 2018). https://eips.ethereum.org/EIPS/eip-721

[6] Nouns Foundation. 2021. Nouns. https://opensea.io/collection/nouns

[7] Ron Gery. 1992. DIBs and Their Use. https://docs.microsoft.com/en-us/previous-versions/ms969901(v=msdn.10)?redirectedfrom=MSDN

[8] Georgios Konstantopoulos. 2021. foundry. https://github.com/gakonst/foundry

[9] OpenSea. 2022. OpenSea, the largest NFT Marketplace. https://opensea.io/

[10] Pixelations.xyz. 2021. Pixelations. https://opensea.io/collection/pixelations-xyz

[11] Solidity Team. 2022. Solidity. Ethereum Foundation. https://docs.soliditylang.org/en/v0.8.13/

[12] Vyper Team. 2022. Vyper. https://vyper.readthedocs.io/en/stable/

[13] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper 151, 2014 (2014),

1–32.

[14] xmon.eth. 2021. 0xmons. https://opensea.io/collection/0xmons-xyz

A SOFTWARE ARTIFACTS

The software artifacts to reproduce the experiments in the paper, including an additional copy of the EBMP

protocol, can be found here: https://github.com/0xmostima/EBMP. It is implemented in Solidity with Foundry [8].

B SAMPLE BASE64 IMPLEMENTATION IN SOLIDITY

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 /// [MIT License]

5 /// @title Base64

6 /// @notice Provides a function for encoding some bytes in base64

7 /// @author Brecht Devos <brecht@loopring.org >

8 library Base64 {

9 bytes internal constant TABLE =

10 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 +/";

11

12 /// @notice Encodes some bytes to the base64 representation

13 function encode(bytes memory data) internal pure returns (string memory) {

7

249

SIGBOVIK ’22, April 8, 2022, Pi�sburgh, PA 0xmostima et al.

14 uint256 len = data.length;

15 if (len == 0) return "";

16 // multiply by 4/3 rounded up

17 uint256 encodedLen = 4 * ((len + 2) / 3);

18 // Add some extra buffer at the end

19 bytes memory result = new bytes(encodedLen + 32);

20 bytes memory table = TABLE;

21 assembly {

22 let tablePtr := add(table , 1)

23 let resultPtr := add(result , 32)

24 for {

25 let i := 0

26 } lt(i, len) {

27

28 } {

29 i := add(i, 3)

30 let input := and(mload(add(data , i)), 0xffffff)

31 let out := mload(add(tablePtr , and(shr(18, input), 0x3F)))

32 out := shl(8, out)

33 out := add(

34 out ,

35 and(mload(add(tablePtr , and(shr(12, input), 0x3F))), 0xFF)

36)

37 out := shl(8, out)

38 out := add(

39 out ,

40 and(mload(add(tablePtr , and(shr(6, input), 0x3F))), 0xFF)

41)

42 out := shl(8, out)

43 out := add(

44 out ,

45 and(mload(add(tablePtr , and(input , 0x3F))), 0xFF)

46)

47 out := shl(224, out)

48 mstore(resultPtr , out)

49 resultPtr := add(resultPtr , 4)

50 }

51 switch mod(len , 3)

52 case 1 {

53 mstore(sub(resultPtr , 2), shl(240, 0x3d3d))

54 }

55 case 2 {

56 mstore(sub(resultPtr , 1), shl(248, 0x3d))

57 }

58 mstore(result , encodedLen)

59 }

60 return string(result);

61 }

62 }

8

250

A Machine Learning Approach To Classifying Cuteness

Anoushka Shrivastava
Carnegie Mellon University

March 25, 2021

Abstract. Computer science students have conquered many problems, but finding their ideal
match is not one of them (and unfortunately algorithmic solutions tend to be lacking in this area).
Nevertheless, in preparation for a time (in the far, far future) that we get stormed with hundreds
of dating offers instead of Gradescope receipts in our inboxes, this paper aims to devise a
machine learning model to filter through our options by classifying whether people are cute or
not. This classification is life-saving since by narrowing down candidates for them, we save CS
students time to focus on their personal hygiene, a topic on which an entire study of its own can
(and probably should) be conducted.

I. Introduction.
Anyone intrigued by the abstract is probably a lost CS student, so instead of scaring (or scarring)
you with statistics about the percentage of students who are able to find love (hint: think less
than the probability of rolling a 7 on a 6-sided die), I will use the introduction as encouragement
for you. If you’re at the point where you need machine learning to solve your problems, your
desperation probably leads you to have low standards for a partner, so you will find someone
eventually. However, this is also why the model is important: since your bar is so low, when you
finally do get offers, we can be sure to use the model to reject the people that you should be
immediately rejecting under normal circumstances.

II. Methods.
When I finally got an idea for this paper a few hours before the deadline, the only people around
at home were my mother, father, and sister. Therefore, my dataset consists of these three, and my
own photos. I made many attempts to find others to take pictures of, including following my
neighbors on their walks, but I was informed by their lawyer that the ethics of this approach were
a bit controversial.

In an effort to produce more training data, I decided to include front, side, back, up, down,
upside-down, left, right, north, south, east, west, and diagonal profiles of each family member. I
also included them sitting, standing, jumping, kicking, swinging, eating, and any other pose
corresponding to my first-grade vocabulary verb list of the week of September 27th. Finally,
because the dataset was still not full enough, I included pictures of household objects such as my
sofas and air conditioner.

42

251

I began with the intent to lead with a supervised training approach. However, after my mother
learned that I had labeled the worm in our garden cuter than her, she suggested that if I wanted to
keep my tuition at CMU, I best make this an unsupervised learning model. I obliged, especially
since labeling my own image would probably be a conflict of interest.

Honestly, after rereading my methods on data collection, I’m not quite sure that the rest of my
methods are so sound. In fact, I’ll just keep the rest of this section to myself.

III. Results and Conclusions.
So, it turns out the cutest person is the kitchen spoon in our left drawer. While I am surprised that
the spoon beats even my flattering diagonal profile, I still think the model’s confidence of
1003.27% seems legit and makes it trustworthy.

IV. Future Work.
After my family realized that they had lost to a spoon, they informed me that they were drafting
up a 10-year research project titled <How long can one college student survive on dining hall
food?= with me as the test subject. With sincerely no offense to my university, I do not wish to
participate in this study, and will be terminating my work on this project.

V. Acknowledgements
I would like to thank my friends Keevyu and Karen for unintentionally inspiring this project. I
would also like to thank Sheryl Mathew and Preethi Krishnamoorthy for providing feedback and
proofreading. Finally, I would like to thank my coffee mug, who was disappointed that the spoon
was cuter than it (mug, you’ll always have a special place in my heart).

VI. References
None.

252

Attractiveness Learning: A General Solution for the Cold-Start Problem

Yajuan Gu

Extreme Advanced Technology Department
A Super, Super, Super Tiny Start-up Company

Somewhere, Southern Part, China
heng6534605@163.com

Yuxun Lu∗

National Institute of Informatics
University for Advanced Studies

Chiyoda, Tokyo, Japan
lu-yuxun@nii.ac.jp

Abstract

The cold-start problem is an essential issue in
the recommender system. Recommender sys-
tems based on Collaborative Filtering or Deep
Neural Network need sufficient user-item in-
teractions to optimize the parameters. It is dif-
ficult to provide recommendations related to
new users and new items because of the in-
sufficient records. We proposed an attractive-
ness Learning approach as a general solution
for the cold-start problem. Our approach does
not need any data, GPUs, hard-working re-
searchers, graduate school students (especially
Ph. D. students). Experiments show that
our method has achieved the state-of-the-art
performance on zero-shot recommendation for
items and users.

1 Introduction

Recommender system has become an core com-
ponent in wide categories of online services. It
encourages users to keep surfing so that the online
platform can take the money out from pockets of
the users, bigly and silently. Recommender sys-
tems suffer from the cold-start problem, i.e. they
cannot provide satisfying recommendation to new
items and new users because of the insufficient
interactions (Lee et al., 2019).

Current methods alleviate the cold-start problem
by interaction data from existing users and items to
help the fast adaption of the parameters in the rec-
ommender system in a meta-learning framework
(Lee et al., 2019; Finn et al., 2017; Wang et al.,
2021; Snell et al., 2017; Sankar et al., 2021). These
solutions are with a common flaw: all of them re-
quire hard efforts from diligent researchers and Ph.
D. students. The inner loop in MAML (Finn et al.,
2017) training procedure results in unbearably slow
optimization, and the usage of GPU servers acceler-
ates the carbon emission indirectly (Strubell et al.,
2019).

We proposed a novel solution for the cold-start
problem in zero-shot learning. Our approach em-
ploys attractive persons to recommend items to
consumers. Our contributions are summarized as
follows.

1. Our approach does not need any electric com-
putation resources and outperform all methods
that need them in the zero-shot scenario for
cold-start problem.

2. The carbon emission of our method is signifi-
cantly reduced compared to methods that need
computational resources.

2 Methodology

The key point in our method is “how to find at-
tractive persons and persuade them to do the sale”.
Both authors realized such research must satisfy
the standard of experiments that related to human.
However, the regulations and rules, although abso-
lutely vital, are long and tedious for laymen. Both
authors (Gu and Lu) have read the regulations and
rules about, you know, about, ugh, 5 minutes-ish
and found out that the management is less strict if
the human involved in the experiments are limited
to the authors per-se, so the persons involved in our
methods are the authors of this paper, Yajuan Gu
and Yuxun Lu.

According to their common friends, Gu “is
charming and outgoing.”, and the comment for the
same question in regard to personality about Lu
is “I’d rather not to say for the sake of our friend-
ship”. We use Lu as the control group and Gu as
the experimental group. Our method is described
in Algorithm 3.

3 Experiments

We conduct the experiments in (1) a restaurant use
a red hair person in cartoon style as its logo; (2) a

43

253

Algorithm 1: the Attractiveness Learning
Framework
Data: A group of consumers C. A set of all

items in store G. The seller s.
Sort g ∈ G by the profit as ordered set G∗.
Estimate the gullibility of all c ∈ C by the s.
while C is not empty do

Greeting c∗ with the highest gullibility.
while c∗ is not leaving do

Try to sell g∗ ∈ G∗ to c∗.

luxury shop whose design is famous for being sim-
ilar to checkerboard; (3) A membership mall being
known for its “suspicious” low price. We take bi-
nary Normalized Discounted Cumulative Gain and
Ratio in Total Sales as performance measures. The
Ratio in Total Sales is

r = p(s)/p∗. (1)

p(s) is the sale amount from s in Algorithm , and
p∗ is the total sale amount of the day. The equation
for binary NDCG is (relatively) too complicated
for the lazy authors to type here. Please use the
search engine Google 1 for the formula. The results
for 6 days sale in 3 domains are shown in Figure 1
and Figure 2, respectively.

Figure 1: The averaged NDCG@5 for Gu and Lu in 3
domains. Drawn by Yajuan Gu (the first author).

1https://www.google.com

Figure 2: The Ratio in Total Sale for Gu and Lu in the
“Fast Food” domain for 6 days. Drawn by Yajuan Gu
(the first author).

3.1 Discussion

The results in Figure 1 and Figure 2, show that the
attractiveness is a critical property for the saler s in
Algorithm 3. Especially, the total sale ratio for the
“Fast Good” domain on Day 5 is over 1.0 for Gu
because a generous customer paid a big tip after
ordering 2 while Lu arrived negative ratio in Day
2 because he was caught by the cantine manager
when sneaking burger and fries in the kitchen and
has to pay the fine.

It worth note that the saler s has no informa-
tion about the demographic information of the con-
sumers in C. Hence, every consumer is treated as a
new consumer in the system. Beside, in Algorithm
3, the saler s does not care about the attributes of
the goods in G at all. Therefore, it is unimportant
if the item is new or not.

4 Related Work

Attractiveness based recommender system has been
known in many popular cultures. For example, the
character “Penny” in “the Big Bang Theory” and
“Max” in the “2 Broke Girls”. But it seems that no
rigorous research has been done yet for investigat-
ing the impact of attractiveness in the recommender
system domain. We wish this letter will encourage
more researchers to extend the future investigation
about this topic.

5 Conclusion

We proposed a attractiveness learning framework
in this letter. The system does not rely on any

2Both nations in which the authors resident do not have
tipping tradition.

254

data to solve the cold-start problem in user side
and item side. The experiment result shows that
attractiveness learning can significantly improve
the profit resulted from recommendation.

Acknowledgement

We appreciate the suggestions from all reviwers, if
any, about the spelling and grammartic issues in
this paper. Especially the opinion that suggested
an extremely expensive service on editing. Our
answer, as always, is “hack know. VR nut going
two yuzit.”

References

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, pages
1126–1135.

Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk
Cho, and Sehee Chung. 2019. Melu: Meta-learned
user preference estimator for cold-start recommen-
dation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 1073–1082.

Aravind Sankar, Junting Wang, Adit Krishnan, and
Hari Sundaram. 2021. Protocf: Prototypical collabo-
rative filtering for few-shot recommendation. In Fif-
teenth ACM Conference on Recommender Systems,
pages 166–175.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference
on Neural Information Processing Systems, page
4080–4090.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Li Wang, Binbin Jin, Zhenya Huang, Hongke Zhao,
Defu Lian, Qi Liu, and Enhong Chen. 2021.
Preference-adaptive meta-learning for cold-start rec-
ommendation. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence,
pages 1607–1614.

A Author Biography

Gu Yajuan is a senior
researcher in a super
start up company. Gu
is also the saler, door
keeper, cook, cheif, ac-
count, treasory, general

affair manager, human
resource manager, stake-
holder, general manager
of the company. The research interest Gu is about
all aspects in fashion and food.

Lu Yuxun is a slob in
the National Institute of
Informatics in Japan. Lu
focus on the research of
rushing paper draft before
submission deadline.

255

256

Hardware

44 Correct-It-Yourself Paper Updater

Thomas Chick

Keywords: corrections, arts and crafts, reader participation, sacri-
lege? sure

45 Harder Drive: Hard drives we didn’t want or need

Tom Murphy

Keywords: hard drive, block device, ipv4, tetris, covid-19, chainsaws

46 Just a Regular Paper

Jason Wang

Keywords: Money, Finance, Banking, Social Issues, Machine Learn-
ing, Ohio

47 Wearable RF-shield repositories

Abe Wits and J. Mijn

Keywords: security, wifi, cable

257

Thomas Chick's

Correct-It-Yourself

Paper Updater

Now with 100% fewer errors the author

noticed after going to press!

Includes new 2021 figures!

Improved contrast in black and white!

Simply:
1. Take your copy of "“The SIGBOVIK
paper to end all SIGBOVIK papers” will
not be appearing at this conference"
from SIGBOVIK 2021.
2. Cut out all the tables and figures
from this page and paste them into
the correct positions.
3. Enjoy your newly updated paper!
4. Feel immense embarrassment.

It's really that easy!

44

258

Harder Drive: Hard drives we didn’t want or need

Dr. Tom Murphy VII Ph.D.

7 April 2022

1 Introduction

It’s currently the longest 2020 ever on record, seemingly
with a new annoying or demoralizing twist every week. To
me, the most effective distraction is making things, but
what to make? And what if it’s no better than what was
made before? Then perhaps you will experience an annoy-
ing or demoralizing twist. So, here’s an approach that’s
so robust I don’t even mind giving it away: Make some-
thing that nobody would want, or need. The competitive
landscape for needless things is relatively uncrowded, for
obvious reasons. A good way to think of things that we
might not want is to consider common abstractions that
have many instantiations (e.g. chess [17], boolean logic [18],
integer math [11]), and come up with new ones. Moreover,
judge them according to nontraditional criteria. This way,
they will “be better”—in at least some sense—than what
was made before. This is the secret of SIGBOVIK.

This paper investigates several storage devices (“Harder
Drives”) that we didn’t want, or need.1 In doing so, we will
find inspiration from some vexing current events. Even if
only tangentially related, creating structured thoughts on
the periphery may help us digest them. It works for me.
This is the laxative of SIGBOVIK.

Despite setting out to do an “easy, fun project,” of course
I managed to make each one much more difficult than I
initially anticipated. This is the curse of SIGBOVIK. Bon
appétit.

1.1 Chainsaws

At first glance, it seems that the maximum number of
chainsaws that a person can wield is two: One per hand.
This is known as dual-wield. It may be possible to achieve
more using “one-man-band” arrangements (shin- and knee-
wielded chainsaws, elbow saws, a mouth-held chainsaw ac-
tivated by blowing into it like a harmonica) but a more
natural way to scale is by juggling the saws into the air.
Now at second blush it seems that an arbitrary number
of saws can be simultaneously equipped, by simply throw-

*Copyright © 2022 the Regents of the Wikiplia Foundation. Ap-
pears in SIGBOVIK 2022 with the fatal Input/Output error of the As-
sociation for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. 6.6e-11 Nm2kg−2

1Source code can be found at sourceforge.net/p/tom7misc/svn/
HEAD/tree/trunk/pingu/.

ing the chainsaws higher into the air. This configuration
is known as ∞-wield. However, throwing chainsaws higher
and higher eventually reaches physical limits. Once the
thrown saws reach the escape velocity of 11.186km/s, they
will not fall back to Earth, and can hardly be considered
brandished by the juggler. Just shy of this, they reach
some maximum height before returning. This loop has two
problems: First, it is not the longest possible airtime. Sec-
ond, it can only be used for one chainsaw at a time, as the
saws will otherwise interfere with one another along the
out-and-back path.

Upon a third look, we need not throw the chainsaws
straight upward; instead we can juggle the saws into or-
bit around Earth. Ignoring air resistance (the chainsaws
cut through air like butter) and assuming double precision
floating point with discrete time steps of 0.1 seconds will
suffice (probably not), my simulation2 finds the longest or-
bit that returns the chainsaw to 1.5m above the surface is
335.36 hours.

There are many such orbits to fill with chainsaws, but the
limiting factor seems to be the density of chainsaws near
the wielder (where the many orbits would interfere). As-
suming each orbit is basically parallel here, and consists of
chainsaws about 0.2 m wide (they can be efficiently packed
in “69 configuration”) moving at the maximum velocity of
11,186m/sec, we see 55,930 per second. We could proba-
bly fit about three deep and three high on each side of the
body, for 18 times that. So we have 1 million chainsaws per
second, for 335.36 hours, which is 1.215 × 1012, a configu-
ration known as tera-wield. This requires expert juggling
skills.

Why am I talking about this? Overall, the important
lesson here is creativity with dimensional analysis: We can
achieve a quantity of chainsaws by multiplying some chain-
saws per second by some seconds.

1.2 Juggling with data

Now imagine that instead of chainsaws, we are juggling
something more dangerous: Data.

One potential setup would be a powerful directional an-
tenna, which broadcasts a stream of data towards the hori-
zon. For radio waves below 40 MHz, significant reflections
off the ionosphere occur, bouncing the waves back to Earth.

2Someone equipped with Johann Sebastian Kepler’s laws could
just solve this exactly.

45

259

They may also reflect off the ground, and again off the
ionosphere, and in principle make their way fully around
the planet. The antenna is paired with a receiver in the
same location, which accepts the signal and retransmits it,
“juggling” it back into circulation.
Since a full trip around the Earth is 40,000 km (and

significantly more in this setup due to reflections) and ra-
dio waves take time to propagate, this orbit takes at least
150ms to complete. As a result, we can have 0.15 sec ×
40,000,000 bits/sec = 750 kilobytes of data outstanding in
the steady state. When data we are interested reaches the
receiver we can “read” it, and of course we can choose to
retransmit modified data to perform a “write,” This is simi-
lar to the rotation of a hard drive, with the fixed read/write
head waiting for the “orbiting” platter.
This author does not have sufficient skill to construct

such a system, which would probably not work in practice
anyway. The reflections probably do not make it all the
way around the Earth, and the noise from other radio waves
would offer significant interference.
A superior arrangement would place repeater towers

along the great circle. This would clearly work but would
require an investment in real estate throughout the world.
But the main reason not to do this is that 750kb is a trivial
amount of storage; a similar magnitude is found inciden-
tally in disposable consumer devices (Section 4).
Of course, if we are retransmitting the signal anyway, we

do not need to send it in the same direction. It is much
simpler to send it directly back, like an echo.

1.3 ICMP Echo

Sorry to remind you about the Internet, which seems to be
making the whole world collectively dumber and meaner,
but this section concerns a hard drive made from the trans-
mission delays of the network itself.
Back when the internet was a collaborative and basically

nice place, the Internet Control Message Protocol (ICMP)
was proposed as a way for network nodes to help each other
out. This protocol allows sending messages like “hey this
address is down!” or other tips. Since it is easy to forge
ICMP messages, most off these have potential for abuse
(like telling you the site you’re talking to is down) and are
no longer commonly honored. (As another indicator of the
era, these internet standards are known as “Requests for
Comment”, with ICMP described in RFC 792 [21]. On the
modern internet we still have requests for Comment, but
they are almost universally accompanied by requests for
Like and Subscribe.)
However, many hosts will still respond to an ECHO packet

with ECHO REPLY. This is typically used to “ping” a host:
The source sends ECHO to the destination with some identi-
fying information and an embedded timestamp; the desti-
nation sends ECHO REPLY with that same data back to the
source, and the source can calculate the round-trip time.
Since there are hosts throughout the world that will al-

ready reply to ECHO messages, this could be a perfect setup
for juggling data! The data field of the ECHO can store the

bytes of interest. When we receive an ECHO REPLY we will
“read” or “write” that data if needed, and then immedi-
ately broadcast another ECHO. Since we do not retain the
data otherwise, it will be stored “inside” the internet itself:
Inside the buffers of routers but also as moving photons
inside fiber optics, flowing charge in ethernet cables, and
so on.

In principle we should be able to saturate our internet
connection with outgoing ECHO and incoming ECHO REPLY;
even on a consumer plan (these days on the order of 1
gigabit/sec) we may be able to store significant amounts
of data. If we ping a host on the Earth’s antipode, the
round trip time will be at least 150ms (speed of light and
circumference are limits here as well). 1Gb/sec × 0.15sec
= 833 Megabytes.

In practice this proves to be much more difficult. Alas,
even the apparently harmless ECHO has been regularly
abused for denial-of-service attacks, such as the “Ping of
Death” [27] and “Smurf attack” [28]. Thus, hosts almost
always have hard limits that we have to work within. We
will face the following difficulties that cause us to fall far
short of the ideal above:

1. Hosts limit the size of an ECHO packet they will respond
to. 512 bytes of payload is a typical limit for a fairly
permissive host,3 but many will reject payloads more
than a few dozen bytes. The IP header (20 bytes)
and ICMP header (8 bytes) thus contribute significant
overhead.

2. Hosts have global limits on the rate of incoming and
outgoing ICMP messages.

3. Consumer internet connections have built-in throttling
of ICMP messages, perhaps to limit the impact of
Denial-of-Service attacks originating from their net-
works.

4. Pings are “best effort” and readily dropped by con-
gested routers without retries (this can even be a de-
sirable property for measuring network congestion).

1.4 Pinging the internet

While developing code that can process many thousands
of pings per second and investigating these limitations, I
figured I might as well ping the entire internet.

Here by internet I mean “IPv4 address space.” I don’t
care about IPv6 which has way too many addresses (plus
like, call me when you are at least version 7, right?). There
are only 232 IPv4 addresses, which is no longer that big
of a number. I wrote a fairly simple program pingy.exe

which pings all of the hosts of the form *.*.c.* for some
c ∈ {0, . . . , 255} in a random order. For each one it saves

3Allegedly, “all hosts are required to be able to reassemble data-
grams of size up to 576 bytes,”[22] but I guess most do not care about
this or consider it better than dropping all pings. There are not many
legitimate uses for a payload of this size, anyway.

260

the number of milliseconds of round-trip time (or records
special sentinel values for “timeout” or “wrong data re-
turned”) in a single byte. This results in 256 files, which
assembled are 4.2 Gigabytes.
This turned out to be much more logistically challenging

than I expected. Näıvely I should be able to send millions of
pings per second, but the packets are dropped somewhere
if I exceed about 1000 pings/sec. Even at 1000 pings/sec (a
trivial amount of bandwidth) this behavior seems to wreak
havoc on my home network; other devices sharing the con-
nection get extremely bad performance, a no-no for the
Work-from-Home video call lifestyle of the pandemic. This
could be because my internet provider throttles ICMP; it
could also be that some hardware or software in the path
is not able to handle thousands of different IP addresses
each second (e.g. there may be fixed-size NAT tables). I
tried using a VPN, but this had a much lower success rate;
the VPN egress point probably throttles ICMP to prevent
DDoS attacks, and it’s possible that many internet gate-
ways also simply block ICMP from known VPN endpoints
since they are obvious choices for people up to no good.
Anyway, what I thought might take a few hours or a week-
end ended up taking months. Eventually I rented time on
several machines in different data centers to parallelize the
process; this also produced a higher ping response rate than
my home network, so I redid all of the already-completed
sections for uniformity. The results make a nice poster,
though, and are in Figure 1.
9.18% of addresses responded successfully within 4 sec-

onds. Only 4,529 hosts (0.000105%) replied with the wrong
data.

2 Harder Drive: Pingu

At last, I yearn to build a virtual hard drive using the ideas
above. It will be called pingu.4 To do that, I first had to
figure out how to make a hard drive. This is no big deal.

2.0.1 nbdkit

In UNIX, storage systems are abstracted as “block de-
vices.” Like all things in UNIX, it is conceptually “just
a file,” but then gets complicated with all sorts of conces-
sions for efficiency. Fortunately, efficiency is a non-goal for
this project. We could implement these drives as kernel
modules that implement the basic operations of a block
device. This would be a bad choice because of the num-
ber of userspace facilities we want to use, and also because
I would have to do a lot of rebooting as my myriad bugs
panicked the kernel.
nbdkit (for “no big deal” kit) is a library for creating and

mounting Network Block Devices in userspace. Network
Block Device (for “NBD”) is a protocol for communicating
with a quote-unquote block device (for example, a physical

4Named for the classic stop-motion penguin of the same name.
Also as in “i ping u 2 store data thx 4 ur help”

hard drive, or a virtual drive like a file containing a DVD-
ROM image, or a block of memory, or the variety of weird
drives considered in this paper) over a network. It’s also
straightforward to use with a local quote-unquote network
(i.e. UNIX domain socket).

In order to create a device, you implement functions
like pread (read some bytes from a region in the de-
vice and copy them into the caller’s buffer) and pwrite

(same in reverse). There are also many optional opera-
tions (e.g. “fast zero” a region) for efficiency, plus hints for
nbdkit or the kernel to know how to optimize data lay-
out on the drive. For example I was charmed to see a flag
is_rotational that describes whether the drive is based
on spinning platters, which presumably is used as a hint
that sequential reads/writes are more efficient. The block
device is compiled as a shared object that can be loaded
into nbdkit’s server, then attached (as root) as a block
device like /dev/nbd0. At this point, the device can be
formatted with some filesystem.

2.0.2 Implementation

The smallest drive that can be formatted and mounted on
a normal Linux machine is 51,200 bytes, using the FAT12
filesystem common on DOS floppy disks in the 1980s [26].5

So the device consists of one hundred 512-byte blocks. Each
block will be stored inside multiple outstanding pings (for
redundancy) with a 512-byte payload.

Despite pinging the whole internet in Section 1.4, we use
a fixed set of IP addresses here. The reason for this is
that we want a set of IP addresses that are stable, reliable,
and have high latency. They must respond to pings with a
512-byte payload. We would also prefer these to have un-
correlated failures, because if all of the outstanding pings
fail for a block, then the data is permanently lost. So we
want them to be geographically diverse, for example. I also
prefer to use major commercial sites that can clearly bear
the load, as opposed to e.g. someone’s cell phone (who may
even have metered bandwidth). These are actually hard
to identify from the full data set, particularly the last cri-
terion, but it is not hard to find candidates by hand. I
produced the list of ∼75 hosts by searching for “most pop-
ular websites in Madagascar” (etc.) and manually pinging
them to make sure the criteria are met, particularly the
latency. Many sites worldwide use content networks (or
are simply hosted in the United States) and so they are
much faster than the speed of light would suggest. I found
that database-backed sites (like e-commerce pages) were
less likely to be on content networks than e.g. news sites,
which makes sense.

Implementing this block device is tricky: We can only
process a read or write at the moment a ping returns from
the network.

Blocks. Each block contains a sequence and version
counter, as well as the set of outstanding pings (send time

5Try: mkfs.vfat -F 12 -v -a -n "PINGU"

261

Figure 1: The results of pinging all 232 IPv4 addresses in early 2022. The IP addresses are plotted along a 16-level
Hilbert curve [9]. The full image is 65536 × 65536 pixels (and 4.2 Gigabits), which alas cannot be fit within the
preposterously limited SIGBOVIK page and PDF size guidelines. This image is 2048 × 2048, so each pixel represents
32× 32 hosts, with the level of grey giving the response rate (white = no response). There are several obvious patterns,
which can be cross-referenced with Figure 2 to see the first octet of the IP address. Some interesting regions: There are
almost no responses in the top-right region, which is 224.* to 255.*; these are the former “Class D” and “Class E”
segments which are multicast and reserved respectively. There is a dark block at the center that almost always receives
responses, which is from the 127.* “loopback” addresses. This all makes sense. It is interesting to see how active regions
allocate their space; some have a variety of distinctive patterns and others seem uniformly random (Figure 2). This way
of plotting the address space is basically canonical, so it is a bit disappointing not to find any graphical messages. Like,
how cool would it be to embed a micro QR code in some 16x16 subnet that says IPv6sux? It would be a little bit cool,
is how cool.

262

0 1

23

4

5 6

7 8

9 10

11

1213

14 15 16

17 18

19 20 21

2223

24 25

262728

2930

31

32

33 34

35 36 37

3839

40 41

424344

4546

474849

50 51

52

5354

5556

5758

59

60 61

6263

64

65 66

67 68 69

7071

72 73

747576

7778

79

80 81

8283

84

85 86

87 88

89 90

91

9293

94 95 96 97

9899

100

101 102

103 104

105 106

107

108109

110 111

112

113114

115116117

118 119

120121

122 123 124

125 126

127 128

129 130

131 132 133

134135

136 137

138139140

141142

143

144 145

146147

148

149 150

151 152

153 154

155

156157

158 159 160 161

162163

164

165 166

167 168

169 170

171

172173

174 175

176

177178

179180181

182 183

184185

186 187 188

189 190

191

192193

194 195

196

197198

199200

201202

203

204 205

206207208

209210

211212213

214 215

216217

218 219 220

221 222

223

224

225226

227228229

230 231

232233

234 235 236

237 238

239 240 241

242243

244

245 246

247 248

249 250

251

252253

254 255

(a) (b) (c) (d)

Figure 2: (a) An internet legend: The location of top-level octets in the Hilbert curve used to create Figure 1. Then,
several 1 :1 zoomed regions, showing how much the textures vary: (b) The subnet 213.6.*.* (Palestine Telecommunica-
tions Company) shows some curious patterns of clumps or lines surrounded by whitespace, almost like a map of ancient
city ruins. (c) The subnet 5.138.*.* (Rostelecom Macroregional Branch South) is almost uniformly random, although
it does look like it might be hiding a faint spooky skull at the top. (d) The subnet 45.195.*.* (CloudInnovation)
clearly has distinct subregions, which makes sense as it is an IP address management company. In that sense it Fractally
resembles larger portions of the Internet. We also see some missing regions in the shape of Tetris pieces (Section 3).

and host IP, so that we can detect timeouts and update
host stats). There is also a queue of pending reads and
writes. The contents of the block is not stored.

Reading. A call to read a block inserts itself in a queue
and then waits on a condition variable; it will not return
until we receive a ping that belongs to that block.

Writing. A call to write is accompanied by some data
(the caller has allocated it). These are also enqueued and
wait synchronously until we receive a ping from the host
and can process it. In the general case we cannot process
a write without receiving the ping, because the write may
only be to a portion of the block (and so we need to know
the data outside that region). When we process the write
we update the version counter so that we don’t later use
the data from any other outstanding redundant pings.

Hosts. With each host (IP address) we also keep track
of its recent latency and reliability (exponentially-weighted
moving averages) as well as a token bucket to prevent ex-
ceeding a prescribed number of pings per second to that
host.

Processing. A single thread calls select to see if the
socket is ready. For juggling we need to simultaneously
be ready for both reading and writing. We then read a
ping, and use its sequence number to route it to the cor-
rect block. The block validates the ping (if it has the wrong
version it’s just discarded, for example) and uses it to ful-
fill any outstanding reads (copying into their buffers and
notifying the condition variable so those calls can return).
We then process any writes to compute the updated data,
and juggle the data back onto the network by sending pings
until we are at the target redundancy (there will be at least
one, since we just received one of the outstanding pings).
For each outgoing ping we prefer a host with high latency,
high reliability, and which has not recently been used. We
also avoid using the same host more than once for a block,
because if we lose all the outstanding pings, the data are

Figure 3: Visualization of the pingu drive (truncated). The
squares at the top are the data blocks; where white indi-
cates a healthy block with a full complement of outstand-
ing pings, and darker colors less so. The crossed-out blocks
have not yet been written (and so store no data). The red
dot indicates a block with an outstanding write, and the
green bar the current block for the round-robin initializa-
tion. At the bottom, some of the hosts and their recent
statistics.

forever lost.

Initialization. The loop just described is driven by the
receipt of pings, so we also need to kick off the process by
sending initial pings for each block. After each call to select
we initialize a single block if it has not yet been, and has
at least one outstanding write.

Visualization. The block device runs in userspace, but
not in a way that supports a UI. To view the device while
it’s being used, I send text status updates to nbdkit’s de-
bugging interface, and then pipe these to an SDL-based
visualization (Figure 3). It shows the status of each block
and statistics on each host, as well as read/write activity.
It is fun to watch the process of formatting it for FAT12
and reading/writing files.

263

2.0.3 Results

Next we want to evaluate this Harder Drive according to
various criteria. Our goal is not to create a drive that is
“good” according to normal criteria like speed, but it is
still interesting to benchmark it.

For each benchmark in this paper we will store a single
file on the drive. The choice of file typically doesn’t matter
for the benchmark (which will compute “bytes per second”
etc.) but it very much matters for the aesthetics of the
project. In each case we’ll choose a file that establishes a
kind of “improper hierarchy” [16]. For pingu, we’ll store
RFC 792 [21], a 29,186-byte text file that describes ICMP,
including the ECHO and ECHO REPLY messages with which
we’ve constructed the drive.

Before benchmarking, we format the drive with a FAT12
filesystem and mount it (-noatime, etc.). We then sync

and flush the kernel cache.6 Flushing cache is very impor-
tant, as these tiny drives easily fit entirely within the cache
and appear to be very fast if you don’t do this. Then, the
benchmark writes the entire file to the test drive, syncs and
clears cache again, and reads it back, comparing to make
sure the correct bytes were written. We repeat this process
over and over, for at least one minute (though some drives
will only complete a single pass, taking much longer than a
minute). The sync/flush between writing and reading is at-
tributed to the write time, because this is when the writes
are actually taking place.

Qualitative. This is a good Harder Drive. It solves a
problem we don’t have, which is to unreliably store a small
amount of data in an even smaller amount of memory.7 It
treats latency as a desirable quantity, contrary to the usual
preference. Implementing the drive was much more difficult
than expected from back-of-the-envelope calculations.

Cost. The cost consists of an up-front cost (a computer
and network interface; even a $35 Raspberry Pi should work
fine) and an incremental cost per byte stored. This drive is
unusual in that storage is derived from network bandwidth,

6echo 3 > /proc/sys/vm/drop_caches

7I considered whether it would be possible to create a drive that
used no memory for each additional block, and how I might even
define/measure that. This lead me to a brief experiment with compu,
which never graduated to a proper Harder Drive. This drive compiles
the drive’s contents as code, namely a large switch statement that is
of the form case ADDRESS: return DATA; for each address in storage.
The joke is of course that if you don’t count the “code” towards
memory, you can sneak memory into the code. Of course, to write to
the drive, we need to rewrite the code and recompile it (this is done
dynamically by forking g++ and then loading the recompiled symbol
with dlopen (which obviously uses memory)). I was hoping that the
compiler would be able to do some clever optimizations on the switch
statement, which might have led to some interesting developments.
But the only ones I observed were the cases where the entire contents
are the same byte, or where each address contains the low byte of
the address as data. Otherwise it always just compiled as a table
lookup, which is pretty uninspiring. For completeness, this drive was
annoyingly fast in benchmarks (of course using its own source code as
the benchmark test file): 6,119 bytes/sec writing; 10 Megabytes/sec
reading.

which is measured in bytes per second. My home network
is “1 Gigabit/sec” and $80/month ($3.04×10−5 / second).
Storing 51,200 bytes renders the connection otherwise un-
usable, so we assume this is close to the maximum storage.
This is a cost of 0.156 cents per byte per month, which is
5.94×10−8 cents, or 59.4 nanodollars, per byte per second.

Longevity. Longevity is poor. The one-minute bench-
mark succeeds with 100% accuracy, but data will readily
be lost if the drive is left running for several minutes. We
can increase longevity by using hosts with higher latency,
although this reduces speed.8 Since the data are stored ex-
ternally using untrusted hosts around the world, it is easy
for adversaries to tamper with it by sending us back the
wrong data. This could be mitigated with checksums or
error correcting codes [23], although we want to avoid any-
thing that might resemble “storing” the data locally (this
is cheating). On the other hand, since we do not store data
locally, this drive could be considered “non-volatile” in the
sense that if we completely lose power and reboot, we can
still recover the data as the pings are received from the
network. Such a reboot would need to happen in less than
about 100 milliseconds, though.

Speed. The drive is slow but tolerable. In the bench-
mark wrote and read the test file 15 times in one minute,
and achieved 15,286 bytes/sec writing and 13,239 bytes/sec
reading. Reads and writes are basically the same operation
so this gives a small indication of the variance (high) as
well. We can get better I/O performance by using hosts
with lower latency, but this increases the (local) cost and
decreases longevity.

Power. Power consumption is low. The up-front power
cost for a computer and network connection is small (Rasp-
berry Pi 3 is about 3 Watts). The data are actually stored
externally, and if we were the only use of the Internet,
a very significant amount of power would be consumed
in transmission lines. In the benchmarked configuration,
each 512-byte block has 4 outstanding pings, for which we
assume a mean cable length of 1/4 Earth circumference
(10 Mm). A copper connector like Cat6 UTP has nominal
DC resistance of 84 Ω/km, so the loop resistance would be
840 MΩ, which is actually rather high. The math to fig-
ure out the power per byte eludes me (not to mention that
undersea cables are usually fiber optics), but it is not triv-
ial. A typical undersea data cable’s excitation power is on
the order of tens of kilowatts, with repeaters every 100 km
or so. Fortunately, the total bandwidth of such cables is
extremely high, with these 512-byte packets representing a
minuscule fraction. Rather than try to multiply a big esti-
mate by a small estimate, it is better to work from a known
quantity: Assuming that the cost of the consumer internet
connection also covers the marginal cost of the power in

8One easy approach is to deliberately incur additional overhead.
For example by connecting to a VPN in Nigeria, I ensure a round-trip
to Africa before the pings even make their way to the open Inter-
net, which increases latency significantly. This reduces throughput to
2,948 bytes/sec., however.

264

these backbones, at 0.15c/kwH, this seems to be at most
5.8 µWatts per byte-second.

Is rotational? One of our criteria will be whether the
drive should set the is_rotational flag for nbdkit (Sec-
tion 2.0.1). The inspiration for this drive (orbital chain-
saws or radio towers around the world) would be rotational,
but this drive is not. Although the initialization happens
round-robin, due to the stochastic timing of the outstand-
ing pings, the drive soon thereafter processes the blocks in
a random order.

Harm to society. The drive is definitely harmful to my
home network; whether that can be considered a positive
or negative to society is left as an exercise for the reader.
At the benchmark scale of 51,200 bytes, the effect on the
broader internet is trivial, and I took care to not overwhelm
any particular host. However, at scale this drive would be
harmful to the shared infrastructure, and carries the moral
hazard of “freeloading” off the willingness of hosts to reply
to ECHO messages.

3 Tetris, the Soviet Mind Game

Sorry to remind you about Vladimir Putin’s illegal inva-
sion of Ukraine, but this section concerns a hard drive
made from the best Russian (actually, Soviet) video game,
Tetris [20].
Tetris is an inventory-management survival-horror game

with 19 principal characters, each with its own story arc;
they are:
Like all living things, these characters are made up of four

individual pixels, or “blocks.” By being confused about the
fact that words can have multiple meanings, we can have
an idea: Make a block device from these blocks, using their
presence or absence in the playfield to store data. A Tetris
board is 10 columns wide and 20 rows high. Even if we
could use every one to store a bit, 200 bits is far too few to
create a filesystem. Therefore we’ll use an array (or if you
will, a Beowulf cluster) of Tetris games to create the block
device.
We will store a bit pattern in a Tetris game by playing a

series of moves to create a specific pattern in the playfield.
We can then read the data directly from that pattern. If we
need to write a new pattern, we reset the game and begin
again.
Each “line” of the playfield has 10 positions, each of

which could have a block in it or not, so we could con-
sider storing 10 bits. However, due to the rules of Tetris,
if all of the cells are filled, then the line is cleared. This
would make it impossible to store the pattern 1111111111.
It will also be impossible to store the pattern 0000000000,
because an empty line cannot support any pieces above it,
so empty lines can only appear in some completely-empty
prefix of the playfield. Additionally, observe that a Tetris
board always has an even number of cells filled. We can
only add 4 blocks by dropping a piece, or remove 10 blocks
by clearing a line, which can only yield even numbers. So it
will also benefit us to have one free cell per line for parity.

uint16_t NextRNG(uint16_t state) {

uint16_t carry = ((state >> 9) ^ (state >> 1)) & 1;

return (state >> 1) | (carry << 15);

}

Figure 4: The simplified code for NES Tetris’s pseudoran-
dom number generator, which resides at address 0xAB47 in
the Tetris code. This is a 16-bit two-tap LFSR: The carry
is the exclusive-or of the second and tenth least significant
bits. We right-shift off the least significant bit and use the
carry as the new most-significant bit.

A good choice is to use 8 cells per line for data, encoding
a single byte, which is a nice round number.

We can’t use the full height of the playfield, since we need
some room in which to maneuver pieces. 8 is a convenient
choice here as well (although more is possible). Each Tetris
game will thus store 64 bits: Eight lines, each with eight
bits. We’ll use the venerable NES Tetris (Nintendo, 1989),
which is also 8 bits.

3.1 Playing Tetris

Now the problem is: Given a blank board, what sequence of
moves do we make in order to produce the target pattern?

This is not easy. To begin with, Tetris normally gives
the player pieces at random. As anyone who plays Tetris
knows, it can be very disruptive to your strategy when you
don’t get the piece you need for some time. The first step
will be to reverse engineer the pseudorandom piece drop
logic so that we can influence the sequence of pieces that
are dropped.

3.1.1 Random pieces

The core of the piece drop logic is a 16-bit linear feedback
shift register [8].9 Equivalent C code is given in Figure 4.
This 16-bit state is updated on every frame (and sometimes
more; see below), and has period 32767.10

The pseudorandom state is extended with two addi-
tional bytes: One giving the last dropped piece (a piece
is “dropped” into a queue so this is actually the “next
piece” to the player) and the count of pieces dropped (mod
256). When the player places a piece, the routine at ad-
dress 0x9907 uses the LFSR state and these two bytes to
drop a new piece (and update the state):

RNGState NextPiece(RNGState s) {

constexpr std::array <uint8_t , 8> PIECES = {

0x02 , 0x07 , 0x08 , 0x0A , 0x0B , 0x0E , 0x12 ,

/* not used */ 0x02 ,

9Fittingly, Golomb was a pioneer in both shift registers and poly-
ominoes, the latter which influenced Tetris itself!

10It is possible to create a 16-bit LFSR with a period of 65535, but
this one is simply deficient. This is one of several small problems with
the code. I hope to one day release a “hot fix” ROM that fixes this
and other bugs and inefficiencies.

265

};

s.drop_count ++;

uint8_t a = (s.lfsr_hi + s.drop_count) & 7;

if (a == 7 || PIECES[a] == s.last_drop) {

// re -roll if out of bounds , or repeat

s = NextRNG(s);

// mod 7 forces in -bounds , but allows repeats

a = ((s.lfsr_hi & 7) + s.last_drop) % 7;

}

s.last_drop = PIECES[a];

return s;

}

It uses three bits of the RNG state to pick a random
piece (there are 7 different shapes, and the game always
drops a shape in the same orientation). If it rolls an 8,
or if the selected piece is the same as the last one, then it
re-rolls: Another update of the LFSR, and then a different
weird procedure to pick the piece index. Here the result
is mod 7, so it is always in bounds. The code only re-rolls
once, so it is possible to drop the same piece twice in a row,
just less unlikely.
Ideally we would be able to select a sequence of pieces

that we want, and then force Tetris to give us those pieces.
Since the LFSR update runs every frame, we can use a
different number of frames while placing a piece, and get
a different LFSR state at the point NextPiece is called.
The LFSR is “pretty good,” so we can easily cause the first
roll to be whatever value we want by just waiting. In the
worst possible case we need to pause 98 additional frames
before seeing all 8 rolls (Figure 5), which is 1.6 seconds at
the NES frame rate.
However, this does not work for re-rolls, which is the only

way to get the same piece twice in a row. Even though we
use the same “pretty good” LFSR to get the second pseu-
dorandom number, two successive calls are highly corre-
lated. There are only two possible new values for the high
byte of the LFSR (s.lfsr_hi): (s.lfsr_hi >> 1) and
128 + (s.lfsr_hi >> 1). Worse, since these are congru-
ent modulo 8, we really just have (s.lfsr_hi >> 1).
As a result, even if you have complete control over the

LFSR state (but not the previous piece nor drop count),
there are a limited number of outcomes possible from the
reroll. We can just inspect all the possible combinations
of previous piece and drop count to see that with some
there are at most 4 possible rerolls, and as few as 2. For
example, if the previous piece is and 253 pieces have
been dropped so far, then only , , and can result.
So here it is possible to get two pieces in a row. But if
the last piece was , and 3 pieces have been dropped so
far, then only and are possible from a re-roll. Since

cannot result from the first roll and is not possible for
the re-roll in this state, it is impossible to get two pieces
in a row on the 3rd and 4th drop. All pieces other than
periodically have this problem.11 Even when it is possible,

11This is another example of a deficiency in the code that could eas-

it may require a long drought to get the LFSR in a rare
working state.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 5: The maximum possible “drought” for the NES
Tetris LFSR. This is the number of iterations before we see
all possible rolls (all eight possible values for the low three
bits), histogrammed over all meaningful start states (LFSR
state and drop count). The minimal value is 8 (obviously,
by pigeonhole) and rarely it can be as high as 99, but most
of the time we have seen all rolls by a few dozen iterations.

By manipulating the RNG we will be able to achieve any
sequence of pieces, except if that sequence contains repeats.
There is a similar consideration for the first two pieces of
the game, which are generated on the same frame (cur-
rent and next piece) and so only certain combinations are
possible. To simplify this issue away, we begin by always
playing the same starting sequence: 0 3 6 2 7.
This means to drop a in column 0 (the leftmost column),

in column 3 (the left edge of the piece goes in column
3), etc. This sequence clears two lines, leaving the board
empty, with the only constraint now being that we cannot
start with a piece. In fact we will always start with a
piece in the leftmost column to make use of the modular
plans described in the next section.

3.1.2 Planning

With a smart algorithm, it would be possible to plan moves
within these constraints to generate moves for any byte
pattern that we want to create. However, this is not an
easy feat. Creating very sparse patterns (few 1 bits) is
pretty challenging because pieces can only be placed on
top of existing blocks (Figure 6).

Instead, the approach I took was to build a modular solu-
tion for each byte. We always place the board in a standard
configuration (Figure 7) where a piece is in column 0. A
portion of the board below it contains the encoded bytes
(one per row) and parity (first two columns). We do not
depend on the contents of this portion at all, so the first
moves must hang off of the piece. For each byte, we need
to come up with a series of moves that takes a starting con-
figuration like this, encodes the byte (and its parity) in the
bottom row, and then recreates the starting configuration
with the piece moved up one line. These plans are also

ily be fixed. If we simply remove the instruction at 0x9925, AND #$07

(so that the re-roll just uses (s.lfsr_hi + s.last_drop) % 7) then
all configurations can now produce all pieces upon re-roll. The mod-
ulus is computed with a loop, so this is not a strict efficiency im-
provement, but efficient alternatives with this property exist, like
((s.rng2 & 15) ^ s.last_drop) % 7.

266

267

268

269

Figure 10: Playing a game of Tetris in the FCEUX emu-
lator, in which we loaded the tetris.nes ROM from the
tetru drive. The backdrop is a truncated portion of the vi-
sualization showing the contents of the 8,640 Tetris boards
being emulated. The upper portion is the FAT-12 header
and directory entries (it is mostly 0x00) and the lower por-
tion is the ROM data. I only have 100 points right now
but as you can see I am gearing up to complete some sweet,
high-scoring Tetrises.

for each block is 64 bits, or 8 bytes itself, suggesting a form
of “content-addressed storage.”

3.2.1 Results

In order to benchmark we need some file to write to the
filesystem. A beautiful choice is the tetris.nes ROM file,
which is 49,168 bytes. Though the minimal filesystem for
FAT12 requires a device with 51,200 bytes, there is signif-
icant overhead from the filesystem header, directory entry,
and so on. So to store this ROM we create a device with
69,120 bytes, which is 8,640 NES emulators. It is straight-
forward to scale to thousands of emulators, with the biggest
challenge being to fit them all on the screen for some kind
of visualization.

We benchmark as before, but then of course it is impor-
tant for aesthetic reasons to load the ROM that we stored
inside the drive to play a game of Tetris. Figure 10 shows
this in practice.

Qualitative. This is a good Harder Drive. It solves a
problem we don’t have, which is that typical hard drive
“blocks” are not made of actual “blocks,” but Tetris players
will recognize that the data on the drive is indeed made
from blocks. It is very satisfying to watch the thousands of
Tetris games drop pieces to encode the data.

Cost. Simulated on a computer, the up-front cost of stor-
ing data is fairly low. A basic 16-core desktop computer
is about $1,800 in 2022. The software NES emulator uses
1,652,372 bytes of RAM for Tetris on a 64-bit machine,
which is 650 instances per gigabyte. So we can store about

5200 bytes in about $4.37 worth of RAM,16 which is 0.084
cents per byte. This could easily be improved; the emu-
lators could be stored much more efficiently, because they
are all emulating the same ROM. If we built this with ac-
tual Nintendo hardware, we would need one NES Console
and one Tetris cartridge (or bootleg) per eight bytes. A
used NES runs about $150 and a Tetris cartridge about
$10. This is $20 per byte, which 24 thousand times more
expensive.

Longevity. The stored data lasts indefinitely, as long as
the computer (or Beowulf cluster of NES consoles) remains
powered.

Speed. Writing the 49,168-byte test file tetris.nes

takes 3 hours, 18 minutes and 52 seconds, for a data rate
of 2.57 bytes/sec. Due to its caching nature, writing to the
hard drive gets faster as it stores more data. Reading is
much faster at 61,430 bytes/sec.

Power. On a modern computer, a gigabyte of RAM uses
about 375 mW of power [10], so the marginal cost is 72 µW
per byte. The NES console uses about 10 Watts, which
would give us about 1.25 W per byte.

Is rotational? This drive is_rotational, because the
Tetris pieces are rotated to place them in the correct ori-
entation.

Harm to society. There is no harm to society for the
software emulation. If built on real NES consoles, hoard-
ing thousands of these machines and cartridges would be
considered antisocial, as they are historic items that are in
limited supply, and many people still enjoy collecting and
using them for their intended purpose.

4 Cue the coronavirus

Speaking of using things for their intended purpose: Sorry
to remind you about the worldwide pandemic still killing
thousands of people every day, but this section concerns a
hard drive made from COVID-19 tests.

SARS-CoV-2 is an RNA coronavirus first isolated in Jan-
uary 2020 [29]. Since it is highly contagious and can cause
severe illness (especially in the immune-näıve), testing is an
important part of the worldwide response. There are two
widely available approaches to testing: Lateral flow antigen
tests and PCR. Lateral flow tests detect a target molecule
(e.g. the SARS-CoV-2 spike protein) by binding a tagged
complementary molecule (antibody) to it as the sample
flows along a capillary bed. This is awesome. The tests
are fast and cheap. Polymerase Chain Reaction (PCR) [24]
tests work by amplifying a target sequence of DNA expo-
nentially. It heats and cools the sample in the presence of
a heat-stable DNA polymerase (typically Taq polymerase,
which was isolated from the thermophilic Thermus aquati-
cus bacterium) and a bubble-bath of nucleotides that can
be used to create more DNA. Each thermal cycle first un-
zips a double-stranded molecule into two pieces, and then

16In 2022, a Corsair 16GB DDR4 DIMM is only $70.

270

reassembles each one, doubling the target. Properly, the
tests are reverse transcription PCR [4], because first we
need to turn the viral RNA into DNA. PCR tests are more
sensitive (they can detect a single molecule) and specific
(they detect a particular genetic sequence). This is also
awesome.
Cue is a bougie COVID-19 test that launched in 2021.

The test consists of a reusable reader ($200) and a single-
use cartridge ($65 each!). Notwithstanding the eye-popping
expense, the system is pretty good. My employer provides
these tests for free (!), so I started collecting the used car-
tridges over the course of several months, and soliciting
them from my friends as well.
The cartridge itself (Figure 12) is fairly ingenious and

deserves to be disassembled.17 When you stick the nose
swab into the cartridge, it of course is delivering the snotty
sample, but the insertion force also mechanically actuates a
number of plastic thorns which pierce foil seals on reagent
ampules, allowing them to start their thing. The assay is
described as “nucleotide amplification,” which would sug-
gest something like RT-PCR, but since the cartridge does
not significantly change temperature during a test, it is
probably not literally PCR. LAMP [19] is a similar tech-
nique which is isothermal and seems like a credible choice.
Again it would be preceded by a reverse transcription step
to turn RNA into DNA. These things are all awesome and
deserve to be learned about; for example did you know
that the most frequently used reverse transcriptases (which
turns RNA into DNA to begin amplification) were isolated
from RNA viruses (which those sneaky bastards use to turn
their own RNA into DNA so that it can be transcribed by
the host)? So now we’re using virus machinery to detect
and fight other viruses? Hell yeah we are!
If you pull off all the chemistry pieces from the cartridge’s

endoskeleton, you’ll also find a tiny 8-pin microchip on-
board. And if you have a microscope you can read that
it says ST 24C04WP, which is a serial EEPROM [25]. An
EEPROM is a programmable ROM (so it is “read-only”
but also writable?). It is probably used to store the car-
tridge’s serial number, expiration, what kind of test it is,
and maybe calibration data. This stuff would be pretty
small, so it’s no surprise that the chip can only store 512
bytes. A dump of one of these ROMs is in Figure 11.
The EEPROM is an I2C device, so I could use pre-

existing code to send commands to it. Reading the EEP-
ROM is normal difficulty. I found writing to be more like
“hurt me plenty” difficulty: When you write a line, the
EEPROM drops off the bus temporarily (it may need to
do this because it is internally stepping up voltage for the
erase operation). You then have to either wait “enough
time” or poll it to see when it’s ready to write the next
line. What I did is to repeatedly try to read back the same
line we just wrote (this also allows us to check that the

17I recommend only disassembling a “negative” test, in case that
is not obvious. The typical reagents used in RT-LAMP are not par-
ticularly dangerous; for example Bst polymerase is “not hazardous”
according to OSHA, although it may be an “eye irritant” [2].

00 00 b6 98 d0 19 5a 45 3b ef a1 d1 41 37 e6 ec |ZE;...A7..
49 91 6f 3b ab 7d 59 32 8f d4 e1 a6 33 bf 66 4b | I.o;.}Y2....3.fK
d6 fb 6a 9d f6 d4 89 72 a4 3d 8a 5b 62 10 4b 07 | ..j....r.=.[b.K.
d4 c3 15 52 01 d9 20 c1 97 87 4d c2 34 df 2a af | ...R......M.4.*.
cc 05 01 00 00 00 2e 00 0a 19 08 c6 ad d6 40 10 |@.
13 20 a3 82 01 30 80 d6 89 99 06 3a 06 32 30 39 |0.....:.209
34 35 48 12 11 9a 01 0e 08 02 15 00 80 88 c5 20 | 45H.............
01 2d 00 00 c8 c3 ff ff ff ff ff ff ff ff ff ff | .-..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

Figure 11: ROM dump from a Cue COVID-19 test’s on-
board 512-byte EEPROM. After soldering tiny wires onto
the tiny pins and writing a driver for it, I had hoped to see a
secret message congratulating me on my steady hands and
the beginning of an Alternate Reality Game whose prize
was the inheritance of an eccentric billionaire (but who’s
got time for that?). Alas there is nothing that can be eas-
ily deciphered on here other than perhaps 20945H. Note
how much of the EEPROM is unused, but I’m glad they
sprung for 512 bytes, or else this project would not have
been so feasible.

data were successfully written). However, sometimes the
chip would come online during the read command, produc-
ing unpredictable results. Basically you have to be tolerant
of errors in some situations, but not too tolerant, or else you
don’t detect real failures. It gives me some sympathy for
terrible dedicated EEPROM programmers I have used [15].

4.1 Harder Drive: Cu

Having committed to the naming scheme where I replace
some of the last letters of the thing with the letter u, it
seems the best name for this drive is Cu. For one thing,
this is the chemical symbol for copper, and the drive uses
copper to function.

With the ability to read and write a single Cue cartridge,
the remainder is just a matter of straightforward engineer-
ing and tedious manual labor. Of course, you want to do all
of this on a manufactured printed circuit board (Figure 13).
The job here is to make it possible to individually address
a single EEPROM to read and write its data. Though I2C
does support multiple devices on the same bus, these chips
all have the same I2C address and so they would all try to
reply to the same commands. The ST 24C04WP EEPROM
does have “chip enable” pins that would allow it to share
a bus with others, by selectively enabling only the chip of
interest. Unfortunately, these pins are not connected to
any of the exposed connectors on the cartridge. Instead, I
use a bus switch (which is basically this same “chip enable”

271

Figure 12: Mechanical drawing of the Cue COVID-19 test cartridge. The protruding stick is the nasal swab, which is
permanently captured during use with zip-tie–like ratcheting. The card edge connector is the low tolerance piece here,
whose small size (0.05 inch pitch with 1.1mm fingers) requires special consideration for mounting and soldering. (In its
normal usage, this connector mates with some spring-loaded pins when the cartridge is inserted in the Cue reader.)

circuitry) to connect each EEPROM to the I2C bus. Each
SN74CBTLV3125 is a quad bus switch, so I can switch
the two I2C lines (SDA, SCL) for two Cue cartridges with
each chip. Then, we can select one of 8 cartridges (a sin-
gle daughter board) with a demultiplexor, which takes 3
address bits and sets exactly one of its 8 output lines to
0. For decorative purposes, I associate a colored LED with
each cartridge; this LED foolishly ends up accounting for
most of the components on the board and most of the as-
sembly time, since I also have to build logical NOT gates
(demultiplexor outputs logical 0). Finally, the cartridges
themselves are very tricky to incorporate. They have very
small plated connectors that normally mate with spring-
loaded pins in the reader, but that component is not read-
ily available (and would probably be expensive). Instead, I
mount it at 90◦ through a hole in the PCB, where the PCB
has its own matching edge connector made with castellated
holes. I also 3D printed a plastic jig that could hold the car-
tridge at the right angle during soldering. With generous
acid flux and a steady hand, soldering these worked quite
well. Only 4 pins need to be connected (3v3, GND, SDA,
SCL) but I also soldered some distal pins, since these joints
are the only mechanical connections for the cartridges.

The motherboard has its own demultiplexor to select the
daughter board, as well as an ad hoc pair of “group selec-
tor” pins wired directly to GPIO. Together it supports 7-bit
addresses, for up to 128 cartridges, which is 64 kilobytes. I
did not collect enough used tests to fill the address space,
but I did connect 72 of them, which is enough to do some-
thing interesting at least! Except . . .

4.2 Failure!

I blew it! Literally! On the evening of the SIGBOVIK
deadline, in an attempt to be simultaneously expedient and
careful, I soldered the Cu motherboard while it was plugged
in, and fully toasted it and the connected Raspberry Pi. My
best guess is that the soldering iron had a very different
idea of “ground” than the device under test. It made an
upsetting pop noise, an upsetting burn smell, an upsetting
spark and smoke sight, an upsettingly warm touch,18 and it
made it impractical to fix before the paper is due. You can
at least see what the tabletop device looks like in Figure 14.
It should be possible to replace the Pi and motherboard,
so perhaps the by the accompanying video or talk I will be
able to finish the task and get some benchmark numbers.

18I did not attempt to taste it; the board is not RoHS-compliant due
to the copious lead used. Despite the panoply of upsetting sensations,
the obviousness of the failure was a blessing that saved me time trying
to debug! Even if I plug the Pi in on its own, it makes a pathetic,
obviously unhealthy whine. It is so dead.

272

Figure 13: The two-layer printed circuit board for the Cue
drive. Because the boards must be ordered in quantity, one
board contains the layout for both the motherboard (used
once) and daughter boards (used many times). On the far
left is the motherboard, for example the header for inter-
facing with the Raspberry Pi and the 3:8 demultiplexor for
selecting a daughter board. These parts are only populated
once. The remainder is the daughter board: Eight cutouts
for cue cartridges mounted at 90◦ with castellated edges;
an LED and support logic for each; the surface-mount bus
switch ICs; another 3:8 demultiplexor for selecting the car-
tridge on this board. The design can accommodate 16
daughter boards, each with 8 cartridges, for a total of 64
kilobytes.

4.2.1 Results

We need a file to store on the drive to tie the knot and to run
the benchmark. A beautiful choice here is the genetic se-
quence of SARS-CoV-2 (ancestral) [30] from GenBank [5].
This is a 77343 base-pair sequence; it would be too large
to store in ASCII.19 Each nucleotide is only two bits of in-
formation, though, so we pack four of these into each byte
for only 19336 bytes.

Qualitative. This is a decent Harder Drive. It solves a
problem we don’t have, which is what to do with all those
COVID-19 tests that we’d otherwise just throw away? It
took significant effort to create, although most of the diffi-
culty was from problems (e.g. how to solder these tiny pins)
that are not interesting from a computer science perspec-
tive. EEPROMs are fundamentally data-storage devices,
so this usage of them cannot be considered clever, but ar-
raying dozens of them to create a modest-sized non-volatile
memory that could be easily replaced with a single 30-cent
NAND Flash IC is at least “very silly.” Mucho demerits
because I broke it during the final assembly.

Cost. The cost is significant. The up-front cost is a Rasp-
berry Pi 3 (nominally $35), accessories, and a demultiplexor
IC ($0.60), plus scrap plywood for mounting. Then, per
board, we have the following bill of materials:

19Plus, I’m a biology noob and I may just be missing something,
but GenBank uses “T” in this sequence even though it should be U
(uracil) in RNA, which seems very non-canonical?

Figure 14: Assembled Cu drive with 72 Cue cartridges.
Imagine trying to explain to someone that this homemade
thing that has “COVID-19” written on it 72 times, and
has got all sorts of colored wires everywhere, is not some
instrument of bioterror. In fact it does not even drive hard:
In my rush to meet the preposterously strict SIGBOVIK
deadline, I fried the Raspberry Pi and motherboard (per-
haps you can see that multiple LEDs are lit on the mother-
board, which clearly violates invariants). Fortunately due
to its modular design, it can likely be fixed with a few more
hours of manual labor.

Qty. Part no. Description Price ea. Total

8 Cue L2900006 Used COVID-19 Test $65.00 $520.00
1 custom 2-layer PCB 162x92mm $5.766 $5.766
2 497-2340-5-ND Transistor array IC $0.5768 $1.154
4 SN74CBTLV3125 Bus switch IC $0.6636 $2.654
2 2N3904 NPN BJT transistor $0.09 $0.18

20 jellybean 10kΩ resistor $0.0155 $0.31
8 jellybean 845Ω resistor $0.02428 $0.194
8 jellybean 3mm LED 2v 20mA $0.01499 $0.12
1 CD74HC137E 3:8 demultiplexor IC $0.6048 $0.605

$530.98

This does not include consumables like solder and hook-
up wire, nor the considerable time to assemble each board
(about 1 hour with practice).

We need 13 boards to store a full FAT12 filesystem, for
a total cost of $6,936.04. The marginal price per byte is
12.96 cents.

Longevity. This is the only drive considered where data
are retained when powered down. The M24C04-W EEP-
ROM is rated for 200 years of data retention, and 4 million
write cycles [25]. At the current pace, this is likely to out-
last the human race.

Speed. Unknown as of publication! As described in Sec-
tion 4.2, the motherboard was damaged on the eve of the
deadline and no benchmark was conducted. Reading the
EEPROM is fast, but writing a block takes a few hundred
milliseconds. The speed is expected to be high (for the
drives considered here).

Power. The up-front power cost is low; we need to power
the Raspberry Pi and various chips on the boards. Only
one of the decorative LEDs is lit at a time, using about

273

1 mW. The total is about 3 Watts. The marginal power
cost is excellent: On the Cue cartridge, only the EEPROM
is powered. During standby it uses no more than 3 µA at
3.3 V, which is 9.9 µW for 512 bytes, or 19.3 nW per byte.

Is rotational? This drive is not rotational; it provides
us SSD-like random access to the Cue cartridges, and the
EEPROMs on board allow random access to each line of
data.

Harm to society. Arguably, the drive is beneficial to
society. First, it is built mostly from trash. Second, coron-
avirus testing prevents death or other hardship by inform-
ing infected people that they may be contagious; at a min-
imum it is good for the spirit by facilitating lower-anxiety
gatherings. Finally, since the tests contain captured body
fluids, this adds an all-too-rare “human element” to com-
puting.

5 Other hard drives we really

didn’t need

Here are some things I hate: (1) The name of TDAmeri-
trade’s stock trading app, which is “thinkorswim.” This is
of course a play on the idiom to “sink or swim,” meaning
metaphorically to toss someone into deep water to survive
by their own efforts, or else drown. The analogy is certainly
apt for an app that lets consumers trade derivatives, but
the obvious problem here is that if it is “think or swim,”
then we are now asking the subject to survive by their
own efforts (swim) or else “think”? Huh? Or is it that
they must think carefully about their trades, or else they
will survive? Wha? (2) Poison ivy. This plant has no
purpose other than to make you itch. It doesn’t even get
anything out of that trick, since I wasn’t going to eat it
anyway. Nevertheless it spreads. (3) Cryptocurrency. I
have no objection to the use of cryptography in finance, but
there aren’t enough vomiting emojis in Unicode to appro-
priately react to the current hype. Cryptocurrency signif-
icantly harms the planet while taking advantage of many
people’s technical and financial illiteracy.20

20Note to cryptocurrency apologists: This short section does not
have room for a full criticism, nor would such a thing be “fun” enough
for SIGBOVIK. Briefly, there are five principal problems. (1) Proof
of Work is incredibly wasteful (see the stats below; this is just one

of the cryptocurrencies). Of course I am aware of “Proof of Stake.”
I remain very skeptical that miners with large capital investments
in (otherwise useless) ASICs will be willing to salvage them, but I
would gladly celebrate this and by all means, please do make this
happen. (2) I believe that regulation of finance is good, both formal
regulation with law and self-regulatory organizations like FINRA, as
well as informal practices like rolling back erroneous transactions or
returning stolen funds, which are regulated indirectly by the desire
to maintain valuable public reputations. Unregulated markets have
many problems (insider trading, etc.) and avoiding regulation mostly
seems to be useful for tax evasion and other crimes. (3) In attempt to
avoid “decentralization”, control is nonetheless effectively centralized
in the hands of a small number of actors anyway (large-capacity min-
ers and exchanges). However, these actors are set up as adversarial,
or at best as some kind of wild-West “disruptors.” I’d trust these
skeezy guys way less than I trust banks, and rightly so: They rou-

Nonetheless, the common prefix between “block device”
and “blockchain” is hard to avoid noticing, and a head-to-
head comparison may be instructive. So I put on incognito
mode, a VPN, an N-95 mask and six condoms in order to
research some numbers for this section.

Bitcoin is “append-only” by design, so it does not have
the same abstraction as other Harder Drives. For com-
parison sake, we consider a usage where the head of the
blockchain contains the full data; a write is accomplished
by mining a new block and a read is accomplished by read-
ing from the current head. For Bitcoin, the block size is
1 Mb, and the network automatically adjusts to mine a sin-
gle block every ten minutes. I did not actually implement
this drive, both because of the gag reflex and because I do
not have that kind of money!

Qualitative. Despite hating it, I must admit that Bit-
coin meets the criteria for a Harder Drive pretty well. It
solves a problem that we don’t have, by imagining a world
where we cannot agree on a small set of trustworthy par-
ties, a majority of which must be acting in good faith. Its
approach is elegant in the small but for its obvious fatal
flaws, and comically absurd if taken to its logical extreme.
It is impressively inefficient, and grows less efficient over
time. In short, it would make a solid SIGBOVIK paper.
The only problem is that people are actually using it in
seriousness, and the social problems that result from the
value it has attained.

Cost. The cost is extremely high. The reward for min-
ing one Bitcoin is currently 6.25 BTC, plus an average of
about 0.97 BTC in transaction fees, which totals $342,000
in March 2022. This gives us an approximate upper bound
on the cost to mine (by assuming the marginal cost is prof-
itable) a block, which is 34.2 cents per byte. This does not
include the up-front cost of hardware and facilities, which
is of course monumental.21

Longevity. The data has excellent longevity, in fact, it is
impossible to erase previous data once written. Of course,
“forks” of the chain can make it unclear what version of
the data is correct, or if > 50% of the untrusted miners

tinely front-run transactions, just as one example. (4) The space is
riddled with Ponzi schemes and scams, as exemplified (but certainly
not limited to) NFTs. This is plainly immoral. (5) Cryptocurrency
aficionados are insufferable, presumably because they feel like they
need to convince you to get in on their tokens so that they grow in
value (which presumably they hope to then sell to get real money).
I get an enormous amount of cryptocurrency spam. The only words
I’ve muted on Twitter other than five green Unicode squares are cryp-
tocurrency terms, and this has improved the experience greatly. If you
are a cryptocurrency aficionado reading this that feels like you need
to “educate” me about how I am misinformed (despite what I can
clearly see in front of me!), case in point. That said, I will happily
discuss interesting ideas with informed computer scientists over beer.

21Nor the surrounding apparatus like “bitcoin ATMs” and “crypto
exchanges” (the kind of stuff that apologists are talking about when
they tell you that “regular money uses a lot of electricity too!”), al-
though it is probably not fair to count these as part of the cost when
used as a pure data storage mechanism.

274

disagree, they can change the data at will.

Speed. The network is slow, although not the slowest
considered here. It takes an expected ten minutes to write
1 Mb of data. This is a data rate of 1,747 bytes/sec, ap-
proximately the speed of a 14.4 kbaud modem.

Power. The power usage is incredibly high. Mining Bit-
coins uses about 0.31% of the entire world’s energy produc-
tion, 15.74 GW [6]. Remember that this does not solve any
interesting computational problems or accomplish anything
useful; the only purpose is to create an expensive waste of
power in order to avoid trusting a bank or set of banks. To
store one megabyte on an ongoing basis, this is 15.74 kW
per byte.

Is rotational? It’s not even rotational!

Harm to society. The harm to society is significant.
Aside from the catastrophic waste of resources, the pri-
mary use case is speculation (at best morally neutral, but
probably tends to harm small investors). As a slow, expen-
sive, non-atomic yet irrevocable payment mechanism, they
are best suited for extortive transactions like Ransomware.

6 Conclusion

In this paper, we decided that sometimes it’s more fun to
do things the hard way, and then did so. Using several dif-
ferent techniques and some needless digressions, we created
block devices that could support small filesystems, which
then could host a fitting file. Each filesystem was bad when
considered as a regular hard drive, but good when consid-
ered as a Harder Drive. We also compared these drives to
the most popular cryptocurrency. The idea was to make
the point that cryptocurrency is so egregiously bad that
it resembles a “SIGBOVIK joke gone wrong” more than
something one would make on purpose. This part may not
have been as fun.

Acknowledgements.

I used nbdkit [3] to create block devices, which was a
much sounder idea than writing my own kernel drivers.
I still found it very easy to render Linux unusable. The
code for sending and receiving pings was adapted from
liboping [7].

Thanks to Rose, William, Sophia, Reed, Jessica, Max,
and Finn for donating their nasal swabs to the project.
I especially appreciate that they gave me these samples
without any information about what I was even doing with
them. That’s true friendship. By the way, human cloning
is possible now. Just sayin’.

If you have a computer connected to the internet, then
I attempted to send it a message during the course of this
project. If your computer responded, then thank you for
configuring it that way. Similarly, this paper would like to
acknowledge any TCP SYN packets that are sent to it (but
it cannot, for it is simply a paper).

Finally I would like to thank the SIGBOVIK program
committee for letting me store this file in the proceedings:

275

References

[1] adelikat et al. FCEUX, the all in one NES/Famicom
emulator. fceux.com.

[2] New England BioLabs. Material Safety Data
Sheet: Bst 2.0 DNA polymerase, m0537. Novem-
ber 2019. https://www.neb.com/products/

m0537-bst-20-dna-polymerase.

[3] Eric Blake, Richard W. M. Jones, et al. nbdkit, 2022.
gitlab.com/nbdkit.

[4] Stephen A Bustin. Absolute quantification of mRNA
using real-time reverse transcription polymerase chain
reaction assays. Journal of molecular endocrinology,
25(2):169–193, 2000.

[5] K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell,
and E. W. Sayers. GenBank. Nucleic Acids Research,
44(D1):67–72, January 2016.

[6] Cambridge Centre for Alternative Finance. Cambridge
Bitcoin electricity consumption index, March 2022.
ccaf.io/cbeci/index.

[7] Florian Forster. octo’s ping library, 2017. noping.cc.

[8] Solomon Wolf Golomb and Lloyd R. Welch. Shift reg-
ister sequences, 1967.

[9] David Hilbert. Ueber die stetige Abbildung einer Linie
auf ein Flächenstück. Mathematische Annalen, pages
459–460, 1891.

[10] Micron Technology Inc. How much
power does memory use?, 2019. www.

crucial.com/support/articles-faq-memory/

how-much-power-does-memory-use.

[11] Jim McCann and Tom Murphy, VII. The fluint8
software integer library. In A Record of the Proceed-
ings of SIGBOVIK 2018, pages 125–128, April 2018.
sigbovik.org/2018.

[12] Tom Murphy, VII. The first level of Super Mario
Bros. is easy with lexicographic orderings and time
travel. After that it gets a little tricky. SIGBOVIK,
pages 112–133, April 2013.

[13] Tom Murphy, VII. New results in k/n Power-Hours.
SIGBOVIK, pages 5–14, April 2014.

[14] Tom Murphy, VII. zm~~ # printy# c with abc!.
SIGBOVIK, pages 129–148, April 2017.

[15] Tom Murphy, VII. Making of ”Reverse emulating the
NES. . . ”, May 2018. youtu.be/hTlNVUmBA28.

[16] Tom Murphy, VII. Reverse emulating the NES to
give it SUPER POWERS, May 2018. youtu.be/

ar9WRwCiSr0.

[17] TomMurphy, VII. Elo World: A framework for bench-
marking weak chess algorithms. In A Record of the
Proceedings of SIGBOVIK 2019. ACH, April 2019.
sigbovik.org/2019.

[18] Tom Murphy, VII. NaN gates and flip FLOPS. In A
Record of the Proceedings of SIGBOVIK 2019, April
2019. sigbovik.org/2019.

[19] Tsugunori Notomi, Hiroto Okayama, Harumi Masub-
uchi, Toshihiro Yonekawa, Keiko Watanabe, Nobuyuki
Amino, and Tetsu Hase. Loop-mediated isother-
mal amplification of DNA. Nucleic acids research,
28(12):e63–e63, 2000.

[20] Alexey Pajitnov. Tetris, June 1984.

[21] Jon Postel. Internet control message protocol. STD 5,
RFC Editor, September 1981. RFC 792, www.

rfc-editor.org/rfc/rfc792.txt.

[22] Jon Postel. Internet protocol. STD 5, RFC Editor,
September 1981. RFC 791, www.rfc-editor.org/

rfc/rfc791.txt.

[23] Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300–304, 1960.

[24] Randall K Saiki, Stephen Scharf, Fred Faloona,
Kary B Mullis, Glenn T Horn, Henry A Erlich, and
Norman Arnheim. Enzymatic amplification of β-
globin genomic sequences and restriction site anal-
ysis for diagnosis of sickle cell anemia. Science,
230(4732):1350–1354, 1985.

[25] STMicroelectronics. M24C04-W M24C04-R M24C04-
F datasheet, October 2017. www.st.com/resource/

en/datasheet/m24c04-w.pdf.

276

[26] Wikipedia. File allocation table, 2022. en.wikipedia.
org/wiki/File_Allocation_Table#FAT12.

[27] Wikipedia. Ping of death, 2022. en.wikipedia.org/
wiki/Ping_of_death.

[28] Wikipedia. Smurf attack, 2022. en.wikipedia.org/

wiki/Smurf_attack.

[29] F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G.
Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y. Pei, M. L.
Yuan, Y. L. Zhang, F. H. Dai, Y. Liu, Q. M. Wang,
J. J. Zheng, L. Xu, E. C. Holmes, and Y. Z. Zhang.
A new coronavirus associated with human respiratory
disease in China. Nature, 579(7798):265–269, March
2020.

[30] F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang,
Z. G. Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y.
Pei, M. L. Yuan, Y. L. Zhang, F. H. Dai, Y. Liu,
Q. M. Wang, J. J. Zheng, L. Xu, E. C. Holmes, and
Y. Z. Zhang. Severe acute respiratory syndrome coro-
navirus 2 isolate Wuhan-Hu-1, complete genome, Jan-
uary 2020. GenBank MN908947.3, www.ncbi.nlm.

nih.gov/nuccore/MN908947.

277

Just a Regular Paper

Rob Burr
Machiavellian Institute of Thievery

Ohio, USA

Abstract

This is just a regular paper. There is nothing of interest here,
nor should anyone feel like something is out of the ordinary.
Oh, the ski mask, you ask? That’s just because it’s a frigid
60 degrees outside, don’t worry. Seriously, you’re acting a
bit too on edge from seeing a guy with a ski mask on. Don’t
mind the large bag I have either, I just like to use it to... carry
things sometimes. Yeah.

1 Introduction

Hello, everyone, I am just another person here! This is what
you do during an introduction, right? Why do you want to
know more about me, huh? You tryna start something? Yeah,
that’s what I thought. Back down, bud.

2 Methods

What do you mean, methods? I’m not trying to start anythin’!
I’m just another guy! Just another regular dude! Like, look
at this graph:

Figure 1. Just a normal graph!

Ain’t nothin’ wrong with this graph! It’s a cool graph! I
can use matplotlib!

3 Discussion

Okay, this is getting tiring. *pulls out weapon* EVERYBODY,
LISTEN UP! THIS IS A ROBBERY! I WANT EVERYBODY
TO GET ON THE GROUND, NOW! I SAID, EVERYBODY,
GET ON THE GROUND, NOW!!!!! NOW LISTEN CLOSELY: I
WANT EVERYBODY TO TAKE THEIR WALLETS AND TOSS
THEM TOWARDS ME. YUP, HAND THEM OVER. DON’T
TRY TO BE A HERO, OR THIS HUMAN-COMPUTER IN-
TERACTION PAPER OVER HERE GETS BURNED. (A person
shouts, "Boooo, pick a better hostage!") ALRIGHT, FINE, I

WILL! THIS MACHINE LEARNING PAPER IS GOING TO

GET BURNED! (everybody gasps) *turns to teller* OK, NOW

I WANT $200,000 OF UNMARKED, NONCONSECUTIVE

$20 BILLS NOW.

Time (s) Money Collected ($)

0 0

10 0

20 8,000

30 32,000

40 64,000

50 81,000

60 124,000

70 156,000

80 200,000

Table 1. The money that has been placed in the bag, now.

OKAY, NOWNOBODYMOVEOR I’LL BURNTHIS PLACE

TO THE GROUND! *sirens, helicopter noises in distance*

Oh, shit, they found where I am! *breaks and �ees through

window*

4 Conclusion

... Thanks, Tom. In other news, the Bank of SIGBOVIK was

robbed by an armed gunman earlier today. Eyewitnesses

report that the man was mumbling to an unknown target,

attempting to pose as a paper submitted to a computer sci-

ence journal. You don’t see that everyday. Investigation is

ongoing, and much like a crypto startup that’ll probably go

bankrupt in under a year, police still are desperately looking

for the money. Police are also o�ering up to $5,000 for any

information that could lead to an arrest; scan this QR code

for more information.

46

278

Wearable RF­shield repositories

Abe Wits
Zurich

melon.mouse.games@gmail.com

J. Mijn
Bos en Lommer

/dev/null

ABSTRACT

We propose the use of wearable RF-shield repositories as a
cost effective and realistic alternative to conventional pro-
tective measures in the fight against adversarial cables with
RF capabilities.

1. INTRODUCTION
Radio Frequency (RF) transceivers (e.g. WiFi) can be

hidden in the connector of a fully functional (USB) cable.
Such a bugged cable can then be used for a range of attacks,
including keylogging, injecting keystrokes and loading pay-
loads on boot. Once a bugged device has found its way
into an organization, it can be controlled remotely, up to
ranges reaching kilometers. In 2008, this type of device was
available to three letter agencies at a unit cost of 20k$ [5].
Today, they are available to anyone at a unit cost of around
100$ [6]. As a result, most organisations and valuable indi-
viduals should take defensive measures against bugged ca-
bles.

One state-of-the-art defence strategy is to ban or severely
limit the use of cables (e.g. by cementing ports) in an or-
ganisation. However, this requires expensive modification of
equipments, and complicates the use of hardware.

Another is to build a Faraday cage to shield an entire room
or building [4]. This is even more expensive, limits the use of
wireless networks, and ties equipment to dedicated physical
locations.

A more flexible approach is careful supply-chain manage-
ment. It is difficult and expensive to fully eliminate external
access to company hardware. This problem can be partially
alleviated by certifying cables. Certified cables can be recog-
nized by labels or by using hard to mimic hardware [Fig 1].
This may deter an attacker unwilling to invest in faking cer-
tification. However, this defence strategy incurs significant
costs and risks. When certified cables are unavailable, an
employee may not be able to perform their job. Worse, an
employee may be tempted to use an uncertified cable.

Figure 1: Hardware customization can ease the
identification of a Certified USB cable (left) and
makes a generic malicious USB cable (right) stand
out. Source [3].

We propose a novel, inexpensive and practical strategy
that allows for the use of uncertified cables, while providing
full RF-cable attack immunity.

2. METHOD
RF-shield material can be molded around a cable to form

a Faraday cage. We found that consumer-grade RF-shield
material suffices, and should be preferred for financial and
logistical reasons [2]. To allow the adhoc use of uncertified
cables without a trip to the warehouse, a ready supply of
RF-shield material should be carried by each employee in
a portable repository. There are storage constraints - RF-
shield material should not be crumpled or folded, as this
could limit its efficacy. And organisational constraints exist
- we rely on employees to follow protocol. To promote a
positive culture and awareness around RF security, the RF-
shield should be carried by employees in a visible manner.
The visibility and storage constraints can be simultaneously
satisfied by mandating that all employees carry a wearable
RF-shield repository around the cranium. Material can be
conveniently taken out of this repository at times of RF-
shielding needs.

3. DISCUSSION
We recommend practicing placing RF-shield material around

known RF-emitting devices before relying on our technique
for mission-critical processes.
A wearable RF-shield repository has some side effects.

Qualitative research has revealed that it may cause third
parties to keep a distance. It appears to preemptively repel
cyber security attacks and social interactions. We suspect
this is due to third parties attributing strong cyber security
skills to the individual wearing a RF-shield repository.
However, there are downsides to the visibility of the wear-

able RF-shield repository. An adversarial actor could deduce
that you, being a visibly competent cyber security expert,
are a worthwhile target for cyber espionage. We therefore
recommend always combining a wearable RF-shield reposi-
tory with anonymity enhancing apparel. The balaclava is ef-
fective and readily available, but illegal in several countries,
including la France [1]. A more widely acceptable solution
is the use of shades. A downside to them is that they poten-
tially create an optical-reflection side-channel [Fig 2]. As a
defensive strategy, we recommend the use of anti-reflective
gadgets [Fig 3].

4. REFERENCES

[1] Assemblée Nationale, Projet de loi interdisant la
dissimulation du visage dans l’espace public.
assemblee-nationale.fr/13/ta/ta0524.asp, 2010.

1

47

279

Figure 2: Notice the optical reflection sidechannel.

[2] EAFA. www.alufoil.org/files/alufoil/trophies/
2020/PressRelease/EAFA-Alufoil-Trophy-2020_

Summary-PR_GB.pdf.

[3] W. Ebshop. Certified Cable.
cafago.com/en/p-pa4185-1.html.

[4] T. Liu and Y. Li. Standard Study of Electromagnetic

Information Leakage and Countermeasures, pages
217–230. Springer Singapore, Singapore, 2019.

[5] NSA. Cottonmouth, NSA ANT.
en.wikipedia.org/wiki/NSA_ANT_catalog, 2008.

[6] OMG. We are not including free ads for malicious tech
in scientific work. Search for it yourself if you must.,
2019.

Figure 3: Wearable RF-shield repository,
anonymity-enhancing apparel and anti-reflective
gadgets.

2

280

Black Boxes

48 A 23 MW data centre is all you need

Samuel Albanie, Dylan Campbell and João Henriques

Keywords: machine learning, prophecy, Molly

49 When Pull Comes To Shove... Do Both!

Ullas A

Keywords: Parallel Programming, Graphs, Connected Components,
GPUs

50 man exorcism

Keywords:exorcisms, unix, demonology

51 2x a fake submission

Tim Toady

Keywords: one letter keywords are not accepted: f, 21 is not a cor-
rect keyword: it contains no letters, =42 is not a correct
keyword: it contains no letters

281

Under review as a conference paper at SIGBOVIK 2022

A 23 MW DATA CENTRE IS ALL YOU NEED

Samuel Albanie, Dylan Campbell, João F. Henriques
Pensive Prophets for Profit
Shelfanger, United Kingdom

ABSTRACT

The field of machine learning has achieved striking progress in recent years, wit-
nessing breakthrough results on language modelling, protein folding and nitpick-
ingly fine-grained dog breed classification. Some even succeeded at playing com-
puter games and board games, a feat both of engineering and of setting their em-
ployers’ expectations. The central contribution of this work is to carefully ex-
amine whether this progress, and technology more broadly, can be expected to
continue indefinitely. Through a rigorous application of statistical theory and fail-
ure to extrapolate beyond the training data, we answer firmly in the negative and
provide details: technology will peak at 3:07 am (BST) on 20th July, 2032. We
then explore the implications of this finding, discovering that individuals awake
at this ungodly hour with access to a sufficiently powerful computer possess an
opportunity for myriad forms of long-term linguistic ‘lock in’. All we need is a
large (� 1W) data centre to seize this pivotal moment. By setting our analogue
alarm clocks, we propose a tractable algorithm1 to ensure that, for the future of
humanity, the British spelling of colour becomes the default spelling across more
than 80% of the global word processing software market.2

Where are they?

Enrico Fermi, CVPR 2022, virtual poster
#65713

1 INTRODUCTION

Accurate forecasts are valuable. From domains spanning battle outcomes (Babylonian soothsayers,
1900 BC) to precipitation nowcasting (Ravuri et al., 2021), humans have looked to hepatomancy and
overly-cheerful weather presenters to assess the fate of their empire and to determine whether they
need an anorak for their afternoon dog walk. Perhaps no topic has garnered more interest among
professional forecasters than the future trajectory of technology (Lucian, 155 AD; Voltaire, 1762;
Bush et al., 1945). However, future prediction is a difficult business, and the historical record of this
discipline is somewhat patchy.3

Science fiction authors have fared better at predicting the future, if you cherry-pick enough.4 Rockets
land themselves, some cars drive themselves (when someone is looking), and some humans think
for themselves (and others). The opposing visions of Orwell (1949) and Huxley (1932) predicted
two dystopias, one where people were controlled by fear and surveillance, another where they were
controlled by endless entertainment and distraction. Rather than assess their fidelity, let us move
swiftly on. Asimov (1951) proposed psychohistory as the science of predicting the future behaviour
of human populations. By analogy to particles in a gas—assuming perfectly spherical humans in a

1Please see our Github repo (https://github.com/albanie/A-23MW-data-centre-is-
all-you-need) for a permanent notice that code will be coming soon.

2We grudgingly acknowledge that color arguments in the matplotlib API should retain their u-free spelling
for backwards compatibility. We are not complete barbarians.

3In addition to a widely publicised failure to predict the near-term feasible exploitation of atomic energy,
Rutherford (1933) also failed to predict the global blue-black/white-gold dress debate of 2015.

4Even your first CIFAR-10 model was right 10% of the time.

48

282

Under review as a conference paper at SIGBOVIK 2022

19
92

20
02

20
12

20
22

20
32

20
42

Pentium
PC

Power
Mac

Mouse
Brain

Human
Brain

Bovik
Brain

C
al

cu
la

ti
on

s
pe

r
se

co
nd

pe
r

U
S

$1
00

0

Historical data
Projected

(a) Kurzweil Curve

20
02

20
12

20
22

20
32

20
42

20
52

20
62

Peak of human
technology

Screensharing
on Linux works

AlexNet wins
ImageNet (again)

(b) Our Predicted Curve

Figure 1: A principled approach to future extrapolation. Standard approaches to future predic-
tion, exemplified by the curve of Kurzweil (2005), are guided by empirical data and hardware trends.
By contrast, our prediction relies on the tried and tested Central Limit Theorem. Note how ours is
more symmetric and visually appealing. We note that the vertical5 axis breaks down in the post-2032
regime, where US$1000 is increasingly meaningless. We therefore convert to the equivalent amount
of pickled herring, and proceed. We will also forecast several events using our predictive model,
which we now predict will be detailed in a later section of this article.

vacuum—while each human’s state is unknowable, one can derive statistical quantities such as peer
pressure, shear stress, and cringe factor.

To take on the challenge of future technology prediction, several themes have emerged in prior work.
One body of research has leveraged historical trends and hardware laws with hints of exponential
nominative determinism to underpin forecasts (Kurzweil, 1990), lightly handcuffed by physical lim-
its (Bennett & Landauer, 1985). A second approach, pioneered by Gabor (1963), acknowledges the
impossibility of future prediction and instead advocates inventing the future, or sagely producing
smarter agents to take care of the inventing (Yudkowsky, 1996). However, empirical scaling laws
lack a principled theoretical foundation, while actively inventing the future sounds exhausting, and
honestly just waiting for Moore’s law is much easier.

In this work we propose a third approach that both benefits from rigorous statistical theory and
has a higher chance of completion within the modern 37.5 hour UK working week (including tea
breaks). Our starting point was to turn to that reliable workhorse of modern statistical theory, the
Central Limit Theorem. In brief, the Central Limit Theorem states that when random variables with
sufficient independence of thought are summed, their normalised summation tends asymptotically
towards a Gaussian distribution. We must, of course, address the delicate question of whether the
Central Limit Theorem can legitimately be applied to our future forecasting problem. Thankfully,
the Central Limit Theorem can and should be applied to all problems involving uncertainty, and few
topics are as uncertain as the future.6

The technical foundations thus laid, the first key contribution of this work is to observe that recent
decades of exponential growth in the number of transistors lovingly squeezed onto a microchip7

5According to Wikipedia, “the word ‘vertical’ corresponds to a graph as traditionally rendered on graph
paper, where vertical is oriented toward the top of the page, regardless of whether the page itself—or screen
in the computer era—is embedded upright or horizontally in physical 3-space. The ‘top’ of a page is itself a
metaphor subordinate to the convention of text direction within the writing system employed. ‘Vertical’ has a
concrete as opposed to metaphorical meaning within gravitational frames; when a page is held ‘upright’ in 3-
space these two concepts align with the top of the page also gravitationally vertical. Horizontal is often equated
with ‘left’ and ‘right’, but note that in the typographic convention of recto and verso, left and right also take on
additional meanings of front and back” (Wikipedia, 2022).

6Historical misapplications of the Central Limit Theorem have arisen simply by applying the wrong variant
of the Central Limit Theorem—there are a wonderful assortment of variants to choose from. Out of respect for
the venerated theorem, we never acronymise.

7Some of which can be attributed to Tesco’s convenient part-baked microchips, which can be finished in a
home oven to a golden crisp.

283

Under review as a conference paper at SIGBOVIK 2022

neatly fits the steep climb of a hand-drawn bell curve (Fig. 1). A textbook application of the Central
Limit Theorem then yields two striking insights. First, it enables us to compute with extremely high
precision the date at which technological progress (as measured by transistor snugness or FLOPs per
1K USD) will peak: 3:07 am (BST) on 20th July, 2032. Second, it enables dead certain modelling of
uncertainty in our predictions, because the prediction itself is a Gaussian distribution (note that we
carefully select our technology units such that the area under the curve sums to one). With the future
now standing a little more naked in front of us, it behooves us to consider the questions motivated
by this discovery, discussed next.

What is the cause of the decline? While prior work has explored the stasis-inducing potential of
soma (Huxley, 1932) and drouds (Niven, 1969), we initially posited that widespread use of large
language models for coding and paper writing will result in increasingly automated science produc-
tion, with the associated atrophy of biological brains, and a drift of technological focus to matters
of interest to disembodied machines.8 However, our later findings suggest that a simple coupling of
reward hacking with an ageing Flappy Bird clone will bring about the reversal.

What research opportunities does the decline present? Options abound for machine learning re-
searchers who can acquire control of a 23 MW computer at 3:07 am. While some may choose to
lay down an ImageNet top-1 SoTA that outlives Bradman’s test career batting average, we propose
instead to pursue a worthier cause. Leveraging a novel algorithm (described in Sec. 3.3), we plan
to conduct a 51% attack on spellings of the word colour amongst the internet corpora used to train
autocorrect systems. By doing so, we protect ourselves from annoying red-underlined squiggles
well into our retirement, or worse, learning several new spellings.

Will we have to give up wireless headphones? Sadly. According to curve, by 4000 AD the last of
the great homo sapiens engineers will strain to build an Antikythera orrery. It will probably be flat.

The remainder of this paper is structured as follows. In Sec. 2, we wilfully misrepresent prior work
to increase our chances of acceptance at the prestigious SIGBOVIK conference. Next, in Sec. 3, we
describe in more detail our mischievous methodology to topple the status quo among the spelling
tsars. Finally, after minimal experimentation in Sec. 4, we conclude with conclusions in Sec. 5.

Prediction is very difficult, especially if it’s
about the future.

Niels Bohr

2 UNCOMFORTABLY CLOSELY RELATED WORK

Quo vadis? A short history of future prediction. Formative early work by Pythia (1400 BC)
at Delphi showed the considerable value of goat sacrifice, noxious fumes and keeping just a hint of
ambiguity when forecasting (revived recently as “confidence intervals”). In the more recent machine
learning literature, creative researchers have sought to learn representations by predicting the near
future in video (Ranzato et al., 2014; Vondrick et al., 2016). To the best of our knowledge, however,
no such work has considered video extrapolation decades into the future, which would clearly be
more useful. More related to our time scale, we note that the farsighted “standard run” limits to
growth model of Meadows et al. (1972) for population growth adopts a similar “what goes up must
come down” philosophical bent to our forecast, but their graph is spiritually closer to a Laplace
distribution than a Gaussian and hence the Central Limit Theorem cannot be so confidently invoked.

Claims of universal sufficiency. Other than our own, the most notable past attempts to make
gloriously broad claims about a framework’s ability to fulfil all of a researcher’s needs have con-
sidered Trust (Welter, 2012), A Good Init (Mishkin & Matas, 2016), Attention (Vaswani et al.,
2017) and Love (Lennon et al., 1967). We note with consternation that, as a corollary of being
all-encompassing, the above must be mutually exclusive. This unfortunate property is a product of
clumsy first-order logic, and may be relaxed in the future by a reformulation using cold fuzzy logic,
and warm fuzzy feelings. A cautionary note: not all prior literature has your best interests at heart.

8These include beating all other models on larger boards of multi-coloured Go, achieving 100% accuracy
on MNIST, and a sequence of increasingly sophisticated puns about endianness.

284

Under review as a conference paper at SIGBOVIK 2022

Previous work has attempted to claim “all your base” (Toaplan & Namco, 1991) and employed the
elegant tools of algebraic geometry to construct n-dimensional polytope schemes that efficiently
separate you from your financial savings (Fouhey & Maturana, 2013).

Who controls the past controls the future:
who controls reddit spelling convention
controls the past.

George Orwell, 1984

3 THE ROAD AHEAD

As noted with some trepidation in the introduction, the Central Limit Theorem assures us that the
technological progress of humanity will soon stall before relinquishing its historical gains. In this
section, we first explore possible causes of this trajectory (Sec. 3.1). We then fearfully investigate
the implications of our findings (Sec. 3.2).

3.1 CAUSES

We initiated our analysis of plausible causes of technological decline by enumeration: a butterfly
wing flap in downtown Tirana in 1658; Poincaré’s premature death in 1912; the inexplicable density
of Milton Keynes’ roundabouts in 2022. Yet none of these seemed fully adequate.

The science fiction literary canon suggests an alternative cause. In desperate search of relief from
Slack notifications, increasing numbers of technologists over the next decade will turn to soma (Hux-
ley, 1932) and reasonably priced wireheading options (Niven, 1969), thereby functionally removing
themselves from the innovation collective. However, although it is reasonable to expect a one-way
loss of many great minds to these attractors (slowing the progress curve), our modelling suggests
that a significant fraction of the engineering community have already submitted to the iron rule of
focus mode. These hardy individuals are likely immune to such sirens, though they are hungry, ow-
ing to their missing two out of every three food deliveries and three out of three impromptu group
trips to Nando’s. We therefore sought to understand how the last bastion of resilient focus moders
too could fall. To this end, we trained a one-and-a-half layer Transfomer (Vaswani et al., 2017) to
predict future events from a series of carefully curated, temporally ordered Wikipedia entries.

By sampling from the transformer, we learnt that by the year 2031, humanity will have achieved
a new Gini coefficient SoTA, wisely distributing 99.99999% of its total wealth among three living
humans (each unreachable by Slack notifications) and an adorable Labrador named Molly. It is into
such a society that on December 31st, 2031, an anonymous game designer9 releases an adaptive,
self-learning reboot of the 2013 mobile classic, Flappy Bird (FB). Designed to maximise user en-
gagement, the FB algorithm soon begins to explore reward hacking strategies. Although it garners a
following of just 17 users, its impact is monumental. Of these 17, three sit atop the Forbes “3 over
30 trillion USD” list, and each is incapacitated, unable to stop playing lest they lose their progress
(which cannot be saved). Shortly thereafter, global capital flows grind to a halt and the silicon
sandwich factories begin to fall silent.

In shock, the world turns to Molly. She would like to help if she could, but only after walkies,
and she’s not sure that she can remember her BTC passwoof [sic]. Starved of donations, Wikipedia
servers are powered down, and the sole Stack Overflow answer explaining how to undo recent git
commits is lost. Alas, any replications of this sacred knowledge were deleted long ago as duplicates
by ModeratorMouse64. A period of mourning ensues. There is still hope. The situation could be
salvaged. But it requires the technologists to speak to other humans. And so, because that would be
awkward, the opportunity is lost.

9We can’t be sure who. But if we had to guess, it would be SIGBOVIK legend, Dr Tom Murphy VII.

285

Under review as a conference paper at SIGBOVIK 2022

Perfectly balanced, as all things should be.

ImageNet-1K (2009)

3.2 IMPLICATIONS

We next consider implications. We begin by noting that modern “brain-scale” language models
represent not only a great demo and a potential existential threat to humanity: they also open up
a clear attack surface on the previously impregnable English spelling and grammar kingdom. The
reason is simple. Just as doing away with cruft is a programmer’s biggest joy, we ditch old headache-
inducing paradigms with enthusiasm. As we transition from fast approximate string matching to
language models all the way down, the battleground of canonical spelling moves from carefully
curated small-scale corpora to vast, scarcely filtered swathes of the internet.

To exploit this observation, we propose an approach inspired by the 2007 run on the UK bank,
Northern Rock, and its exemplary demonstration of a positive feedback loop. Noting that members
of the celebrity GPT family of models (Radford et al., 2018; 2019; Brown et al., 2020) are trained
via log-likelihood maximisation, our objective is to ensure that 51% of the training data adopts our
preferred spelling conventions. To operationalise this plan, we propose HMGAN (Her Majesty’s
Generative Adversarial Network), a neural network architecture inspired by Goodfellow et al. (2014)
that ingests sentences of written English and rephrases text to maximise a measure of similarity
against a corpus of text respectfully inspired by blog posts penned by Queen Elizabeth II. Since
future auto-correcting spelling assistants will likely derive from future generations of these models,
and since human authors passionately hate both red squiggly lines beneath words and changing
default settings, a simple majority in frequency counts across training corpora should suffice to
ensure that future text converges asymptotically to our convention.

3.3 THIS SPELLS TROUBLE

In the tradition of machine learning papers, we have many biases and assumptions that underpin our
choice of datasets and targets. Against tradition, we list some of ours here. Our canonical English
has the following features.

1. U-philic: wherever there is an “or”, there ought to be an “our”, except where that isn’t true.
We support colour, valour, and flavour, but disown doour, wourk, and terrour.10

2. Zed-phobic: zed (or izzard) is supposed to be a shock.11 Incurs a penalty in our loss
function.

3. Ell-shippers: ells are meant to be together. It would be an unethical AI practice to separate
them at this time.

4. Singular variants for all pluralia tantum: a trouser, a pant, a scissor, and a thank are all
valid choices under our orthography.

5. Tildes: allowable in mathematics, and in ã (the authors declare no conflict of interest in this
decision).

We seek to provide the tools for baking in the consensus mode, which we will be releasing open
source, with the stipulations that they not be used by anyone seeking to promote ‘color’ over ‘colour’
or by les immortels of the Académie Française12.

10No wonder we need an AI spell-checker, clearly these rules are not specifiable. That being said, two out of
two linguists we interviewed suggested that computer scientists shouldn’t be deciding these things.

11Oxford disagrees, and has a well-publicised infatuation with z that beggars belief. It is a rare beggar that
believes an etymological ζ trumps a curvy French s.

12The astute reader may note that we nevertheless cherish our French linguistic influences, favouring the
Anglo-French colour over the Latin color.

286

Under review as a conference paper at SIGBOVIK 2022

3.4 A CRITICAL POINT

To plan ahead, as required by our grant application, we must address two key questions. First,
what magnitude of computing muscle is required to conduct a successful 51% spelling attack on the
global internet? Second, how can we ensure that the spell checker trained post-attack achieves and
maintains pole spell-check position on paperswithcode, thereby ensuring uptake and the positive
feedback loop we seek to create?

Charting the future compute curve. Forecasting future computation is fraught with difficulty, but
forecasting the power draw of future computers may be simpler, and thus we turn to this approach.
Over the past decade, efficiency gains have ensured that increases in energy consumption across
global data centres have been fairly modest, growing approximately 6% between 2010 and 2018,
reaching 205 TWh (Masanet et al., 2020). Through a combination of tea-leaf interpretation and
curve fitting, we estimate that global data centre energy usage will be in the region of 227 TWh in
2032.

Before turning to the implications of this estimate, let us note a few additional salient observations.
First, thanks to healthy market competition in the services sector, it is likely that an increasing
fraction of the world’s computing budget will be allocated to the operation of friendly sales chatbots.
By 2032, we believe that almost all written English content appearing on the internet will arise in
unintentional bot-to-bot conversation. As such, the training corpora for future spell checkers will
be curated almost entirely from their transcripts (after filtering out the phrase “I’m sorry, I didn’t
understand that. Did you mean ‘How can I give you five stars on Amazon?”’). Second, note that
approximately 0.01% of written English (Leech, 1992; Davies, 2010) corresponds to usage of the
word ‘colour‘ or ‘color’—a frequency that we assume will be reflected in the chatbot discourse.
Third, observe that the best spell checkers must keep themselves relevant by training on only the
most recent linguistic usage (discussed in more detail below).

In light of the above, we see that a successful 51% attack to establish a simple majority spelling of
‘colour’ can be achieved by surpassing global chatbot text generation for a short period of time—just
long enough for spell-checkers to fixate on the new spelling. By employing a text synthesis algo-
rithm (HMGAN) whose energy consumption matches that used by chatbots, we find that a 23 MW
data centre suffices for our aims (a derivation of this estimate can be found in Appendix A). Since
the chatbots will, of course, rely on the latest spell-checkers to avoid embarrassing their corporate
overlords, they will quickly transition to the new spelling. Then, as technology begins to decline,
content production will drop, and spell-checkers will be forced to consider ever-expanding temporal
windows to curate sufficient training data, rendering it ever more costly to reverse the trend.

A timeless spell-checker. If spell checkers are to keep up to date with modern argot (similar to,
but decidedly not, a fungal disease), it is critical that they are trained on the most recent and most
correct data. To this end, we propose a diachronic language model spell-checker. Extending the
work of Loureiro et al. (2022)13 to meet our needs, we commit to releasing a language model and
spell-checker update every three hours, trained on a carefully curated and corrected stream of Twit-
ter data. Our last update, for example, was trained on 123.86 million tweets, weighted according
to the logarithm of the number of retweets and hearts, and with spelling errors corrected where ap-
propriate. Importantly, our time-aware language model has knowledge of recent events and trends,
allowing us to capture language as it is used in practise, not how the Académie Française ordains.
For example, we observed a significant spike in the incidence of five-letter words, especially those
with many vowels. Unlike existing language models, ours was successfully able to mirror this trend
and dilate or contract words entered by our users to five letters. An unforeseen side-effect was the
conversion of some words to coloured rectangles �����, but this is likely a consequence of our
data augmentation strategy. It is crucial that all language-based tools be kept abreast of recent events
and trends, because AI models of this sort deep freeze the cultural landscape from where the training
data is obtained. It is highly unethical for AI researchers to participate in a system that creates cul-
tural feedback loops and stagnation, over-privileging the status quo at the expense of the kids14. We
further observe that Twitter is an excellent and unbiased source of international language usage that
does not reflect any one cultural background, and so is a particularly good dataset for our purposes.
It is also on the Académie’s list of banned linguistic sources, which in our view speaks to its merits.

13An admirable instance of the “lour” convention.
14The spelling of colour is the only exception to this rule.

287

Under review as a conference paper at SIGBOVIK 2022

However, it is not enough to periodically release a language model fine-tuned on the last 3 hours of
corrected Twitter data. In the fast-evolving world of language, this is already unusably out of date.
Our previously-described model failed, for example, to autocorrect “vacation” to “staycation”. It
is incumbent on GPT-as-a-service (GaaS) providers to provide up-to-the-minute language models,
motivating the development of temporally-predictive models. As we shall show in our experiments,
our Predictive Diachronic Generative Pretrained Transformer (PDGPT) model effectively captures
contemporary language usage, reflecting the most recent events, and is moreover able to generate
geo- and time-localised results.

You either die a grad student, or you live
long enough to become R2.

Dr. Harvey Dent (NeurIPS Area Chair),
2008

4 EXPERIMENTS

In this section, we first validate our ideas in a simplified setting by considering 51% attacks in the
context of the British Bin Colouring Problem (Sec. 4.1). We then compare our PDGPT spell-checker
to the existing state-of-the-art (Sec. 4.2) and discuss civilisational impact (Sec. 4.3).

4.1 THE BRITISH BIN COLOURING PROBLEM

The British Bin Colouring Problem (BBCP) refers to a mathematical problem that is more practical
than graph colouring and more general than bin packing. The task is as follows. On Wednesday
evenings (or your local bin collection night), the objective is to wheel out the colour of bin that causes
maximum mischief to your neighbours. Wheeled out bins of the wrong colour will not be collected
under any circumstances. You have three choices: (1) black - unfiltered, (2) blue - recycling, (3)
green - garden waste. Central to this problem is the assumption that, to avoid social tension, almost
all neighbours will copy their neighbours’ bin colour, rather than check the official bin collection
colour through the local government website. Note, that you must account for upstanding citizens,
who will put out the right bin colour regardless of their neighbours, misleading leaflets, or inaccurate
local government websites. The problem is NP-Hard and environmentally significant.

We consider an instance of the BBCP for the residents of Grantchester, a picturesque village in
Cambridgeshire. Our strategy was simple: we first employed HMGAN to craft a sequence of royal
entreatments to wheel out the blue coloured bin on a green bin Wednesday, and sent leaflets to this
effect at addresses generated via a Sobol sequence to ensure reasonable coverage. We then wheeled
out our own blue bin and waited. A combination of stochastic upstanding citizen locations and
wheel-out race conditions complicated our analysis, leaving us in some doubt as to whether a 51%
bin colour majority would achieve our desired ends. To counter this intractability, we employed a
systematic strategy of hoping it would work.

Unfortunately, the results of this experiment were unpromising. In our enthusiasm, we had failed to
wait until 27th March, thereby missing the transition to Daylight saving time. As a consequence, it
was too dark for our neighbours to determine our bin colour and were thus uninfluenced. They also
did not take kindly to unsolicited leaflets, and are, by now, quite frankly tired of our shenanigans.

4.2 SIMULATED COMPARISON TO THE STATE-OF-THE-ART

Undeterred, we turn next to an evaluation of our PDGPT spell checker, capable of both autocorrec-
tion and event prediction. By backtesting on historical data, we find events and spellings successfully
predicted or caused by our model include quarantinis but not maskne. More concerningly, despite
our comprehensive set of three unit tests, PDGPT insists on auto-correcting our own use of ‘colour’
to ‘color’, undermining the core objective of our enterprise. This speaks to the formidable chal-
lenge of over-turning the spelling status quo (see Fig. 2), the difficulty of controlling large language
models and the fact that we still don’t really understand what the .detach() function does in
PyTorch.

288

Under review as a conference paper at SIGBOVIK 2022

Figure 2: When it comes to spelling, it’s not so easy to topple the status quo. Increasingly
dystopian modern grammar checkers, when applied to the close of the introduction of this article,
let us know that we stand little chance of success. We soldier on.

Table 1: Masked token prediction for our Predictive Diachronic Generative Pretrained Transformer
(PDGPT). For each three-hourly model, the table displays the top-3 predictions ranked by their
prediction probability.

Models for I’m working I keep forgetting Looking forward to
01/04/2022 from 〈mask〉. to bring a 〈mask〉. watching 〈mask〉!

09:00 UTC
bed smile closely

home purpose yall
afar baguette snow

12:00 UTC
home bag snow

upstairs mug skaters
tenerife charger twitch

15:00 UTC
memory charger tv

home friend bridgerton
work bottle ash

18:00 UTC
shelter torch flames
cover bottle revelry
asgard party-hat ragnarok

In Tab. 1, we present qualitative results from our three-hourly predictive models trained for
01/04/202215. Our model predicts the 〈mask〉 token in context, the same mode we use for text
auto-completion. While we are not yet able to evaluate the quality of these predictions, we expect
them to be rigorously validated by the time of publication. We note that our model has learned to
reason about localised weather systems, plausibly predicting snow late in the season with no actual
meteorologically-relevant input.

4.3 LIMITATIONS, RISKS AND CIVILISATIONAL IMPACT

One limitation of our approach is reflected in our complete inability to produce convincing exper-
imental results to date, even in Grantchester. We believe that this limitation will be overlooked by
reviewers who recognise other merits to our work, such as our heavy use of footnotes which lend
much needed academic gravitas to the text.

A risk of our approach is that it may encourage other researchers, notably our beloved American
colleagues, to pursue a similar framework, escalating into a transatlantic arms race in which ever
larger fractions of the planet’s energy are dedicated to controlling spelling conventions.

In terms of civilisational impact, the stakes are as high as ever. John Wesley, the founder of Method-
ism, notably considered the removal of the u a ‘fashionable impropriety’ in 1791 (Mencken, 1923).
But in 2032, for the first time the opportunity will exist for eternal spelling lock in for the large
swathe individuals who don’t remember to change the default setting on their spell-checker.

15We presume our model uses the DD/MM/YYYY convention.

289

Under review as a conference paper at SIGBOVIK 2022

5 CONCLUSION

We have presented a rigorous statistical analysis of historical and future computational trends and
ascertain the date and time at which technology, on average, will peak. We have leavened this poten-
tial downer with an account of the implications of this finding and the concomitant opportunities that
this presents. We provide the tools for myriad forms of long-term cultural and linguistic “lock in”,
with a particular focus on spelling and an especial concern for that of “colour”. We expect this work
and attitude to resonate throughout the following crepuscular decades as we revert to our respective
agrarian utopias.

There are many promising avenues for future research. However, the relatively brief time before
technological decline sets in precludes large-scale projects if significant computation is required
by the work. One correspondent has suggested that a mixture-of-Gaussians model is more appro-
priate for our extrapolation, to better conform to conformal cyclic cosmology (Penrose, 2010), as
all theories must. A mixture-of-infinite-Gaussians is intellectually appealing, but computationally
infeasible (without using a RKHS, which is unfashionable). A more plausible direction is a new
time and date scheme based on standard deviations from the Gaussian technology curve. Signifi-
cant further research is required to quantify whether the two-to-one mapping from years to standard
deviations will be problematic.

Acknowledgements. We acknowledge with gratitude our families, friends, colleagues, and cheerful
international research community. We also acknowledge the profound wisdom of A. Sophia Koepke.

REFERENCES

Isaac Asimov. Foundation. 1951. 1

Babylonian soothsayers. Clay tablet of a sheep’s liver, . https://www.britishmuseum.

org/collection/object/W_1889-0426-238, 1900 BC. 1

Charles H Bennett and Rolf Landauer. The fundamental physical limits of computation. Scientific
American, 253(1):48–57, 1985. 1

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 3.2

Vannevar Bush et al. As we may think. The atlantic monthly, 176(1):101–108, 1945. 1

Mark Davies. The corpus of contemporary american english as the first reliable monitor corpus of
english. Literary and linguistic computing, 25(4):447–464, 2010. 3.4, A

English-Corpora. https://www.english-corpora.org/, 2022. A

David F Fouhey and Daniel Maturana. On n-dimensional polytope schemes. SIGBOVIK, 2013. 2

Dennis Gabor. Inventing the future. 1963. 1

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014. 3.2

Aldous Huxley. Brave new world. 1932. 1, 1, 3.1

Ray Kurzweil. The age of intelligent machines, volume 580. MIT press Cambridge, 1990. 1

Ray Kurzweil. The singularity is near: When humans transcend biology. Penguin, 2005. 1

Geoffrey Leech. 100 million words of english: the british national corpus. Language Research, 28
(1):1–13, 1992. 3.4, A

John Lennon, Paul McCartney, George Harrison, and Ringo Starr. Love is all you need. Society for
Our World, 1967. 2

290

Under review as a conference paper at SIGBOVIK 2022

Daniel Loureiro, Francesco Barbieri, Leonardo Neves, Luis Espinosa Anke, and Jose Camacho-
Collados. Timelms: Diachronic language models from twitter, 2022. 3.4

Lucian. A True Story. 155 AD. 1

Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. Recalibrating global
data center energy-use estimates. Science, 367(6481):984–986, 2020. 3.4, A

Donella H Meadows, Donella H Meadows, Jørgen Randers, and William W Behrens III. The limits
to growth: a report to the club of rome (1972). Google Scholar, 91, 1972. 2

Henry Louis Mencken. The American language: a preliminary inquiry into the development of
English in the United States. 1923. 4.3

Dmytro Mishkin and Jiri Matas. All you need is a good init. ICLR, 2016. 2

Larry Niven. Death by ecstasy. Galaxy Publishing Corp., 1969. 1, 3.1

George Orwell. Nineteen eighty-four. 1949. 1

Roger Penrose. Cycles of time: an extraordinary new view of the universe. Random House, 2010. 5

Pythia. The oracle at delphi. 1400 BC. 2

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. 3.2

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 3.2

MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and Sumit
Chopra. Video (language) modeling: a baseline for generative models of natural videos. arXiv
preprint arXiv:1412.6604, 2014. 2

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
nowcasting using deep generative models of radar. Nature, 597(7878):672–677, 2021. 1

Ernest Rutherford. Address at the British Association for the Advancement of Science. 1933. Author
note: we mischievously engage in the selective interpretation of the original quotation to support
our story. Rutherford’s statement was clearly not intended as a future prediction - “Anyone who
says that with the means at present at our disposal and with our present knowledge we can uti-
lize atomic energy is talking moonshine” - a claim that was arguably true until Leo Szilard’s
breakthrough hours later. 3

Toaplan and Namco. Zero wing. 1991. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. 2, 3.1

Voltaire. Micromégas. 1762. 1

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations from
unlabeled video. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 98–106, 2016. 2

W3Tech. Historical trends in the usage statistics of content languages for websites. https://

w3techs.com/technologies/history_overview/content_language, 2021. A

Friederike Welter. All you need is trust? a critical review of the trust and entrepreneurship literature.
International Small Business Journal, 30(3):193–212, 2012. 2

Wikipedia. Abscissa and ordinate — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Abscissa%20and%20ordinate&

oldid=1066098077, 2022. [Online; accessed 29-March-2022]. 5

Eliezer Yudkowsky. Staring into the singularity. 1996. 1

291

Under review as a conference paper at SIGBOVIK 2022

A COMPUTE POWER ESTIMATES

In this appendix, we provide detailed calculations of our data centre size requirements. In the spirit
of appendices, which are not written to be read, the derivation was carefully not checked for errors.
Computations were performed on an iPhone with a slightly cracked screen.

Masanet et al. (2020) estimated global data centre energy consumption in 2018 at 205 TWh, corre-
sponding to a rise of 6% since 2010. Extrapolation over 14 years at a growth of 6% every eight years
yields an estimate of 227.007 TWh for 2032, or 25.914 GW average power. The present edition of
the Corpus of Contemporary American English (Davies, 2010) indexed by English-Corpora (2022),
finds 124814 occurrences of ‘color’ among 1 billion words (constituting 0.0124814% of all word
usage). The British National Corpus Leech (1992) contains 11,135 counts of ‘colour’ among 100
million words (amounting to 0.011135% of all word usage). Averaging these terms, we determine
that 0.0118082% of written English (at least, the kind that makes it into linguistic corpora) consists
of some variant of the word colour. By 2032, we assert that all but a vanishing fraction of written text
will consist of conversation between chatbots, which will dominate power consumption. Approxi-
mately 60.6% of internet content is written in English at present (W3Tech, 2021), and we assume
the chatbots will follow this trend. We further assume, naturally, that the chatbots will use spell
checkers, and will approximately maintain historical word frequency usage. Thus, it becomes clear
that a successful 51% attack requires us to obtain a proportional share (by power) of global data
centre compute that will outpace the use of colour in chatbot-to-chatbot conversation. This amounts
to 1.91147 MW = (26.712328GW× 0.606× 0.0118082/100)× 1000. Thanks to the Matthew law,
and the fact that spell checkers will be trained only on the most recent corpora to avoid staleness, we
need only overwhelm the text generation of the chatbots for a very short period of time. However,
note that our attack strategy requires us to insert instances of ‘colour’ into minimally valid sentences
that will make it into the spell checker training data. On believe that pithy sentences with an average
length of 11 words will suffice for this task, bringing our power needs for 22.93764 MW. Finally, we
allocate a safety buffer of 0.01 MW capacity to install involuntary operating system updates forced
upon us at 3:06 am, leading to a 22.94764 MW power profile.

292

When Pull Comes To Shove... Do Both!

Ullas

Department of Computer Science and Automation,

Indian Institute of Science, Bangalore

email: ullas@iisc.ac.in

Abstract

Graph algorithms are ubiquitous. Wait, graphs are ubiquitous. Period. It
is an axiom of life [1] that the more something is ubiquitous, the more people
want more of it. Graphs are no exception. And Computer Scientists eat graphs
for breakfast — and weighted graphs, let’s not forget (and if you ask, “What do
they eat for lunch and dinner, then?”, well, they don’t. Processing the breakfast
takes them enough time to last until next day, because... BIG DATA!!). The
apocalyptic scenario where graphs have become so pervasive that one needs to
breathe graphs rather than Oxygen for survival is not too far away. Sooooooo,
it helps to be prepared, you know...

DIALOGUE

Reader: Wait, how is that an abstract?
Author: Because it is anything but concrete.
Reader: What is this paper even trying to tell? What research problem

does it address?
Author: All in its own good time.
Reader: And that is definitely NOT a valid reference that you have put

there.
Author: It doesn’t violate any definition of reference that is known in the

literature.
Reader: Self-references don’t count!
Author: It doesn’t invalidate the veracity of the statement nevertheless.
Reader: This is not even the way to write a research paper, you know?

Research has to be pathbreaking. It has to do something that nobody has
embarked upon before, something preferably so mindblowing that— Ohhhh!

49

293

Author: Exactly! I am so glad you see what I have done.
Reader: Wait, why you are writing down my words?
Author: To make this dialogue a part of the paper itself.
Reader: GASP! I see myself here! Dialogues in a research paper! WHAT

HAVE YOU DONE?

PREREQUISITES

You are a Computer Scientist, in any sense of the phrase, since the field has
grown so vast that it has encroached upon adjacent fields, and the neighbours
are threatening litigation.

POSTREQUISITES

You remain a Computer Scientist, haha.

1 INTRODUCTION

Imagine you are the ringleader of an organization that kills terrorists. So
wait, doesn’t that make you a terrorist as well, because you inspire terror into
the hearts of terrorists, and isn’t inspiring terror the very dictionary definition
of a terrorist? Ok, I see that the first word of this section was a colossal mistake.
Do not imagine too much.

Devil: So, by that definition, if you are killing terrorists, shouldn’t you
eventually commit suicide?

Author: So much for the phrase “An idle mind is a devil’s workshop”.
Devil: Ok ok, now I get it — why you have asked the reader to imagine.

So as to keep me at bay.
Reader: Um..., a Devil in a Research paper?
Author: Well, we do need someone to play the Devil’s Advocate.
Reader: And a dialogue in the middle of the paper too?
Author: Hey, you are featuring in it as well. No complaining.

Let us return, refreshed, from that delightful and much-needed digression,
in light of the heavyweight machinery that awaits. As a ringleader, what is your
primary goal?

(A) To buy a ring for yourself (to lend credibility to your title)
(B) To try to remain in one piece by the end of the operation
(C) To publish research papers on graphs
(D) To, um, kill terrorists?

294

[The above MCQ is left an exercise to the alert reader]

Reader: I thought you said we had returned from the digression.
Author: We digressed again. As we will throughout. For that matter, any

non-digression is a digression.

Your skills are so much in demand that you spend three-fourths of the year
in fixing and replacing your door... This is owing to the fact that people come
breaking down your door, demanding for your skills, probably because they have
dispensed with all the necessary politeness of knocking on the door first because
you are so much in demand, for the few seconds it takes them to knock might
mean that you are already taken by their competitors.

Anyway, your task is to identify the terrorist networks so that you can be sure
that once you locate and capture one terrorist in that network, that terrorist
will lead to others in the network, who can in turn lead to others they know,
and so on (it is inherently assumed that your interrogatory prowess involves
the most advanced methods at your disposal, owing to which, the captured
terrorists WILL certainly reveal all they know, out of sheer, er, terror at the
thought of what you are capable of doing to them if they chose not to sing —
which really really REALLY begs the question of who is the worse terrorist over
here, really). Your repute as a ringleader of your organization is well known, to
the point that every time you go out on your missions, dogs move out of your
way. And any stray dog lingering on your path is pulled back by the other dogs
who realize that you mean business. And in case you are wondering where dogs
come in to the scene, aren’t the terrorists themselves dogs of a kind, and the
worst kind at that (the word kind may be a little too kind to be used on them)?
Ok, such is your repute that nobody would date you out of sheer fear. In fact,
you probably come from an era before the concept of dating was invented. I
guess that makes you a “Predator”, haha!

Anyway, this is the idea of a Connected Component in a Graph (er... no,
not the dogs), where the nodes are the terrorists, an undirected edge connects
two nodes if the two terrorists belong to the same organization and know each
other (as with most terrorist organizations, not everyone will know everyone in
it, but it is guaranteed that from any one of them in the organization, you can
reach anyone else (apologies if that sounds too ominous)), and all the terrorists
within a network form a single “connected component”, because they are all
connected (blood is thicker than water, and all that, you know), while those of
other terrorist networks form their own components, disparate from each other
(it is well known that terrorists, unlike in academia, do NOT collaborate —
their Erdos numbers are laughable).

295

RIDDLE

Why are the nodes of a graph so stressed?
Because they are living on the edge.

The problem then, is simple. You need to identify and label each node in
the graph with the component it belongs to.

Reader: Couldn’t this one line alone appear in the abstract instead of all
this rigmarole? It’s precise. It would have saved so much time.

Author: Yes. And you can go visit Agra and come back home without
seeing the Taj Mahal. It’s precise. It would save you so much time.

DISCLAIMER

This paper discusses the Connected Components Graph Algorithm, and readers
familiar with it can skip the rest of the paper, or read it for fun.

META-DISCLAIMER

The above disclaimer should really really have appeared in, like, page 1, possibly
even before the abstract, and not this late in the paper.

META-META-DISCLAIMER

In the event that the disclaimer really did appear as suggested, the necessity
for the above meta-disclaimer would have been entirely obviated, and hence it
would have been absent.

META-DISCLAIMER

Oh yeah? Then in that case, the Meta-Meta-Disclaimer would have been absent
as well. Take that, you nosy brat of a meta-meta-disclaimer!

296

META-DISCLAIMER: META-META-DISCLAIMER:

HEY! You are encroaching upon my
space!

You don’t deserve a box of your own.
And I will teach you to call me a brat!

Now I guess you merging into my
box should make us a single connected
component.

Hey, and who on earth are you down
there?

AUTHOR:

Now now guys, this has gone too far.

The reader is strongly urged to desist from asking what happened within
the above box. Let the black hole in the page above be a void of no return to

297

the imagination.
Anyway, as it so happens, the definition given above is an operational

definition, and so the algorithm is evident to the most myopic bat—

Devil: Wait, aren’t bats blind by default? Isn’t a myopic bat a genetic
improvement upon the species?

Having lost the beautiful metaphor to the Devil’s Domain, we will proceed
with a succinct description of the obvious algorithm to find Connected
Components in a Graph.

Algorithm 1
Input: Terrorist Graph
Output: Terrorist Graph with labelled Components

function begin()
{
1 Give_Up();
}
function begin_again()
{
1 while nodes remain in the Terrorist graph:
2 Let t be a terrorist; visit t, add t to VisitedList, giving t a ComponentId.
3 while VisitedList is not empty:
4 Capture a terrorist from VisitedList and add him to CapturedList,

giving him same ComponentId.
5 ****************************
6 For each contact c given above, pay a “friendly” visit, adding c to

VisitedList.
7 Increment ComponentId.
8 return home
}

The above is the standard algorithm in the literature — ok ok, I think
the word “standard” might have raised some eyebrows, and might have tested
the elasticity of the word, but that can be easily remedied by massaging the
eyebrows in order to lower them. Questions are awaited.

Reader: What is the point of function begin?
Author: To make a first attempt at solving the problem, but giving up

owing to fear of the repercussions. Therefore, begin_again is entered into
after much convincing. This is typical of all hard problems. They go by the

298

common name of “Not Programming”, from the very words of dismissal that
programmers use when asked to program such problems. Often abbreviated to
NP or NP-Hard.

Reader: Are you serious?
Author: Haha, no no of course not! But this makes for a more interesting

definition of NP and NP-Hard Problems than what is defined in the literature.
Reader: What are those asterisks in Line 5?
Author: The unprintable means that you use to extract the information

from the captured terrorist. The asterisks hide the gory details, leaving the
means used to the reader’s imagination. It is a blocking statement, because it
completes only after the list of the terrorist’s known contacts are given, leading
to Line 6.

Reader: Why the VisitedList and CapturedList? Why two lists? Why not
just one?

Author: You can revisit a terrorist but capture him only once. It is assumed
that captured terrorists do not have the means to make an escape.

Reader: Why would you want to revisit a terrorist?
Author: To get more information.
Reader: Ok. All clear.

In summary, the above algorithm is a straightforward way to start from a
given terrorist and follow through all of his known contacts, tarring them all
with the same brush, and once this terrorist’s network is fully explored, moving
on to a disparate and disconnected terrorist and repeating, with a different
brush, the process all over again (because your organization’s name is: “Kabhi

AlQaeda Na Kehna”).
Problem solved. End of pap— WAIT!! The order in which the terrorists

are visited follows either Depth-First Search or Breadth-First Search as
popularized in the literature. However, both of these are dimensional travesties
upon considerations of efficiency. Therefore, we shall lift ourselves from the
three-dimensional shackles that confine us and move into the fourth dimension
by aiming for Time-First Search instead... You are supposed to be the ringleader
of an ORGANIZATION. And unless, by the word “organization”, you mean the
arrangement of your own body organs, it is likely that there are going to be
others working with you. So if you alone are out hunting, what do your minions
do? You don’t want them idle, if only because they need to be wary of the
Devil.

Devil: Hey, did someone invite me?
Author: Speak of the Devil!
Devil: And the Devil comes! So, if you don’t use your minions, then you

will be killing all the terrorists yourself? That would make you a serial killer!

And thus, the only way to avoid being labelled for life as a serial killer is to
use your minions for you, and thereby be labelled a parallel killer instead.

299

Enter Parallelism!

SCRRRREEEEEEEECCCCCCHHHHHHHHHH!!!

CRAAAAAAAAASSHHHHH!!!

Life Lesson #1: Do not read research papers while driving. Let the gory scene
of upturned wheels and flaming vehicle-parts and spattered blood and body
parts strewn all across the road serve as a dire warning of the fatal consequences
thereof.

Having witnessed at first hand the untimely demise of a precious reader, lost
to surprise twists of a research paper, a stark reminder of how brutal academia
can be, and having observed a minute’s silence to commemorate the departed
soul, let us now proceed to Section 2 with a cautious step, an acknowledgement
of the dangers that embellish our path ahead.

2 MILPSRLAEAL NE SMSAE

I apologize for the title of this section. It’s supposed to be “PARALLELISM
EN MASSE”, but well, this only just goes to show the inherent dangers of
unconstrained parallelism. You attempt parallelism in displaying characters,
and this is the result. You probably didn’t use any locks. But then, if you use
too many locks, it would hurt performance severely. Which I guess means that
you need to use just the right number of locks. This, dear Readers, is called the
GoldiLOCKS zone, haha.

Given the fact that you have many agents in your organization, how should
you tackle the task of identifying the connected components in the terrorist
graphs? And to make it more simple, let us assume that we already have a
list of the names of the terrorists, we just don’t know who belongs to which
organization (We shall leave the aftermath of identifying this as an exercise
in imagination, and concern ourselves with just identifying the connected
components). And you have such a large number of employees that you don’t
even need to go admire the night sky for the stars — you only need to look at
your organization from far away, and you can make out shapes of constellations
owing to so many of the employees.

Devil: Speaking of constellations, aren’t constellations really just another
glorified name for connected components of a graph?

300

What you’d like, what you’d really like is, well, world peace, but since that’s
a lofty goal, let’s aim for something more achievable. So what you’d like is to
give one single algorithm for all your employees to follow. What you would
NOT want is to give each employee a different algorithm, since that would be a
nightmare for you to keep track of who’s given what task.

Very crudely, this is the idea of a GPU (Graphics Processing Unit) — a
processor that has massive parallelism in the form of “threads” that all execute
the same instruction at a time.

Devil: You know you are lying, right? By omission.
Author: Sigh ok ok. To come entirely clean, not all threads are executing

the same instruction. Threads are grouped into “warps” and all threads in a
warp are executing the same instruction. But those of a different warp need
not. But all are MOST DEFINITELY executing the same program — they
just need not be at the same line in the program. And furthermore, warps are
grouped into thread blocks. It is not ok to launch thread blocks with insufficient
work to do, because they would then die off quickly, and you see... Block Lives
Matter.

Devil: Groan! So much for pedantry. And puns.

What might, at first glance, seem like an evident and trivial algorithm, is,
upon deep reflection (and refraction and diffraction and interference and other
optical phenomena as well) not really, and the reader is therefore urged to desist
from prematurely presenting an obviously incorrect algorithm.

Reader: Well, it is trivial. Just assign each minion to one terrorist in
the graph. And each minion visits that node and labels it with a unique
component id, and follows that terrorist’s contacts, and labels them with the
same component id.

Author: You have already been warned that this is not a trivial algorithm.
So if we use your approach, when a minion follows a terrorist’s contacts, he will
reach other terrorists, right?

Reader: Yeah.
Author: Who have already been assigned to some other minions, who all

followed the same algorithm, and have already labelled those terrorists with
their own component ids.

Reader:
Author:
Reader:
Author:
Reader:
Author:

The above speechlessness proves the statement made earlier that this
algorithm is not trivial. After a long enough interval of open-mouthed shock on

301

the part of the reader, an interval long enough to accumulate flies in the reader’s
mouth, necessitating drastic measures to purge them thereof, let us proceed to
elicit further suggestions.

Reader: Ok, how about the following? Same as before — each minion
gets one terrorist. But now, when that minion reaches the terrorist, maybe
he paints the terrorist with some unique colour to act as component id. Then
follows the contacts of this terrorist. If he sees an uncoloured contact, he goes
ahead and colours that contact because clearly this contact belongs to the same
component. And keeps following that contact’s contacts and so on, until all
nodes are coloured.

Author: And what if this minion finds a contact that has already been
coloured by some other minion?

Reader: That means he has already been visited by some other minion,
and the two minions really are exploring the same component. So one of the
minions has to go back and recolour his terrorist with the other minion’s colour,
to show that there is only one component.

Author: And suppose the other minion also stumbles upon the first minion’s
terrorist, and sees him coloured a different colour, indicating that this terrorist
was reached by someone else, so he goes back and recolours his original terrorist
with the other minion’s colour. And we are back to square one, or circle one,
if you will, because two contacts are coloured differently, when they should be
coloured the same.

Reader:

Author: You really need to learn some table manners. And that includes
graph representations as well.

Reader:
Author:
Reader:
Author:

Despite our repeated attempts at solving the problem, it appears as if some
malevolent cosmic entity is operating behind the scenes to ensure failure with
high probability, where high probability can be defined as—

Devil: Hey, did you call me?
Author: Oh damn! I was hoping that not using your name would help.
Devil: I go by many names. I am aliased. Just because nobody ever chants

my Sahasranama, doesn’t mean it doesn’t exist.

302

Author: Exorcise yourself!

In the interests of preserving the reader’s sanity and time, and preventing
the reader from expending an inordinate amount of energy, losing excessive mass
in the process (well, owing to Einstein’s famous equation) in an attempt to solve
the problem, the solution is presented herewith.

Without loss of generality, but with also no real gain of specificity, but with
sufficient loss of interesting and vivid descriptions of a colourful nature, let us
assume that the terrorists (or nodes in the graph) are labelled from 0 to n-1
(it also helps from a standard fantasy trope point of view, because according
to lore, if you give a thing a name, you give it power, and hence, let us not
vest too much power into the terrorists, and divest them of their names). Start
off by assuming that each terrorist has their component id to be the same as
their label. By starting off assuming that each terrorist is operating solo, the
goal is to refine this hypothesis to identify who else they are collaborating with,
and eventually identify the component id for each terrorist. Each minion is
requested to execute the following algorithm:

Algorithm 2: Let’s call it... um... PUSH?
Input: Terrorist graph with each node labelled uniquely with its node-id
Output: Terrorist graph with each node labelled with its component id, where
component id is the minimum node-id among all the nodes in that component.

function CC()
{
1 If terrorist is painted black, go back home. Forget the rest of this function.
2 Paint the terrorist black.
3 Let L be the component id of this terrorist.
4 ***************** (You know what to do)
5 Visit each contact c obtained in the previous step, and do:
6 If component id of c is more than L, set it to L *** (and

paint terrorist c white).
}

In case you are wondering what the CC stands for (apart from unity, integrity
and all that), it is Cafe Coffee Day who has realized that its Days are over and
it might as well indulge its remaining life in Graph algorithms and in particular,
Connected Components, because you see, a lot can happen over Graphs. The
beauty of the above function lies in the fact that it is the same function that
can be asked to be carried out by every minion. After all, let us not forget that
you are the RINGleader, and hence you would like... ONE RING TO RULE
THEM ALL!

303

ASSUMPTIONS

1. The terrorists are docile enough to not put up a fight and get themselves
painted as per the whims of the minion.

2. What are the terrorists doing after you paint them? Yeah, you got that
right — they are sitting right there, waiting for you to come back again and
check on them to see if they have changed their colours. Of course, they are
not just twiddling their thumbs — they are praying for an asteroid to come
and deliver them from their miseries (despite many of the terrorists not really
believing in, or for that matter, even knowing about, asteroids), or failing that,
they are willing to settle for an Amazon agent, given that they seem to be so
good at making deliveries.

RIDDLE

Where do terrorists hang out?
The gallows.

With the pride of accomplishment akin to parental pride evident in the
public display of their newborn child, let us climb the nearest tallest rooftop in
the vicinity and shout out for the whole world to see and bestow their admiration
and envy upon our worthy newborn baby algori— oopsie...

AAAAAAAAAAAAAAAAAAAAAAAHHHHHHHHHHHHHHHHHH!

CRRRAAAAAAAASSSSSSSSHHHHHH!

Life Lesson #2: Do not climb rooftops with babies in the hope of public
display. Unless the baby in question is (a) Spiderman, or (b) aerodynamically
prolific, or (c) having high coefficient of elasticity. Babies are inclusive of
newfound algorithms as well.

Let us once again mourn the passing away of yet another reader (infant
readers count). It is evident that the number of readers at the beginning of
the paper is most certainly not going to equal that which remains at the end,
but let us plod on, hoping that no more fatal casualties ensue. Academia can
be brutal. And it is best that the reader is made aware of this fact upfront.
Academia is brutal because it stabs you in the back, just like Brutus, after whom

304

the word “brutal” was coined, since that was what Brutus was known for, and
everything else about him is forgotten. Brutus would seriously have blossomed
and flourished in academia without breaking a sweat. And then one fine day
when nobody was expecting it, he would have gone and joined the industry,
having stabbed academia in the back.

Algorithm 2 has the advantage that it can be executed by all minions
independently, reducing the overall runtime, so that each minion can go home
for dinner (if not be dinner themselves at the hands of the terrorist they capture,
but Assumption 1 provides them a protective shield of defense).

The reader’s teetering on the precipice of enquiry is manifestly discernible,
and the reader is therefore encouraged to trip and give in to the temptation to
satisfy curiosity.

Reader: But, but... I don’t understand this whole thing. I am not able to
pinpoint what, but something seems kind of off.

Author: That’s because the algorithm presented above is incomplete, and
I haven’t told you the whole story, haha! I wanted to see the reaction on your
face.

Reader:

Life Lesson #3: Do not read research papers while eating or drinking.

Let us shed copious tears at the devastating and unprecedented loss of yet
another callous reader to the brutal and unforgiving jaws of academia and
research. Having attended the last rites and disposed of the remains of the
eviden— er, I mean, the departed reader, let us plod staunchly ahead with a
word of caution and warning to the remaining readers (if any) that by proceeding
beyond the following point, they consent to do so at their own risk.

305

Algorithm 2 (The Rest Of It)
function RingLeader()
{
1 Assign one minion each to each terrorist in the graph.
2 As long as there is even one terrorist who is not painted black:
3 Call CC()
}

Out of essential courtesy, let us pause to allow the reader to get dazzled at the
sheer effulgence and brilliance of this simple algorithm. Sunglasses are offered
to protect the reader’s eyes from the radiant glow emitted by this algorithm’s
awesomeness. It is a shameful pity that the first seven wonders of the world are
monuments, and to remedy this egregious oversight of leaving out algorithms, it
will be agreed that the above algorithm deserves an honoured place in the list.
Dear Reader, say Hello to the Eighth Wonder of the World.

Reader: Um, Hello? But I am not sure I understand it still.
Author: Ah, that’s because the effulgence of the program is making you

close your eyes to the beauty of it.
Reader: Could you explain it?
Author: Let me show you instead.
Reader: Huh? Show?
Author: Come, Harry. Into the Pensieve.
Reader: Harry? Pensieve?1 Wait, what is happe—

AAAAAAAAAHHHHHHHH!

1A Pensieve is a magical device to store memories in the Harry Potter series [6]. Let us
observe 2 minutes of mournful silence for those readers who have wilfully handicapped their
own childhood by not reading the Harry Potter series.

306

307

308

309

In summary, the Ringleader (the CPU) launches the operation (kernel)
assigning minions (GPU threads) to each terrorist (node) in the graph. Each
terrorist propagates his component id to his neighbours, so that any neighbours
who have higher component ids update their component id so that within each
connected component, each node will have the id of the lowest numbered node
in that component. And when a terrorist’s component id gets updated, that
terrorist in turn must propagate this update to his neighbours, and thus, this
is indicated by painting the terrorist white. A white terrorist indicates that
in a subsequent iteration, his value needs to be propagated, whereas a black
terrorist (apologies if this sounds overtly racist) indicates that his component id
need not be propagated. Thus the algorithm terminates only when all terrorists
have been painted black.

Alert Reader: I observed that when one of the minions is updating the

310

component ids, another minion enters the terrorist’s house right under the
former’s nose and paints the terrorist white.

Author: That’s a good observation. This is because the CC function is
executed independently by each minion. So while one minion is executing one
part of the function, another can be executing another part of it.

Alert Reader: Also, I feel there could be an optimization. You see, for
instance at time T=0, the CID of Terrorist 1 is updated to 0 by Minion 0, but
at the same time, Minion 1 notes the CID value into L as 1 and not zero. In
other words, the change made by Minion 0 is not reflected to Minion 1.

Author: Good observation. This is because we have seen a serialized version
where we saw Minion 0’s operation before Minion 1’s operation. But remember
that each of them are running in parallel. So it is quite possible that Minion
1 executes before Minion 0. Hence we store the CID value into a temporary
variable L, and any changes made to CID are only stored locally by each minion,
who then goes back home at the end of that time step (iteration) and writes
the changed value to a global place.

AMBUSH!

AAAAAAAAHHHHH!!!

Life lesson #4: The above is to teach the reader that it is important to always
be cautious while reading papers, because one never knows what is waiting
around the corner.

Of course, since the goal of any research paper is to prepare the reader for
life, and given that life is full of surprises, the above has been a step in the right
direction, and must be applauded. Having given the readers sufficient time to
catch their breath, let us proceed with the dialogue...

Alert Reader: We can optimize this, can’t we? Maybe let each minion
write the CID update onto the terrorist itself! So that when any subsequent
minion comes there, the changed value will be propagated within that iteration,
thereby reducing the number of iterations.

Author: Good. If we were to do that, such an algorithm would be called
Asynchronous in the literature. What we have looked at is only the Synchronous
case.

311

Alert Reader: I wondered about those asterisks in Algorithm 2 in the CC
function. The last line of that function. Is that yet another place of third degree
treatment?

Author: Excellent question. Those asterisks indicate a footnote to the
alert reader. And since I am talking to one right now, let me expand on it. It
indicates that that line is to be done atomically.

Alert Reader: Atomically? You mean, you go down to the level of atoms
and change the positions and momentums of its electrons?

Author: Oh no no. Once again, let me show, rather than tell. Let us enter
the subjunctive world where the operation was not atomic.

Author: And now, at this point, Terrorist 2 is stuck with the value 1, and
the update by minion 0 is lost. This would have been solved if we insisted that
each minion gets exclusive access to the terrorist while comparing the cid value
as well as updating it. Then, even if Minion 1 managed to write 1 to CID[2],
Minion 0 would have seen that 1 at the time of its comparison and would have
managed to overwrite that 1 with a zero eventually. Not like above where each
of the minions could read the value of CID[2] at the same time and update it
at the same time.

312

Alert Reader: Ok, but what happens if we try to break up the atomic
operation?

Author: Don’t do it.
Alert Reader: Eh, how bad can it get? A minion can just interrupt—

Life Lesson #5: Atomic energy is dangerous. Splitting the Atomic can be as
catastrophic as splitting the Atom. Respect Atomic Energy.

Alert Reader: Great. So we have solved the problem at last. How elegant!
We can all go back home now.

Author: Alas. What if I tell you we have only just begun?

HONK! HONK! HOOOONNNNNNNNNNNKKKKKKKK!!!!!

SCREEEEEEEEECCCCCHHHHHHHH!!!

CRRRRRAAAAAAAASSSSSSSHHHHH!
++reader_toll

Life-Lesson #6: Do not read research papers while crossing the road. Look
up from your research papers, look to the left, then to the right, cross the road
after verifying that it is safe to do so, and then resume reading the research
paper.

Aspiring researchers, please take note of the above, lest we have expiring
researchers.

313

3 EXPANDING THE PROBLEM

It is a truth universally acknowledged, that a single problem, in possession
of a good solution, must be in want of a modification of the problem statement.
Apologies to Jane Austen who is rolling in her grave at seeing her renowned
sentence being abused in the above manner. Alas, she probably had too much
Pride in her sentences, and too much Prejudice against Connected Components
Problems.

But leaving aside Jane Austen’s Senses and Sensibilities, could you think of
how you could modify the algorithm yet maintain its correctness?

Devil: If you can’t Push a terrorist too much, do you just Pull along?

Let us extend the most heartfelt gratitude to the Devil for edging us closer
to our goal.

Reader: Ok. I have an idea. When we are comparing a terrorist’s cid with
that of his contacts, we propagate the source terrorist’s cid to his contacts if
any of his contacts c have a higher cid than the source. But what if we do the
opposite? What if we update the source terrorist’s cid if any of his contacts has
a lower cid than the source?

314

No, dear Reader, this is not the end of the paper already. This blank page is a

refreshment break, a much needed feature of any research paper that has the

reader glued to its pages. Readers are requested to look up from the paper, stare

at the horizons for a while, let out their breaths which they had held for such a

long time, and after verifying that the pulse rate and breathing rate are

normal, turn over to the next page and resume reading.

315

Reader: Did we reach the end of the paper already?
Author: No, that blankness was the glare of the sheer brightness of your

idea which affected the ocular power of the unsuspecting reader. This, dear
Reader, is the Pull variant of the algorithm as opposed to the Push variant we
saw before.

Algorithm 3: PULL VARIANT
function CC()
{
1 Let L be the component id of this terrorist.
2 ***************** (You know what to do)
3 Visit each contact c obtained in the previous step, and find the minimum

cid among all c’s. Call this min.
4 If min < L, update Cid of this terrorist to min and paint him white.
}

function RingLeader()
{
1 Assign one minion each to each terrorist in the graph.
2 As long as there is even one terrorist who is not painted black:
3 Paint all terrorists black.
4 Call CC()
}

It is immediately apparent that there is some asymmetry between the push
and the pull variants, especially when it comes to painting the terrorists. It
is not a completely black and white matter, haha. In an attempt to prevent
dizziness on the part of the reader owing to multiple forays into the pensieve,
we shall not have another excursion therein, but leave the details to be worked
out by the astute reader.

DISEMBODIED VOICE

Why aren’t minions going back home in CC function if terrorist

is already painted black? Why aren’t minions painting terrorist

black? What would happen if we follow very similar pattern of

the Push variant and let the minions paint the terrorist black

within CC, and not let Ringleader paint the terrorists black?

316

It is a basic premise, implicitly acknowledged in every fantasy, that one is
obligated to listen to disembodied voices (if for no other reason that failure to
do so might result in their voice becoming the next disembodied voice for others
to hear), for they hold the key to many mysterious doors that remain otherwise
stubbornly closed. Since this research paper is most unanimously agreed to be
categorized under the fantasy genre, it behoves the reader to diligently attempt
to follow the mysterious hints posed by the disembodied voice above, for this
holds the answer to true understanding.

A detailed answer to all the above questions were given in the

appendix, but the paper had to undergo an emergency

appendicitis operation, and hence, its appendix is no longer

available. The inconvenience is deeply regretted.

Reader: So which of the two versions is the better one?
Devil: Of course, the Push variant.
Reader: No, I think the Pull version is better.
Devil: Push.
Reader: Pull.
Author: How about we don the hat of a researcher and experimentally

verify for ourselves? Isn’t that much better than pushing around answers down
our throats? Or pulling answers from a magic hat?

When you apply the tried and tested principles of inferring from data, you
are abiding by the scientific spirit that provides everlasting salvation to its
adherents. You might have to cross uncharted mountains, you might have to
swim through shark-infested seas, you might have to face fire-breathing dragons,
you might have to battle light-saber wielding aliens dropping from the sky
through UFOs, but you can rest assured that the conclusions you reach are
backed by hard solid data, and are not diaphanous wispy hypotheses drawn
from a hat. You will attain the forbidden fruit of knowledge that can only
be attained by the scientific spirit. You will then thank those mountains, seas,
sharks, dragons, and aliens even if they are incapable of gracefully acknowledging
your gratitude (though they might appreciate a bite from the forbidden fruit
you are holding in your hand as you are thanking them).

Having gained sufficient experience with torturing confessions out of
terrorists, let us now attempt to torture confessions from data, if only because it
provides a welcome change from the monotony (although often enough dealing
with data can cause far more terror than dealing with terrorists).

317

Type of Graph |V| |E| Push-CC-Time Pull-CC-Time Push-Iter Pull-Iter

gemsec-FB/artist 50515 819090 6.5194ms 9.4974ms 9 8
gemsec-FB/athletes 13866 86811 2.0312ms 2.7543ms 8 8
gemsec-FB/company 14113 52126 1.4808ms 1.8047ms 11 11

gemsec-FB/government 7057 89429 2.5921ms 3.6418ms 7 7
gemsec-FB/new_sites 27917 205964 3.4133ms 5.2294ms 11 10
gemsec-FB/politician 5908 41706 1.6289ms 2.3955ms 11 10

gemsec-FB/public_figure 11565 67038 1.8143ms 2.4578ms 11 10
gemsec-FB/tvshow 3892 17239 1.1815ms 1.3383ms 14 13

ca-CondMat 108300 93439 1.5367ms 2.2929ms 10 10
com-youtube 1157828 2987624 263.57ms 882.53ms 10 11
musae_git 37700 289003 143.44ms 159.07ms 9 7

roadNet-CA 1971281 2766607 92.329ms 79.105ms 554 542
Random 30K 10K 218.32us 196.08us 15 15
Random 100K 10K 109.33us 94.488us 7 7
Random 1M 1025 110.52us 123.25us 2 3
Random 1M 10K 198.13us 177.20us 3 4
Random 1M 100K 406.20us 359.71us 6 6
Clique 100 4950 309.57us 202.73us 2 2
Clique 1000 499500 10.896ms 2.2744ms 2 2
Clique 10K 49995000 179.02ms 92.475ms 2 2

Alternate-Edge 100 50 21.438us 16.638us 2 2
Alternate-Edge 1000 500 19.102us 16.703us 2 2
Alternate-Edge 10K 5000 31.965us 38.077us 2 2
Alternate-Edge 100K 50K 34.653us 24.542us 2 2
Alternate-Edge 1M 500K 165.71us 101.21us 2 2
Alternate-Edge 10M 5M 1.4220ms 824.05us 2 2
Alternate-Edge 50M 2.5M 24.180ms 4.7364ms 2 2
Alternate-Edge 100M 50M 27.113ms 29.344ms 2 2

Alternate-Edge 500M 250M

Alternate-Edge 1B 500M
Chain 100 99 941.57us 965.53us 100 100
Chain 1000 999 10.060ms 9.9702ms 1000 1000
Chain 10K 9999 111.12ms 102.14ms 10000 10000
Chain 100K 99999 1.48802s 1.47641s 100000 99986
RMAT 1M 1M 3.8789ms 5.7600ms 8 8

It is a well-known fact that any form of tabular data is completely glossed
over by readers, and hence to avoid this indifference, two rows have been
populated with dead cats, in the hope that they shall draw the reader’s
attention, and make them at least give a perfunctory glance at the table, to
see if the other rows could hold any clue to the cause of their gruesome deaths.
The dead cats are an omen. This provides a very chilling picture, and for
this reason, it is very strongly recommended that this picture be placed inside
multi-core processors so as to aid in the cooling process of the overheated system.
Well, the dead cats in this case are an indication that flaming balls of hydrogen
undergoing combustion reactions shine in the firmament, revolving in silent
cosmological anticipation for the program to terminate and produce outputs for
these inputs 2.

As with all important questions in life that attempt to ascertain the relative
superiority between multiple competing alternatives, the answer is inevitably,

2Program? Where did that come from, you wonder? Well, for the interested reader, CUDA
programs have been written to run the above algorithms, and the times shown above are the
results of this program running on an NVIDIA DGX1 Server. More details are skipped in
the interests of retaining the readers’ sanity and interest. If you are the kind of reader who is
interested to know more about those details, you are probably reading the wrong paper

318

“It depends” (or if not that, then surely it is “None of the above”). So much for
the scientific method. It is evident from the above that there really isn’t any
clear winner (although it can be ascertained that the number of iterations of the
Pull approach never exceeds that of the Push). Therefore, let us resort to the
age-old, tried and well-tested principle, when faced with a dilemma of choosing
among n alternatives, to introduce an (n+1)th alternative, so that the original
problem has been completely obviated (of course, to be supplanted by another
problem, but let’s first bask in the rapture of annihilating the original problem,
and pat ourselves on the back for such a commendable idea).

4 THE BEST OF BOTH WORLDS

Having basked in the ephemeral pleasure of having gotten rid of the original
problem, long enough to realize that we have introduced another alternative
to choose from, let us come to the sober realization that a problem (if not the

problem) still exists, and we have a long way yet to go.

Reader: But what is the third alternative that you speak of?
Author: An amalgamation of the first two presented before!
Reader: Huh?

And before the reader even has time to draw his breath from the surprise of
having received such an answer, or to realize what is just coming his way, we
have—

BANG!!!!

319

Algorithm 4: HYBRID APPROACH
function CC()
{
1 Wake up at 3 am, having tossed and turned on your bed for hours, unable

to sleep.
2 Question your career choices at having to go finding terrorists.
3 Transition to questioning your life choices.
4 Realize that you are duty-bound to identify the Connected Components

of the terrorists’ networks.
5 Scream at the fates that have conspired to put you in this position.
6 While there are no more neighbours attempting to batter down your door:
7 Pacify the neighbours that your guttural screaming was nothing to

worry about, and was an umm..., hehe... er... yeah, a car backfiring,
right.

8 Finally, get ready for your manhunting sojourn.
9 Where the mind is without fear, and the head is held high...
10 Realize that the previous statement wasn’t really an algorithmic

instruction in the truest sense of the phrase, but still... Your thoughts,
your rules, or whatever...

11 Get pushed out of your house to find the terrorists, and get pulled by
your own moral and philosophical dilemmas.

12 Realize that you have been both “pushed” and “pulled” in the previous
step, and call this the “Hybrid Approach”.

13 THE END
}

Reader: WHAT ON EARTH WAS THAT?
Author: A much needed break from the intensity of the paper.
Reader: Um... So, there is no Hybrid Algorithm then?

Having given the reader enough breathing time to unwind, let us now present:

320

Algorithm 5: HYBRID APPROACH (the real one, because the previous one
was just Pseudocode, living up to its name and being false code)

INPUT: Terrorist graph with each node labelled uniquely with its node-id.
OUTPUT: Terrorist graph with each node labelled with its component id,
where component id is the minimum node-id among all the nodes in that
component.

function CC()
{
1 Let L be the component id of this terrorist.
2 ***************** (You know what to do)
3 Visit each contact c obtained in the previous step, and find the minimum

cid among all c’s. Call this min.
4 If min < L, update Cid of this terrorist to min and paint him white.
5 Visit all contacts c of this terrorist and if their Cid’s are more than min,

update them to min, painting them white.
}

function RingLeader()
{
1 Assign one minion each to each terrorist in the graph.
2 As long as there is even one terrorist who is not painted black:
3 Paint all terrorists black.
4 Call CC().
}

Why would the above algorithm, which is seemingly more complicated
than either the Push or the Pull, and moreover, does more work than each
of them individually, seem to work better? The key insight lies in the fact
that the Hybrid approach propagates the component id across a node and all
its neighbours in one iteration, unlike the Push or the Pull approaches which
propagate the minimum cid across multiple iterations. It is surmised that this
will lead to a reduced number of iterations and hence a reduced execution time
(sorry for the phrase, for this has nothing to do with actual terrorist execution,
which is a separate matter altogether).

Devil: But couldn’t it be possible that though the number of iterations have
reduced, each iteration does more work, and hence the actual time increases?

Questions from the Devil typically require careful thought and any flippant
answers must be avoided at all costs. Being fully cognizant of the fact that no
amount of sacrificial offerings in the form of kittens, or poor innocent beasts or
even human beings shall placate the Devil, let us therefore seek our refuge with
Data, to save us from eternal perdition at the hands of the Devil.

321

Type of Graph |V| |E| Push-CC-Time Pull-CC-Time Hybrid-CC-Time

gemsec-FB/artist 50515 819090 6.5194ms 9.4974ms 36.821ms
gemsec-FB/athletes 13866 86811 2.0312ms 2.7543ms 3.4300ms
gemsec-FB/company 14113 52126 1.4808ms 1.8047ms 1.9672ms

gemsec-FB/government 7057 89429 2.5921ms 3.6418ms 4.8743ms
gemsec-FB/new_sites 27917 205964 3.4133ms 5.2294ms 7.0720ms
gemsec-FB/politician 5908 41706 1.6289ms 2.3955ms 2.8489ms

gemsec-FB/public_figure 11565 67038 1.8143ms 2.4578ms 2.8717ms
gemsec-FB/tvshow 3892 17239 1.1815ms 1.3383ms 1.5726ms

ca-CondMat 108300 93439 1.5367ms 2.2929ms 2.1538ms
com-youtube 1157828 2987624 263.57ms 882.53ms 960.59ms
musae_git 37700 289003 143.44ms 159.07ms 247.81ms

roadNet-CA 1971281 2766607 92.329ms 79.105ms 92.766ms
Random 30K 10K 218.32us 196.08us 179.12us
Random 100K 10K 109.33us 94.488us 94.968us
Random 1M 1025 110.52us 123.25us 140.98us
Random 1M 10K 198.13us 177.20us 175.92us
Random 1M 100K 406.20us 359.71us 380.03us
Clique 100 4950 309.57us 202.73us 319.46us
Clique 1000 499500 10.896ms 2.2744ms 3.9708ms
Clique 10K 49995000 179.02ms 92.475ms 156.06ms

Alternate-Edge 100 50 21.438us 16.638us 18.335us
Alternate-Edge 1000 500 19.102us 16.703us 17.887us
Alternate-Edge 10K 5000 31.965us 38.077us 20.638us
Alternate-Edge 100K 50K 34.653us 24.542us 35.260us
Alternate-Edge 1M 500K 165.71us 101.21us 164.02us
Alternate-Edge 10M 5M 1.4220ms 824.05us 1.4191ms
Alternate-Edge 50M 2.5M 24.180ms 4.7364ms 20.782ms
Alternate-Edge 100M 50M 27.113ms 29.344ms 50.301ms

Alternate-Edge 500M 250M

Alternate-Edge 1B 500M
Chain 100 99 941.57us 965.53us 629.93us
Chain 1000 999 10.060ms 9.9702ms 6.6927ms
Chain 10K 9999 111.12ms 102.14ms 64.185ms
Chain 100K 99999 1.48802s 1.47641s 1.16323s
RMAT 1M 1M 3.8789ms 5.7600ms 5.5498ms

The Data has betrayed us. All readers have been dragged into the darkest
crevices of Hell with us. The increment operation on the reader_toll counter has
been applied so much that the reader_toll counter itself has overflowed. And
apart from this, there are still dead cats in those two rows. For all intents and

322

purposes, the program has gone into a coma, refusing to listen to the tear-soaked
pleas of its bedside relatives to wake up, or failing that, at least smile so that
they’ll know it’s alright.

Moral of the story

Large inputs can cause unprepared programs to go comatose.

We are in a poor state, and readers who have been cursing the Author that
this is what comes out of involving Devils in a self-respecting research paper
must take solace in the fact that all is not yet lost. Because one must accept the
fact that if we are being roasted alive in hell and are feeling the pain, then at
least our nervous system is working fine, to be able to feel the pain, and hence
all is not yet lost— QED! Kudos, Central Nervous System! Kudos!

Ok ok, that only seemed to have put oil to the fire.

RIDDLE

Q: How do you save one from being roasted in hell?
(a) Apply burnol
(b) Freeze hell over
(c) Exorcise the Devil
(d) Invoke the blessings of God

323

God: Say, did someone mention my name?
Author: Hallelujah! We have been saved! Save our Souls, God! SOS!
God: Um... you know what? Aren’t souls supposed to be, like, you know,

immortal or whatever? So they don’t need to be saved really, do they?
Author: Then SOB God, SOB!
God: What! Are you using a swear word against me?

Author: No no, God! I meant, Save our Bodies!
God: Oh well alright. Then, tell me, why are you only looking at the time

for CC? Shouldn’t you be considering the overall execution time?

And that my dear Readers (or whatever charred remains of Readers there
are), is the answer to the Riddle posed above. It is none of the given options
(as should the answer to any self-respecting MCQ be). How do you save one
from being roasted in hell? Well, by not letting them get into Hell in the first
place, of course! Let us retract our steps and consider now the overall execution
times, instead of merely the CC time.

The following table shows the overall runtimes of each of the inputs graphs
for all the three variants, and like the previous table, for each input graph, the
minimum execution time is highlighted in yellow. Oh, and by the way, if you’re
curious about the input graphs, the first few (until roadNet-CA) are standard
real world benchmark graphs taken from the SNAP dataset [14], and the rest
are synthetically generated graphs.

324

Type of Graph |V| |E| Push-Time (s) Pull-Time (s) Hybrid-Time (s) Hybrid-Iter

gemsec-FB/artist 50515 819090 1.1653 1.064 0.982 5
gemsec-FB/athletes 13866 86811 1.0826 0.8613 1.0323 5
gemsec-FB/company 14113 52126 0.979 1.0093 1.0853 6

gemsec-FB/government 7057 89429 1.0876 1.2233 0.8433 5
gemsec-FB/new_sites 27917 205964 1.0263 1.061 0.9446 7
gemsec-FB/politician 5908 41706 0.911 1.1803 1.0193 6

gemsec-FB/public_figure 11565 67038 1.26 0.8656 0.7556 6
gemsec-FB/tvshow 3892 17239 0.9536 0.9056 0.9846 8

ca-CondMat 108300 93439 0.9856 1.074 0.9023 5
com-youtube 1157828 2987624 1.8646 2.187 2.361 6
musae_git 37700 289003 1.0273 1.1236 1.075 5

roadNet-CA 1971281 2766607 3.132 2.8853 2.6363 263
Random 30K 10K 1.017 1.078 1.0293 8
Random 100K 10K 1.0533 1.0426 1.0126 4
Random 1M 1025 1.1997 1.277 1.1183 2
Random 1M 10K 1.1286 1.9726 1.496 2
Random 1M 100K 2.0693 1.9586 1.3246 3
Clique 100 4950 1.0526 0.9203 0.9983 2
Clique 1000 499500 0.947 0.8616 0.9166 2
Clique 10K 49995000 9.5026 9.4646 9.68 2

Alternate-Edge 100 50 1.115 0.976 1.098 2
Alternate-Edge 1000 500 0.9936 0.944 1.0303 2
Alternate-Edge 10K 5000 0.9913 0.868 0.9703 2
Alternate-Edge 100K 50K 1.0686 1.03 0.8613 2
Alternate-Edge 1M 500K 1.296 1.2453 1.3796 2
Alternate-Edge 10M 5M 5.4836 4.6967 4.8906 2
Alternate-Edge 50M 2.5M 21.4393 21.222 21.7033 2
Alternate-Edge 100M 50M 42.304 42.0686 41.9266 2

Alternate-Edge 500M 250M

Alternate-Edge 1B 500M
Chain 100 99 0.9973 1.0283 0.886 51
Chain 1000 999 1.0343 1.0726 1.1563 501
Chain 10K 9999 2.1616 2.0786 1.388 5001
Chain 100K 99999 33.447 31.3006 17.3906 49999
RMAT 1M 1M 1.443 1.6006 1.551 4

To preempt any critical readers from pointing out that we have the exact
same figure repeated four times, and adding the comment that this is not the
way to write research papers, let me clarify abundantly that the four figures are
NOT the same, because each of them is happening at DIFFERENT instants of
time, and this SHOULD be the way to write research papers, thank you very
much.

325

Author: God, you betrayed us! Et tu, God!
God: Dude, don’t expect me to spoonfeed you all the time. Just appeal to,

um...
Author: Divine Intervention?
God: Yeah right!
Author: That’s exactly what I did just now!
God (sheepishly): Ohhhh right! Ok well then, er... appeal to... um...
Author: Please don’t tell Diabolical Intervention!
God: No no. Appeal to... you know, er..., yeah right, Curse of Higher

Dimensions!
Author: What? That doesn’t even make sense in the current context.

Except maybe that we have been cursed by someone from Higher Dimensions.
I hope you are getting the hint.

God: Ok ok fine. Look, the data is not all that bad. Some of them do
support your hypothesis. Appeal to that. Appeal to Data Intervention!

Thus, thanks to Data Intervention, let us now analyze which inputs perform
well with the Hybrid approach. We can make the following general observations
from the data (any deviations in the data from these observations must be
strictly considered to be noise in the data, which doesn’t wish to bend itself to
analysis or listen to reason):

1. For graphs where small number of nodes have high degree (like power-law
graphs), the CC-time of the Push approach is the fastest although in terms of
overall execution time, Hybrid sometimes does better.

2. For graphs with very small diameter, the Pull approach performs best.
This is because the number of iterations is less, and hence walking through the
neighbours (the phrase “walking through the neighbours” is not to be understood
in a way that implies that we are ghosts — the neighbours are to be considered
abstract entities, and “walking through” as an abstract operation of iteration)
will not be too expensive. Hybrid approach also does fairly well, but the
additional step of propagating minimum values to all neighbours does not gain
much in terms of performance here because anyway, the values are going to
converge in a very small number of iterations.

3. For graphs with large diameters, the Hybrid approach shines with the
luminosity of a thousand suns! You are requested to wear protective sunglasses
before looking at the results of its performance. Clearly, this performance boost
is owing to the fact that the algorithm has to run through many iterations before
reaching convergence, and hence the Hybrid approach would lead to savings in
number of iterations in a large way, and per iteration, it helps in propagating
the values further, which helps in the overall execution time as well.

4. The number of iterations with Hybrid approach is always less than (or
equal to) the other two variants.

Having provided satisfactory explanations and observations, we can all
finally go home happy. Ok, end of pap—

326

Reader: WAIT!
Author: Now what?
Reader: Um, those two inputs for which the program is crashing... Can’t

we do something about them?
Author: Well yes, hence the Grim Reaper has dragged away the dead cats

from those rows. Because the corpses can’t be allowed to remain there rotting
throughout the paper.

Reader: No, I mean... The program is crashing or running out of time on
those really large inputs.

Author: Look. The state that the program is in, it is basically a vegetable,
and you can go ahead and chop it up and make gravy out of it and eat it whole.

DIGRESSION: THE BUTTERFLY EFFECT [11]

The flap of a butterfly’s wings in one corner of the world might cause a
hurricane in another corner of the world.

DIGRESSION-WITHIN-DIGRESSION:

Why can’t you ask a hurricane to slow down?
Because if it did, it would no longer be a hurricane — it would be
a relaxed-cane.

An innocuous pun made above has set the gears churning, leading to ideas
for what needs to be done. The butterfly has flapped its wings and realizes
the full enormity of what it has done, of being single-handedly (or rather,
single-wingedly) responsible for creating a tornado on the opposite side of
the globe, and frantically recalls Newton’s Third Law and begs for Divine
Intervention to invalidate the Law, or failing that, at least invent Newton’s
Fourth Law that provides an exemption clause to the Third Law.

DIGRESSION: Newton’s Seventh Law of Motion

Newton’s Fourth, Fifth and Sixth Laws of Motion are in constant Motion and
cannot be pinned down or stated.

Because the word chop used above evokes a train of thought... What if we
actually chop up the program? No, that probably doesn’t make sense. But
what if we chop up the graph?

327

5 RELATED WORK

[10]

END OF RELATED WORK

Author: Hey, you didn’t really read that, did you?
Reader: No, I read it.
Author: Oh, come on!
Reader: Really! I swear, as sure as God is my witness, that I read it.
God: Ahem, I heard that.
Reader: G-G-God?
God: Yup, that’s me. And you didn’t read that paper.
Author: Aha!
Reader: G-G-God? I thought you didn’t exist!
God: I heard that.
Devil: G-G-God? You exist?
God: I heard that too.
Reader: Are you vocabularily challenged?
God: I heard that.
Reader: Are you a machine preprogrammed to repeat just those words?

Reader: Whoa! What was that?
God: A display of my omnipotence.
Reader: But then, if you exist, how could you allow the Devil to exist as

well?
God: Oh, um..., er..., *mumble* *mumble*... well, live and let live, you

know?
Author: Ok, getting back on track, I urge you to read the reference.

[10]

Author: Now you have reached here too soon. You still didn’t read it, did
you? God, you can confirm this, can’t you?

God: Look, I don’t wish to be dragged into this.
Author: But God! You are the omnipresent and omniscient witness of

everything! You know everything. You must have been a witness to whether
the reader has read this or not.

God: Oh well, um..., er... you see, I wasn’t.

328

Author: WHAT! BUT HOW? The Eye of God witnesses everything in the
universe.

God: Er..., Um... Yeah that’s true. But well, the Eye of God was a little
preoccupied at the moment watching a really interesting sitcom on TV.

Reader: Ok, why don’t you all trust me and believe me when I said that I
did read the paper?

Author: Ok fine. Then let me ask you a test question to check if you really
read the paper. Quick, tell me, what is Differential Privacy?

Reader: Um... Differential privacy is... er..., ok fine. I confess I didn’t read
it.

Author: Aha! Caught red-handed! Well, you really need to read that
reference right now.

Reader: Ok ok fine. I will. But what is Differential Privacy anyway?
Author: I don’t know. It certainly isn’t mentioned in that reference, haha!

Reader:

6 UNRELATED WORK

While the reader is trying to come to grips, digesting the related work, here is
a welcome digression to break the monotony. The reader is strongly encouraged
to read the following works, because why should Jack have all work and no fun
and become a dull boy, right?

[2], [3], [4], [5], [6], [7], [8], [9].

7 THE PARTING OF THE WAYS

Let us now return refreshed from that wondrous excursion, and come to
the sudden unpleasant realization that the reader has probably forgotten the
details of this paper. It is an uncomfortable realization on the part of the
Author to know that the section on Unrelated Work was probably a mistake to
be included, but by now, it is already too late and nothing can be done about
it. Nevertheless, it has left the readers in a happy frame of mind, and since we
know that the goal of life is happiness, we have nothing to complain about, I
guess.

329

Meta-Moral of the Story

It is ok to make mistakes, maybe sometimes even in research

papers.

However, to wrap things up, the Reader is strongly encouraged to ponder
about partitioning the graph into multiple subgraphs. Because it is a
well-established fact that Graphs are pervasive and growing in size by the day
[1]. In other words, Why should all the terrorists be assigned to minions all at
once? There probably aren’t so many minions anyway, or else they would have
been called maxions. So we can chop up the graph into different partitions.
And let minions work on one such partition at a time. A natural question at
this point is: How do we decide how to partition the graph? And how do each
of the Push, Pull and Hybrid variants perform in the presence of partitioning?

330

8 CONCLUSION AND FUTURE WORK

Reader: Hey, what is that sound?
Author: What sound?
Reader: That ominous background music, that bodes something really bad

is about to happen very soon. You are encouraged to scream to add to the
special effects.

Author: Haha, you must be imagining things.
Reader: No, really. It’s increasing in volume. And wait, do you hear that?

That sounds like footsteps. A lot of footsteps. That’s the sound of a stampede,
footsteps of an unpacifiable mob, and they’re approaching us!

Author: Yikes! You’re right. But I haven’t even had a chance to make my
conclusion.

Reader: Let’s run, because it’s going to be a mob lynching.

Pant *Pant* So, to conclude, *pant* the connected components of a
pant graph *RUMBLE* *RUMBLE* can be found *pant* *RUMBLE*
RUMBLE no, NO NOOOO, I have more research directions to explore... I
haven’t even spoken about the Future Work, which is to explore Partitioning
Strategies. Leave us alone! AAAAAAAAAAHHHHHHHHHH!

THE END

331

AUTHOR’S AFTERWORD
The Nameless Horrors of Research Papers and

What You Can Do About Them
(Answer: Nothing)

[12]

Yes yes, I know, I know. This is SO not the way to write a research paper,
right? But apart from the fact that (a) it is informal, (b) there are way too many
jokes, (c) digressions are the norm, (d) there are shocking twists and surprises
often leading to catastrophic results, (e) there are life lessons, (f) there are
dialogues, (g) there are comics strewn everywhere, (h) there are appearances of
a Devil, and God as well, (i) it violates every possible known convention of any
standard research paper..., there really is nothing wrong with this paper, and
no reason why it should not be accepted as a research paper.

Research papers are known to be dry. The Sahara desert, if sentient, would
feel deep jealousy towards most research papers in existence, and might even
shed a few tears at its first position for dryness being usurped by many research
papers, but then realize that in the process of shedding a few tears, it is no longer
as dry as before, lowering its rank in this dry dryness list, and therefore, shed
even more tears at this personal calamity, leading to an even further lowering
of its rank, ad infinitum. THIS research paper, on the other hand, addresses
this shortcoming by NOT being so dry. Well, I would rather have my paper be
mosaic than prosaic, haha.

There are tons of research papers out there whose opacity is close to zero,
inscrutable to all except for an enlightened few. The following graph illustrates:

332

The above graph presents an alarming picture. The coefficient of viscosity of
research papers is so high that more than 50% of the readers have dropped off
like flies by the end of page 3. And by the end of the paper, we only have 1 reader
(which is probably why most papers have a page limit of 10-12). This is probably
the Author who has written the paper himself/herself. This is alarming because
it implies that not even the reviewers have been able to survive the vicious
density of the paper to reach the end successfully. And often enough, it’s either
because (a) the paper is not self-contained, or (b) it oozes with terse jargon and
deep math. Pure math is not everyone’s cup of tea. I mean, it’s like asking
people to visualize an imaginary geometry of a three-headed dragon that curves
in space-time and then proving that it cannot fly simply because breathing fire
violates the law of commutativity. I can see you pure math enthusiasts moaning
with pleasure at such abstractness, but this isn’t for everyone. Because you see,
here be the dragons.

Just getting through a page in any standard research paper of respectable
quality requires immense concentration. Thus, we could say that the readers
of such a paper are put in a concentration camp, haha! I hope to remedy this
situation. The principle is simple: You do NOT want your readers to drop off
dead like flies by the time they reach page 2 of your paper. Preferably you want
them to die after they finish reading your paper. Whether as a result of the
reading is of no consequence.

Reader: But this is a half-baked paper. It doesn’t even go deep into the
topic like any research paper should. Anybody who reads this will get half-baked
knowledge.

Hey! This is supposed to be the Author’s Afterword, and you aren’t supposed
to interrupt here. But oh well, seeing that the damage has been done anyway, let
me reply to your point. Oh yes, this paper has half-baked knowledge, but that
isn’t the goal. This paper has half-baked knowledge because midway through
the baking process, I suddenly realized that the knowledge wasn’t meant to be
baked, but rather fried in oil. So this resulted in an abrupt termination of the
knowledge-baking process in order that it could be fried. So yes, this paper has

333

half-baked knowledge, but that’s ok because it also gives deep-fried knowledge.
And it’s been marinated as well. The crispiness is testimony to this. You can’t
have just one, haha!

Ok ok, fine... for a more formal treatment of the work presented in this
paper, the interested and hardened reader is urged to refer to [15].

My goal in writing this paper is straightforward: I wish research to be
accessible to the motivated layman, even if it means that the actual quality
of the research presented here is not dazzlingly novel. The goal is to etch the
concepts presented here so deep into the reader that it becomes part of their
DNA, so that the reader’s offspring will be born with an innate understanding
of these concepts. Ok, jokes aside, it takes one person to make a start to change
long-established trends. Perhaps I have been such a person, and this paper has
been perhaps an attempt in that direction, albeit maybe not the best attempt.
This may not be a work of such monumental profundity and lucidity so as to
catalyze a revolution in academia by dawn. But, at the very least... No animals
have been harmed in writing this paper. However, a lot of rigour has been
sacrificed. For the greater good. It is my hope that this will launch the “Make
Research Papers Great Again” Movement. It is my hope that this will inspire
many more readers to delve deeper into the field, contribute to it, and more
importantly, dispense their learnings to others in an accessible way. May this
not lose steam (because then, it would have to be called “Make Research Papers
Great Again” Stagnant, haha). I have simply lit the torch. May the light of
knowledge be passed on.

334

ACKNOWLEDGEMENTS

When one goes against the current to write a work of this sort, it is inherently
obvious that nobody wishes to be seen associated dead or alive with the Author
— imagine the ignominy! Anybody would conclude that a work of this sort
must be the attempt of a demented and possessed researcher. But that would be
wrong, because aren’t all researchers possessed by default (by their institutions
at the very least)? Perhaps the Author deserves to be cordoned off with a tape in
the interests of public safety. So naturally the Author needs to be cautious while
making acknowledgements to a work of this sort. Any names mentioned would
automatically become the cast-out members of society, and those poor people,
for no fault of theirs (except for making an appearance in an acknowledgement
section) would be shunned by society, and probably die begging for foodgrains,
clawing out their intestines in hunger because nobody is willing to have anything
to do with them, much less provide them food. However, they are the brave few
who have rendered help because they know what they are doing is right. So, for
whatever it’s worth, here goes:

I owe the biggest debt of gratitude and acknowledgement to my mother,
Geetha Chandrashekar. Whatever I am in life today is entirely owing to her
and her family (special mention goes to her parents G S Chandrashekar and
Shanthamma, her siblings, Sagar, Premalatha, and Raju, and their families (to
take names, so as not to commit the sin of omission – Gayathri, Gouthami,
Nikhil, Praveen, Jayashree, Vijay Chandra, Soujanya)). “The roots below the
earth claim no rewards for making the branches fruitful” (Rabindranath Tagore)
[9]. My mother is this kind of selfless person, who doesn’t do a good turn for
the sake of acknowledgement, but the branch in this case wishes to convey its
gratitude to its root nevertheless.

A lot of teachers right from my childhood (from school to graduate college)
have helped foster and encourage my creativity. To all of them, I prostrate with
gratitude. I would especially like to acknowledge some of them: Govindarajan
Sir, Rupesh Sir, Srikant Sir, Jayant Sir, Deepak Sir, Viraj Sir, NSK Sir, Arindam
Sir, Rahul Sir, Dinesh Sir, Prema Ma’am, Jawahar Sir.

And more importantly, a lot of friends have been a staunch pillar of support
for me through all my ups and downs. In particular, I would like to mention:
Shubham Gupta, Chittaranjan, Varun, Sunil, Jeevan, Pradyumna, Hemanta,
Gaurav, Srishty, Julian, AN, Nikitha, Shruti, Kavita, Pooja. There are others
as well who wished not to be named. You know who you are, and I shall not
embarrass you by naming you here. A huge shout-out to all of you, even if this
does not reach your ears.

Now, I know I have ended up writing this Acknowledgement section in an
unconventional way — certainly not in the way a research paper typically
does. In other words, I have acknowledged not only those who were directly
instrumental in bringing out this paper, like the way all research papers do.
This is because I believe that any piece of monumental work is composed of
many small parts, and it is unfair to only acknowledge the painters who put the

335

finishing touches of the monument, neglecting to mention all those other unsung
contributors, without whom the monument would collapse. In other words...

[13]

As mentioned in the beginning of this section, I have also intentionally left
out the names of so many people (not because they have not contributed, and
not because I have neglected to acknowledge them, but because I don’t know
how they would react to being publicly named in a work of this sort). If any
of you wish to be named (and face the consequences thereof), if you think you
have made a contribution and deserve acknowledgement, kindly let me know
and I shall do so.

References

[1] Ullas . “When Pull Comes To Shove... Do Both!” 2022

[2] Rowling, Joanne K. “Harry Potter and the Philosopher’s Stone.” Bloomsbury

Publishing, 1997.

[3] Rowling, Joanne K. “Harry Potter and the Chamber of Secrets.” Bloomsbury

Publishing, 1998.

[4] Rowling, Joanne K. “Harry Potter and the Prisoner of Azkaban.” Bloomsbury

Publishing, 1999.

336

[5] Rowling, Joanne K. “Harry Potter and the Goblet of Fire.” Bloomsbury

Publishing, 2000.

[6] Rowling, Joanne K. “Harry Potter and the Order of the Phoenix.”
Bloomsbury Publishing, 2003.

[7] Rowling, Joanne K. “Harry Potter and the Half-Blood Prince.” Bloomsbury

Publishing, 2005.

[8] Rowling, Joanne K. “Harry Potter and the Deathly Hallows.” Bloomsbury

Publishing, 2007.

[9] Tagore, Rabindranath. “Stray Birds.” 1916.

[10] Sabet, Amir Hossein Nodehi, Zhijia Zhao, and Rajiv Gupta. “Subway:
Minimizing data transfer during out-of-GPU-memory graph processing.”
Proceedings of the Fifteenth European Conference on Computer Systems,

2020.

[11] https://en.wikipedia.org/wiki/Butterfly_effect

[12] https://www.smbc-comics.com/?id=3225

[13] https://xkcd.com/1543/

[14] SNAP Datasets: Stanford Large Network Dataset. https://snap.

stanford.edu/

[15] At the time of this writing, this paper does not yet exist. The author
apologizes for leading the reader through a dangling reference, but offers
consolation by the promise that this reference will exist in the future
(hopefully, subject to paper acceptance constraints).

337

exorcism(1)

NAME
exorcism - performs an exorcism (duh)

SYNOPSIS
exorcism [-l liturgy] [-d demon] [-S salt] [-t host] -ehsz

DESCRIPTION
Exorcism attempts to remove malevolent influences from your

bits. Computers are infamously cursed. Despite being deterministic
machines, they often display non-deterministic behavior. They
sometimes require blood sacrifice to perform properly. Clearly these
are signs of demonic possession.

Exorcism will perform a traditional exorcism, complete with
ASCII bell, book, and candle.

-d, --demon demon
Which demon to attempt to cast out. See the Lesser Key of

Solomon for a full list.

-e, --detach-head Allow HEAD to point to an unnamed neck.

-h, --hex
Output each removed curse as a hexadecimal string.

Warning: Strings must be sanitized before piping to other programs to
avoid curse transference. This can be accomplished via regular
expressions, which are safe to use as they are already maximally
cursed.

-l, --liturgy liturgy
Choose which incantation to use.

-S, –-salt salt
Use a SHA-256 salt circle with the provided salt. If no

salt is provided, a random 32-byte string will be used.

-s, --silent don’t emit an ascii bell character. A silent
exorcism is not guaranteed to work.

-t, –-transmigrate host
Instead of banishing the demon, migrate it into a new

host. Host can be a fully qualified domain name or an IPv4 host (IPv6
is not supported and never will be).

50

338

-̴ ̨̰̙PK �

S �M
MH�

z8""�?-\ ̣�)� ?. ?(X

� � ̃�� �_ ,84321 XP! 5 JK

� ���
H� �B ̃
� B

G

 :̣ ?�63 ?< ?1

�
 ͂�
� ��� �
�^

-7/-(05P JJV X?

�
� ͝

G

-7+>!4 -XV

�� �
͂ ��� �
͠z7+�(O4 W4 ̣
�
^ L
U �

G
ą:#Y4<51� =��)5O5O

Z�	 � �
M S�
N�@
̉��
Z�

[l7(1\
�	 ��
	 �^ �
	

͝
G ǵ7>/W/I>
HA ��
��
[͝ó7VY�V,4!V

TM S �
H
 7O�Bį; � -J�!

U�� ̉
̉�S
T ���
�
 �

͝ n:#* �K0,P ,/� =4 /.V �

�A Z �
� �

U �U
M̂ L

�_͠ v7# WI=� ̃
�� ̉
� ̉�� �
U � L �

ợ7?](2�'0
@ �L
� ��͠ k;10�<
	�T�
� � ZN

� �N
�^

[͝͠ę8#)/2K '4 X> J?.� J� J

�S ̃ ;1 >< �
�� �
�B ̃� ��
U

��z8*�JJO '�
	 ��
�� �

^�
N�

[a7�?�K�='�
Â � �
� S � ��
� � Z ̃
� ��

G
ļ9/YJ�� =2��<!��5 0

�� �͂
� � ��
��

_͠ g; H͝ o:#O(\ �
M͂	 �
�� �
��͂
�� �

G
EXIT STATUS

Returns 0 on success and 1 on failure. Or maybe it’s the other
way around? We can never keep track.

BUGS
Only works on non-corporeal entities. Do not attempt to

pronounce the list of no-parameter flags. SERIOUSLY.

SEE ALSO
daemon(3), hexdump(1), perl(1), ex(1), grep(1), printf(3),

malloc(3)

339

¥:çÌÁ\@®e	.Åp:+m
!Ç5"«+¼°++@Ç+îÜS+̄:%CU
Ó¢HõÌ+:a+&f	 y&ËÛ++L+l	 !³={>Õ×Ö¬+Í3tÞ¹Ñdnp	jÎQ+|1+öò9ü/+Ó[ÓB5a+Åçrîå*V×Ü3°ê0$ÇÉÝp.j1çYsÅxT
5	<)+S²9+S²Uõ+e¬ÒýÚ{\+A+2E8P38ãîR08:9+Ø+Cÿ+æxæ{+ñä	++ª_`ÈFøeÿ++kÌC\SFÑ}:^=µ++.ZíqæçÒgo/ád&Ja+�æ}z+&ï%G
|_8+v	?`=z)	«ð%%Þ+̂ÜÅëxÃ
V+'`+�>xeôÛÇa59ñ£@ÀÀ*=ºÙ»+ày4Àêìjjn=î¨Ø+SKÄv=+T¹É@çÇ+÷@>$ÞöÏÉÀ)ç+B+ÿ+|Ëú=5»{®+êÑ7D#&9++M`Â+x+®h§]I	0öo+á@´â+:¿\=ì8t+¹%Ú+Ö/!+«|àSD°
¬Üazã/K+++w¼RE+"0ì_U¤Å6¢ùÁ²£ÍéZX9Jº»+ú?"ûZÑÏ+Í}Eå+8@T¬¡Ë:O+[$+_Á+9Á+©-r+p+ùÓ"+ëu+±90�Á+ p+ºnr+g7	£Ê8àó{¾Án@»N4+Ñú+¢+=w+v$ººá1SÆµe`ø+a+z±¥´Á/
ìdøj©#ÊbxûxÖS¥éXÊ+3%0ôÓ=Å)KçÏÈSÆøÌ¦û)#AÔ6zsìÚ+ýo<W+/yh¼¨+ Ó+®S´+y~6+©++	 X+"Çéö×4+?Öè£t+S+i+*âNÂ+u-ú�Ùè¸|eòèN9öL+¼0ìí+̈Å<j_å8|++l'¢$3ø¹¤¦Úeé&
>+>MÔÿ:}Gª29âöæ{+Za¬A24Ã2£µÅÓTwd+XSß+¢Àì!Ú-´&
ÛaØ¬2XðâT½ÚNZà{ûÿÚ:Ä©ü<1TÿÂ+î~+++âcÈ6sü¾ Ôy HX++!¤2ø+Ô>1à=5«S¼ÿ~ü®#ö+++P*+8S>½ås`Ää{ZÆºªy3ã+°8ÞÖ+îÏëw
[©Ó:r¦½gðö+@æ*äÿ.Pè¾+KÞªó>O¢³i#-+Þ¥+r+e6a
Ú++"ÒÙü+ùDÐçEÄ+µ2é+fÃ`)+:=4R¼êSV+{L©©cÌg+Ï-0+Ì¥îSzÜ9¢3ýÕX@!Ó9+A+¼Á~+'Ssö+}L?àÚß+0þ¸x=xê<²++ºÌ+5<Q+Y©HÎr¥ÖaK·Î ðêLD+Èç}«	è§ºÓ£+æ¨|++
Ï%+OØ~ðó|X+-1z:Ñ4+aGÙ	$¢ÏÕa+ÎxS:++++	Ø_¼+ì+×©!§ÎóÐ+
+l+̈¢ÿé+ê]âB=ÈÆ"ùÏ¨·,W¢>¥ûÖ+nÁpÞæ/4+>h±+Æ
yiÑÑ¥I9+.þð¼ZÔÐº¯++£Ã35,S'+(]x+MÔ\Ä[++8È9yZÑpÖ=cÿylÐI/ñJ+w¬µªò+tS+¬6ÿ¸Î]Ëâ"_=Ë*Èy)?°æùÿ+Øeq/G2
p+
ÜJêÞácÈî)ù-@ø¹kaôßý-p£}§ugµW¥Æ"Êk:	 3À
)"yÂ+̈+ìÊj~+áÀ+Ã!+ÛFC¹i
�"7�+û|hB4
º¸g3¹Ï|ù_:=Ö97/3Ýp>+S[+?)È+ZD2ïõ+/1++:Å?"B¯#Rì=V+Ñ+&¼}&±	ò+J³dÐÃ:]«á+Ç+Ì7·jëvµÃ^BÁ`¶¬ð=#£eïÿMÚõ$ñ+Æ¼!Ì+V!Ô+ëNOf(ò	})+l+t,¡=HØñ&
ïêÆ!;"ÈÊÝ+ª}OGÉ+(ÅQ+́ÎÒªuóEþºÿ3+8+:g:¹+ÁÉ	Õ8÷2¾#6 ø6{+=ÎC{gfbf3ÓD+̈¢&+-ë++Ï^az\uG=£´	ÒfkÎÿ+&C}le:^++0}«³+÷C+�^++ù=qkâSKþtçn+Ó
´Æ:ø+0+d+N¬b·0+³µ¦+¬æ¸ºø+X8À}
+êfMßptM3ÜêæÿÏSð++øN4Ïï
J¦	f+]ÑØa´k9ç+0++XÉ¬XòQÆ+Ì6+æúÒÿ=õRJsJ8(¢,±+PCÃ¸È¿:æµI×W]ÏÇÜÌªðj¤¾:i.@+ªP"ÂÚ}ofõå¨
µ·+ÙT§Ís9á*î5=i»*+m+Ü+×4+Uuö·¨|ÁS}a+¼mÿÕ:V++@Õ&0öÂ0E	 È$}+	 SN+9Ñóý		¬=ÏÞ+àJ°	ÇJ+µUov++Ã'ñ|<µ
H,,}r:+$#f+ãBmÞ6+�}Y+	UóÆ1Z@:/!J¨AX+̈&ÏÝÙaZ+iÿdïò?+R+ÁyÁîÍ'üÞCúw�	 >jàÝÿ:n+p<+	Òé]¨K+¦À4@0yü�ðYÅEX�¾:a>	-çj&Î¦+W:h+¥+µ>XêµJOÌ¢b½xÛn"KY
4G+7§
õ|³+Èpx¾¯¤#Pô§S§Ú¡)ñb'2ºðë-µ«¿ß_¤y
+±ÐÌÍ&+{Îú:a�ÿ*
h*RÜ)+	 þ´tÿ+¥FZ¯RaÏª+¬¾
ËÛ+öM++¦e++ùomoÖ}¤ô¹õ0+!%g
vïß4K!ò£+YkMÕýÞú+mYþ+2[<ÜUM
µØ¯9f+úÍõÿ·Ï#+9p¯[øyÇìäõ+Ú+ñpÂî·	SyÐ=RyÌä"j+>AÐ)1rB°Îck²0N@ni<Ë+++Q�EN+̧ó¦Ð0SþCÏ+3³n!õ+â3
+Ü·\+́êªé¨ô¬áÊF¸)#
ÍR9=SÞþ+ø²C.å8¬ðÆ)m+|°K�¸Èï^I´ÀÙSïSÜREed+»g+·+Â×2®}++îSJÅú°¡Ø_v9+ú4B3¾ÍxÀ_.+¤mó+Q+:Hö¹+2Â·ß9ýñzAllI-T8Oæ'Q#<j	m:§+¼++öÉ@9$gþ
Àµ:$ás9SøÕ:þwn3X�:!üºÓÌªV+a+·1f.�³}è>¢n+	ªd+Û¿+²XE3sÅ+Þ	ùn&Ú¹äâ»Ì+Q+C?uÎ:¬++XSZÄõ.++gb`ÝVù¸+9<ÿêw½ÿ-9>f7¨sÆ+eèöjðE±:V++LºqZÔ,++	
y+*++{YBÎÝhQy¤+Pðz!¦`(H%+Çm:Q+Þ
ößãõk+j_SvQ,´¬{Sù§+ò+V4	Ø+ÔÖax++w¼~¬Z&ÃXóâ�+¬ÿ+¢dòÛ{o.ÐçëVÌ4
èq®S3xUü6+á¦àky£+̂È/+_·ä¹BÉ8UÓÝ?.Ü0ÌÂxÆè¨áSùVvbÊôÓVü©{Ó±«{çÂöÁÃÈ sp:'!N¦Ü7¶ä.++e~�b++©Ö-a~8:eæMþZÏqøn:h4= +¬:ÿy+ÇQ2Sìá9\<ÓöæÅ++	
ß+L+%+å©[·á0óü£r¤+9r+U++k a©1Û©·¡ªº¡)lb$#!+?>%Ì	®©ÊAÞ*\âå¢+hGÎ+4Ð	2v+¦¸(ÓmxjN+++¤++Ô!ð»+C66Ö#9í+ÞC&+?,ó�S+¶:5à}yW	ðrç88íµºü¦á'ÆÞ+4MA4°$¢+R+7#£
{*+þ×<rÔ<£/E+£îÙÆ++-0qbñ9sõ`¿³S¸cp±+û÷4Rß®-S%++Ô:B+â¯}d++¢	 9T*?"$ìaþKQ+t=+Kä#S#®ØÙ+Ò¶ß+òÆÑ(Ô;u¢+	++i`.<Ñ¦+í%+=á>n	 +

×ôÏ+0+ã>f=l`+ ëxdèVüÄ³37q&:ér+A+ÿòG+9®ÛÛpÌS+ùðÁô¦=2!^j++�¯¡:ÖÌÑT+'+óB+u+½þ+®×xr>»ý+³Ë´ÊM';ðo©rDëÓ±?:Ý	!¹ß'+yû³T+hy;3Ç,+8)+ã0?É$¡?
yÃû#+YZé+s¤#+¡´+p+̧ÄOÜãc|+ôR}0¯05 e>SÖ®Þ"Ý|®¤0:6<çcà¶<#AÜÆß3îîxü&ÿk}¼Û{7Áv²©7Ò:+hSý}¬°ì3!Ù+)É(ÒR>×.·ï5ÃÁ@ï¶»W"+p$5vuËW+±9µ¬Ía¹?
ÆÈ+¬bz+%+sÿÿ+"Òö§¢~qÿ4-µ++8Â+eöó+sDüpò"paawM+,>µT+¤µ.TÜ¯&Èq#¶é¹®2+++)<gý¶îïÿ	S×ôa@%?×SÆ/Ø_ô¥ iÍLÆ+u+Ìhyä+̧Xhy+Þ<ÌÅ¶+¡=¡+k+K3+
¹½g#+íÄ+ÉÁ+y.Ðç®v:ª,mØ=´¿+Ú§Ñøogüde©ühC´^+¹ö+yµ+¡¿
Ij+&+ÄþÛ+OC¨+fåZ-F+¢=J>CëXÓÇT+G+T×42A²!+Ì ¨Y2x+3?+ÿ¯>S÷+G²j+êOu+¦}ô+¾p2Ø+Rf5¡¢ýaÈ!nY+Ð<9Ü	Éÿ~Dæ8+&~¸/×Pºÿ++x6A;±½>M£ïíF*;T6M§++I²+4®¸ +åë-
úüÿì®++oK+l+~y+ÜÔ:î*£Ið>="+"Âå#Þ+?83¿Qn1ß¬9Zí#"»ä«Ì<i+öÙ}ì¸++̀W[Úa#lTÝ+6=>+3à«>8¢Àô+ØÎîþ=ÿµaW:=0:Åòç(S+8{þô	 ²ÜãpèÝê:Kà+ïs+§æNE»:+¢=y++¦]g+++�ö vFâ	
IBã+&Ð_½	++++ÚÖFT+¬	e
+
ß`	 ý�ÿ~ÃÑomeÆë+Ø<haaH>§h¤�9$À+>+¢+#ë¿>8+Í+ì<¼ëæç¹9úÙÞ}·nlJ+¤¦x§#þ+Ù+ZN#¶ÂG!°êÌ"SZ+<fu7aé++́+q&ÅaZE+ø? ÿz=0o+Y+hMFH++¼Êðÿ&S+�+º¿4Ä}
ÖIj+eöô3÷Ù8guÂ&K'gT+°0++k+vi+"x+Ñú9vx9¨xÅYÔköÜÑoÀp'¤\×æ²ìH¬ÍÃ±+2ëÒ�¬I¹tºª³++++äRV£à¤ÿÆ³°\c	¨A+#=¹ô» Ãg+Èj4È a+l	
½j9H(ÐòC"TÅ@\+&=°WçK=rµºê+X³û¡Þ9Ä+Î~UòñåQ=åày,Ú9+Ë·Û+Ä¸Ë;a"ãcÜnd=ÎÆ+9ÿ+(²¿+++-
H¿¥ÂÊ¶ëÉd¢û:r9AX}57Í:+'.ÿSC+ö++÷¬'$A®ô+ZszøÁ¢93<eËa+vÝ0a+'»{Å6þ+«6+Ú-å
±¨.+¬ËÛ&³«õ¢/uÒñµ+ÊS-
+Wú$jãåÎå+Ç©[3«sJS+yMü1&³Ý+~z×vÞW.[*·'+ +9å8*©Ê¸«W½;OJAuW);/TºF9À=+/6ÿL¢YÅ+~+̈ÿÛÊk:5â3ãn+-åÁºm+J0"V²+®Ä0Ò+½#ì+²§+ò<
Yæç²y+_¬TÐ¾*8bB
î+d<+«/	E&)+9/A¡+×
Q÷ßÄi++ÊLâÊäS6+Ó4w©+TqÑ>J!Uÿ¡5	0]<ñ3Å;ÛÓ*[ï4+Jym$+ø|0<<èøðPV
Ìó+þ++_×õäÞÿ°;®0ÔV+<+£óuêk¶+5³>
ºÃúmcK<²üäUÈ#êT(0¥.1)ÝÆX+/÷áEK¨áÕï8+§¿z!+@¤½!QA?Y�|Üy~VÇ¨PtZé+®
ö)Û¶%2f+Ý"+̀¾& +þ+KÆ"AI+:5ZiÈiØ$Ë~ß£0òÕícQõ;³ð7ÀMéÐ(ð@¯!Ü	."B+ö}»uV+¹Ø"3ûP++0]u++'0ßzÿ9++e®+++@?1R+n:8ÅóÉFÝ	 ¾+é9¨+Ïúú¯�øhG+7o`+ÍY	
æ³!+%Êkv8l+ÿÞ¼·+½c&=+Ü+F §¥ï	A++3Ú~å9kB¾¸ã	 ö#Åw@kµf	ð~æn&Z<¿'Q©v+Ñ¼y¸¿Èv+R%+3+TÆ+
ÊÅï+]ô^è+V:+ëO×æþáÊ5ÃvNÐ³À²WaË®+À8áCk+PÊeÞÆ+õpÊD§Ù++Tÿ0õac9o<+½8j+õ×aÍ°+á8+}%6Ã1o6Ãð0êÁ"+y]±±);ø=¶	e¢Á}ÇU+ûÉ¼?§{+Z+AV+õfjAV
´yæ+>�ÌyGg¸Á$Õ+&»¥5+uñXD++¬9ÑBAìR¥oùS&d9ÝL+Y[%Ó¯¶÷úêßVê!£¼°Øg99ÉÞ+y ++¿M§*�Gðw+f¬àRiî7+çÈ'ÿÐÖ¥ÚéE÷bîf:ª³ýÈ87ã<,õòÐ+f¿©>+T²L½;Ó	:2®è/Øuò+.
>ÊÅ±+[5YÓ6?¼	 Æg+Øcí+CLHåÿ1"SD]Çqd`¯+3+ô+Lg·4Ïo+̀SQß+ûÖÄ!':£ä+÷û!+©~+®5+>!r¿-}+íìVv+3«I¢+óë"f÷=y\;Kz¹¼Q3¼a$]cÛ®ôCÓ�++×$§·ù+yTþa$+0ä+ËS+~Î_=b/
0ÈÐÁ³m)ÞCÜ
+% F+¦~
Ø+	ÆÐ	Rù:n°Ê3+! >^±++Ì¦*Wq>u}4Õo++©ÈÑ+O[ãý§X9Ø++sA'×+!Ú4°~ËY+R+»+ÊÊ+8®ýÍ¸hMPÏ+º+÷°\ÆöÇH>«sï©k++
Ëò�N=4+â+äs¸øöÈés+>>xÑ¡ÁCI+Ým6SÁ#>©ë,ü¿6+++G?ô°+!#11©gå×+<Pl°;++-û9ÙÁú:±ôs+³p¬[eÀóÞ2t�Bç=9çPä[äp}++�+frú+	C H£
0ak+ãÆâ+z¨Ó8++éepðEÛ«z}aiRqÌ9ÚG`+ZØpémÿ+ùv;ñ-(um++å	SÜòk4:ØõÌ|VÞuV9Ô²t}§»$Çwó:ÚFÙ+º+9gJ¶Ü+b+àº[ÎZ49ÜÌ0+
û¹U®<<{e<pY¢Ë,Ï9s÷0òP+Õ@Îj«]â+FÊ(Ôý+.&Á++©�f=1
}ÿ3÷b¥+@]�èãÀz+f0¾¶að+kÑçÞ/Ðó!º+
ìGy+Ü!qh&-ÁÇ^¹®vhBë(+V==+tmðéÉîÎ<»É4=+2AþaÔø¬aããÞ¬P+Éß+;öæ+/ùB9+!Aze¬)¦{¬+S)T;0ópqæs&2EÍýS+4#ÑHµ·Ù+\+Þù+¢Wa ÞyQ|PòÒMT8+Í¾++ß+Iy%´%++	òx!
Ó&Vi++½«Ø>éÍ+ÞÝÅ+GäáF>3Ë+kÜaÿ+>>È}ª½âÎÌ+++X+SÔ	Ö<ö%ìÂ-ü+ïË¶b½=Æ¬¥H.ê=Ö++?<+�
(8×A·Àû-+î<ö8RJ¬)ÂPá¾L1h9~áh ¶f°Ö@ìj9q+ô¢{+&wW§|+4ÿú+3Ç�0a³}P+t0A5æm³ù+É:Çì(+4»º(s²Â]�*+QQÞNÙu·±3û+½+9Cå+©
ð++ºXí¨°Ô©¬å*ä>KÌá-Âÿ0å++T×<èLP4â8É>*|Ò,w++ÖÂt�+u\H9+kjSÿSà+++¬ÐÙDýÔZ�*a+vNk:lóyéï+[(mÅrâ=ë�£Keñy&c.9+%=�=Æ\ñ°è¸ür é+yM+̂?¹q¼Î¶ÿ{Ú+#î4ü¬4
½¬ºMaë]:__+×+_)µyãÆ~µÔ÷9+;+²V½+Æ+ YÛ@+Ú++£+(ãÆ<+Èc+Ý<++ÿ¿þ+{+Þ+shød¬mÄoq+1/)1+)7PtqÞV[+Æ¤¤b<fÄ¯+þ+Ú3yJ]++++ãò^e:3HM++&ä+�é=Òs0ZË#ã¨	+_%(2+ma+ê+Üû$¼2q+_É0+
&+ëqÜãÛ,uÝÆ#Î+Ä?eæOá+̀Ë ·z++ì+MÛ¸Ãø++o&w¼½¢+Kfßq+¹á''4¡0+q}+ÍG£[+:½+zùªÏ³EÞù+>³¤é8ÆúØ:>B+2�MüÿÞ4,º	Â94¦À&!
ÿ¼_ÃØ#Á]P§9+Ü= +<0«7lmJ++«²<hµoF+LÃ£ÀÆP$â¦"++éJ+2êq¿é¿9c{a.~RS¦Ë+OÔ++z+Þ#+77(y&tDÏ~+®2a}êý +Ö+È²+áa+Ýz-6Ä)G²+m+}+ê0sÙKK.³	Y÷ãù©«þ0+
öÉÃ`d·7þpaV8ípà+ÎßA¡0$¬8ny:ÿKéYíí�ÆI	#l+áT£R8+i¼|¦;Sç¶=ûI¸.]Á½+aïè?ê1q+Þk++áÆa4�4¤0£4B1w^uÓaV¼Zít!++3uBp+õ g¼ÿ°Â++
_Ò
XIî×k+ÚH+¢=M+úÞQcM~nÖ7H+7¹3+4MY¸"¬.!h(3�+Faµ·FoI¯ÿ#9ÛDð9èîÈûÍfÇ¥+°\Z¾+Ú>³Ì+÷´V"¨9uL¹¨"¹Yùwv+,f¬ÁÛS>ñ²	 YÕáß2+f+ß#^8)´Æ)°ó*+É[</\1!+¬
$+ºîPuQ:±©ðÐY;~Í+ë+x®ú|vJdá+°++øxi³ÇMc+�ì1{+<K)´0TSG	 è4½ÑÑ×m¥û+:ÿ*fûû¤¿&öbJ(¶.ÈLð++

51

340

�&/rÕ7}ô¼?%Îô©P#}kú@a:<Æëk`À¤S¸JLá�÷+qFÎ`½>û*�"++̀dny¤äw""÷uVîìÀö®¬[½a2ëNJv+¢Ø+fsä°Ë!Wìdú°&Ù¹ü/"øÐ+
´Pì¯d++eìÁº¶yöE`f�ôùI+-1këêOxò+9V++ÎÄ¸J¨è¢�ø!r[v¼9_+[.�Í7+üÚGk!ñsBÞ:µÆ+3÷Ê$9²Ì¸¹¡R8\ý++nïÔá¤\4»Ì»ÿ0Ã³ÀàÈf&Ît}J»Ì+<´ç&+:Ia{`+S$S4µúJ+3
ïÜ+ÞäÆÌÎâk,ò
T5uÆzkDroî=+XÜM+Àò-+̈7!ÞÍuô+ÜÈé	P{ûXu\S¦ô&½#ëM+/aaTE¤Øînõê:*üg+6Þ+1+ a1g½m<^-	
úÙ@ÓñØK(+<Í¯1%BxòäP+Ë½ãä+}ízÿ++Ñ+g~úS+öº+:ÅÍ±ïkÿ+Û'+¹Ï+ð�°#+RUb+avÞ£4+·Z&l+9zX=Í½ø�b\vÓy¨±"4FÜ¹ÂÄ+9+Û}2<(ÕQ+8 <H°C¢9ýÔÔò¦=3+́+v¥9M`Í/
µÝa+áØ0)>yá:k+{4nø¯>+(cæ¼á9GñÍ=½\{�f+ª"ý é®?#9+SêøkHB]ÌTéû>þ1+"SÒÒs¥Ô	¨%à¶½k0©È±q¯ÖÿCaÔãRwIÔ:+á}È+¹õ]rìÇ+}1a¿+d°Å×ë+ü3ÿ48¼++»Ã|
³ê¡»+$+WR.3+	Ë©´¦äËH³y	ãS9>GªDd8Å{i9ö#ó}ä=+æ+$¸Y#++F+++f®[+'J1Äb+++>ÞÛ+?S+GÛ+�iÂe.	'^%xË;=~î�++n++|é+Íxtâj5
ÝD,SV<¾¶EmÑ<æúÞ¯¨<+ËRÔ_mú_+ý4"þ+:+̧øÜ¦³+ü!+ß?E°µwÙb>:òÁ=»¡Á+?++ya}ß++OJ_PS«iv#Ôô *ÀÏ¹´uQµ+ÃÊJü<+OÄw:Èq+¥G©é�Ã9dÏ:q>¤98ßè-äy>+)àC§ð]9÷°v»ª&
ÅlY!#»AUËézíÔ�ÓYyým>7ùk+(Ãy|£	 î¸=Vÿó++8+L+3)àk:j+!Pro¸8+ª^éÿ+=¬+,)¨+µLK++ä+2ï¼+)"ø.°e+è÷Ï}yEúF+®«(cêú++&&Oä*£++DÅFÔqÆ+{+ëT¶ùµ:ÿ9	
Ûâ×1ÈF+Å¿¬ë+çÈUÁ¿3rëA+@Þln¬©¬ËáS>Ýì+W++Î+¦+U+"õ+úi:£È+=ÖÑÁ 4¿Oÿ�Vt¿qt/ÿ¯9u+ê4©+-Úõ=¹ìÙLò+b-¡éC5]£\QãÞ9û«
3O	òÁ[ú+[%+×ÉûLÆ°AszgXÏO0S>4Úf½mÊ+!ÙÞ_Ka
zQ>j+J-¦+¡Lô>#j+e8\Íò÷}+Ú+|¯m+:U2nòÌt®Ò
æIË¥Pïx"»Þk++ë°,�+̂rË¡Ö+:éS<`%ËØµÄa¬G++@ðh³^ñõà	 C9>æu+2N+Ûp+øôÞ¿¥@+ØQÿ	¬b>ÀCÖ1DwÓ ¬U²ÎÂ7F¥ó`«D%Î»+ôæÖ+++ð4+TtR+l·>9Ã¡+n$G´+�É9]+ñ$y{µþ3
©èu¹À+Î(ºC}Vtð5
Qrm+ÚËTÖô¡C?+½d+ÌÜ¹ºÁa©«+b�+xOð+.µêÇÛB+!¸×y6Ót=Ù"´½++î¨ª+6î$×EÓg»+++çVÂòÎ¦4+³¦Ý#°#+<Çý§,è=/°³TW·s+qqÆ+(³+̧4®^+ßÝì¯ª9§Ú[n+++v<A§+C&ï+-¤É±æ$WuÞr6
^ùÒ+-û	 !ÿÃüâ63Å"+jy¥9Ä5"E++y+1C7UaØ+¤I×2~ùÔþæÙ+s+¾á,ß	4ÈÌµ%èSªØè+#9+;QÕ¥	 ¤ÖÃ+4+	 ++máYt©î=»ë=+nK6\ÈhOz4/×"t-
5§+-4ë±++Û+ºÜ;á#\íA3Lsaó{iêAû}¬ÐRpß+++¿b¹++³`È·ýÚ«Ñ1ã´ß
t9ë±"\Yåa}"We`+x8SK¯9PÊl+Áä×hm>+ËÏ>´bNSÛÍjÑí/´Ôl3·++-+5 ¢X¡âùÚãú+ÕaBÓm©õ+ü>+ÁÕZ+n:ruJqîqÈ+9>	 §4¹+üz©+Þ	+¬	ÆÕ$äñèØ	
@Q4=òPÉÄhp+Ú@ôsaÜa\+<F8|â
:+3xj×¢r`(è+Øøy¹`d+Èñ»<<ö/+aÖÂÊae1&<¦+/³oï+¾SS×	û+/Év©&«ßvc&äø9åJ®S+0	+å+F+6Y+Áø	¹ÝÿóeL±0L+;f+Ãáõ+¾}Ü#++\²GævWè`)ç%+Ru!Cß½å¬VõWÀ+þY0'
´	J8
%¨+a¤µX++	+_¿*QÌtHþ½+w:ß¬ê¬ÞV»++È9ß¼#++a£+Ò(JG+YS+n�Ö7~øCò+!"ë>P+JÐ+_DG<9ksºØ~{Ü4â1±+ê¡¢W/1Ô+Õ=Þ¾9æ~ñ+~wåâòåõ+	 r«óÈÐaJòt?æ7±3Í4gEïJk¦¿]sõ+!éc	
U3ò}¬+Û»Ü!l:?þ5ì+ÂÆ8P$5+++>Êñ®¶ºñ+íêÂÞ(ü®bëé"+ð�$¸E
&++ña3í+̈ê+[>yF:¡Ý+ÝOÔBRÙ+7vJx,fÅ;ê+X++Ï²°ISTÍ=bÄò+6ôÇi; +A§Yôô+++ìõú¶í+©©ÿa<Ès&ó#+sòØøW+¼G:+4äzBó	 [£[¬v¥f¬áyw%w×S²+&KíX++F%@þÝN÷Ð;[Ú	`	
h2¤Ö+|@+~ù¾·+P2ïYñüûTÐå÷9ç:+N~ka0Óë\ÿ¾?
#+ÐeàÝ¥ß¿ilÁÄ+<+Îäé¼V²ÞÐÅiæè++Y3Þ§=+À+I+Y&ÎO1¸0Iâ¨ßbýIn+"ãÃS$"ía++Ù_nGé×+IÜü½ü+Wr+9U'+ó+̧+#Ù+Vº©ÜQïäÒuÄfñ;R+ó7uÙ½Y$E+0W'Ü
p!XUÚ5+1p47³ÒUú«ÿz<	 +¡+h·eøX<G¼+óÿÜì+n*Iûgv¤ÂI}»-LúÿØ<åõ�B¶Ê+:+{th«)}÷àúÇÔÙb´ðQ¬+!×%j§fT?	
I÷Æy�>)ç`X+urÐÌ|j·SÐý:û^û²+:}¦°4]õÝI¨Áv=VaÏÜ+Þ]_MyXA_O+	yÑPÜnyd+ïÈE»+½Åa+
´A¤ßçjSZÑÔX~+Qéy+0óú+ÿWÃSÝ¹7ÎØEQbÖty+¿Wº[èëÉC+jü8Ù]üO%+öuZ¾¦s\jT¥x~-|¥$ú+aãêåÂÏ+ø+¤[�+éÎîPÙÖ	@3ú,+i+f&ñhË¿S³:Ý¾y04ÑÜí#Èï²ÄP¢+°4+
$Þ*÷+z¬¯ÄÁ¿Sßr´«#\2+Þ·y}ÃS++IÙ¬ÍBb3ÌW#¹Ú£Rp¬a>Z¼n"tÃ®+s¹Ô0ê×+°|+Ñµ+Ô®+%Êß5ê+þ+FM8É´Cª«5«']Æ£1+®ÐHpõD	:Tf,@ñA!
¬+tOP8F"P(Y^+¡Õþ}+3+Ë+0+>+Ük:×9ë°ã¿+Àxl+Y=+sªi2U±®mÎ+]94yV7á+ó3+¼¥+ú+ÂV+[V8>?>%+"+Ù¹"9ë+B§+²Ë¾2óaÏ$�ro¶+¤É\QÀÂþ¤++Òÿ"§±Ö+øjXPb2G+ÎÄ}0+
a+¾¾Ö®êmà+WgD³+5è¾Ûß(h©+Í:Ä¬äëb«~Ûð¸Ð"U;ÝjºMÄNIA¶k
Í+Òçö$4Ï~ûZ½1¦&ß++Uû#,`#�:ÆaÚnÉ4'+è�aÿ/ÆÌÕ0Æ+ù+zëíï÷¨aáR#+>°+B:Wµ"â8ú\Çf/ÞaÕ}cÖàWr(+:çDùÉÇ"a>j+#+8ÍÎ#Þ\+++÷ûöªBiGÕoª+́+DÛ+Ôj>>+*#G×¤1+Ä	
x$æáAí�_øV":Il,¬çÞ++ÐËÃEÄ×.}a9³x:+B,Q+g++t+ª	uÀ©ùCyY³+<Í�+ô*+Ð°K1+?	 +&ò>Àõ6À+××gPùæäH¸S	Þâ+g3³h+n&ùìI=8jbµ3ÒÚÌ2+±ÿ+ÆxZ	ÝG19¼öf¿oçò^
+¥Ma�(Óá9#+*)iÀ+o(¼gûÒÚÀ"¤çéÔ&+¿O<(^#u+̀ÿü8Þl+9ÆO+(ó
í±\»yU$Iy:+þ2ÊnÙ+:-:Z×+öôjÎp+]"^>?Þ+́	 a%¿Å×+4++ç¤ý+=	:+R+MZe+²EÅle9&Ñ8x°§k+oÔõ`¯Ææ+:k
%Vp+æâ$sz9ÿ¨uðjÿ$++¬²c=q+FÐ+h*&UzÝSQÆ+õ:Þ+\©U~eÿaO8++aéd++u£¶++ß¢OéH[+>
=+ÈÏë½+%++¦oß%µìÓK_â§ü+B.4wãý	Ìd9â#<¨ø+b÷/^ +&LCÿ§;9½+3wÀ½'Å«}ß!Æ+#�ù¾(+ßà!3â6Ñ
}½+ã	 ¾Q6Ç9êñ!Âv<XCßz-¡ÀFß+ÌF"¸#ñÏm++óe4£õÐ'+Ï+:Á%+Árr'+fåS©-kªb2:Ó!9/SÄa)	 'î§a+>+åØû¬0àß¢§],ì+0û³Sb
Ä`Ø½`at²ÌÅQ!¬nËyøj)¢<òNÉç\S¹@+?È¿+Ö	 @+lÎ�ËÎ¥+%y+Vµ>&A¨&HÎÂ¨÷ÜáE+ð0aê`Õ+í®++è(¯_á·áo%Àkq¬+{1ºYa³Ëÿ+Þ+ÏH¢	!+ñº»Q½Ü"µü\?¬µ¬PÆ:	
b:¨¥r:+¹:°WÇBmÖÃúyõI+ÿù
+Þ	ôî+ZÐIUçÆie+Æp+É�K§ÈUWM8xçõ/zS6Â¬àÀ¦Jî+¬ê+ªJ+¹1ÙÅÑ+Á�MÖÂ£osÃqÑOf°K£Òp+2²+I7j)+93¥0}.5$¦+Û+'ÎÆ+çïÞ+¾+[t0cW+â+_JÆâPâj,ÓïÊq'+qR++Ï°¾9Á<+++I¼AIÏ>+4
Gì¬V+½c+é+ÌäÕ>q8|¬�h*+ù¯Æ)3.?YÝ`+öuÄ}¬+eú`ïç=+)aøºíUðÚ5w«²+-Ù	÷.QÎ&#Lbß\
:*+ñk58ð`+LWDóÑ^ð(b+²`IN¿+¤!aÅ+<ØÇMßÞ|N{BÄ4>+"+:Ëî+	+9+Ü�Èÿq+ï+]í{3}ñÚ²qñúU+±x)ê4+Â<Øm;q<ðkLÍíS+¡æaûv·0<++ÿþ0 ++¬;7+Aë+úf+ðv}Ò/ÀÙfÍ\!Çtr4}+b«5^	+
¶H«gõ+3Ù-µ{t<ä++ëKsB+ñ&däË},+Ù	¢J+ù+<ü+L4[²öÝÐþ±ýóh+Ã/ÙVÆ:xNûÞN:+V+Â#+å¿&!M+pò1Sµ9ÑÐêõj:Æ¨Ì²uÎ¸f¥ù+ö¡«B
ÇpÆ¸+íO+2ÍGeEþ[ô(ºpw+%HÈÉ+ýs"æ?Öï7wi¦:E'°Ñ+ÙÿÈ"+ámÇ¶ÍþM¶É,Ã"£+N3+¬ð·G+Þ++ï×+óÞ<+¢áµäûO,6ÒcªCY·+×ï>e9Qf+>St>¸+È1¬�SSUâdû>ÆA3í-
Pç¨xZ1ª9Ø÷iã¼yÈÐ¯Ö+ëþa_Ð+":fínì8é>¢?B+ø4¨+Æ>+vÅ?¿âaÞs1R+Ð:>î++äV+9äÌ:8Èm++Û£3dþ=¬µ+'+e3Qõù"Hìøì9xû>++++g+!ö,5k-HÄ]t£Õ<óÁI++Ñ.ðQJ+ÃÓxê3=+K¹>1++:O3+
Òõ+8ððÆHq9>ï�:+±Ò++7dÊÈ8¬ò7Y&Dô;�ÓJ¦
ª9º:ý+].¸a+Þ+7ûðÍÇýt+ÑâÕB¡!åa8AI+þc>·Ë]Æpîb0N9k\C¤mu7j«)+ä
×¾+©+BÂ¹ºã]+ÆL+{üàßÈræúc© º7;9h*+s+:Ø+++×+Ö:+SlU÷+VÿS9+±}.Y,Ý7Q8¹a+É:+BH9ÅK<N++=¬ÃÖ�++©3ÛSoda++yëËóÄ6C¾:ÔÓ»S/è½¸«²«Phç:¹>+g£+O+Sã¦7l+¬¹|yçòÁ9âËÉ®Iâ+
íñ+löaB½±ÃÖ	&+Kµ	}Z´Ð+ûïÎ_]vÏÁ[¬¼"$¯þ®¢+íâdÙ8°iLV
+ÝpÊQkº¡ïP[+~+y#++0cj"Ôv@+9!køÅr+u,ê+#0+=+z+º£å¾¤¿\<ma·°Ø:årMÇÎ¸¸u+=ma++,W´+¹ÇV)+aq¾T¤Z~vñÓUR�ÜÒ=o!lÞ&9Ûÿw+Y)+Í
´LÒÂ$Hðg×+OQW¿;t°&,ü+¤ê:õjÒÊ~+Y+}:eÍ4Ó8+U?%Ä+x+i:::p"&ü*rÕ$ð8ÃZcËqy9Ò1¥L#Ms+̧3ÕÞ+CJ/S'p"²ã©A½¥+¥988õs*+§+GZa'AæU	Æ+u¹é>ìäÀÿóÁa&þ
´~	Ë;ÞVü§«Ã¬+++ôa5Ê:óì»+̈Þ+}#U²§a÷È]BÌ«Ú·+¬A~ðÞÑ+.+íNwÍ+©í�i+OmÏ¤ãÿymø±+âÖE{oº·ª>¾ÊðîUÁY¬Ñ9lE"Ô>Yßl4+Mag+ÿ++§o�ùä½ÁbW[Ù#ÉÈ/'µ+++
H¶<'+vå+Zw^HÓ+¹7Ä++o:a37#.n#ÀÝ)©+>,cÁ©ÝF0Î^+w6"ì++Û©UÀ+KSn¬=+½<r]ôÛk~èÆ>	"A$+Mb�ÞòÞ·	}A+h++Óåä++:±ÀógâTô+Ø¬«ÿ¦++Ðá}#%S+}¾ý= 8+++̈#+9¾ú{aatR¯nÞ+X¯Æ+-
oÆéã/Öôf!$êpLC+:ô40ic±¿Lv·Bw'«vá+t¦R¹+Ë+¡+õ+++4Ì*ù#4çâÅ+?Sä[^¤++îÆa	 Â+²<S+̈·ÖDweÄÎ+44b~+¼+Ê++uyþ++f+é]@ä¯,|î&
ÿ+TÞ¥3
yOaõV£-ßÔ´i¥�++<$+9ù<&3{Á+¾=+W(þ		«Þ+ÀF	²*³{+kàfIÌ#+aÕ+(;^!Å_[ë+Û+	 Æ¬)+hõêX+º]óvyÉÐp#kÏ«îÀEõÅ#(Ûi+<£¹i+P>)OóGI	l	 ªÛX4;�£	
 ,\îVY{X8y+°7/¿¨7ÄJ}¶+ïÆÊÝÑ?=+ÏÍI ¾à]T?µ0Èå
ôQ+�+ÜDÆ}+¦ãk+8³+§+y$î+9=ÊA¶-3}MññÝúyoÍIz"P+=}VÉ»4S+ó÷"ÅÉäM³4Ðñ2¢`ªªýv
éì+A+þ0 +#8û&½ã+ío+Sah$:u+5LÑÉÃaÇÌÓ
Ôþ0!×¥=U¨ý,aÂ++HÞÚÍEy]ó±kmN+Æ>eô+ïÜÛ=[½1Ð+ÒTtdÝ+dì¸S	ÿ+-ô+Õv�87^IøWª+©¶¼+.	 ÷}¸fï\Oy7ý°×´As^Üoà]+>+B¸+>þ|aµ¯DÇØ/
�Ð°qº¡�_Iv==á:+E>½Pyì+dUR)»eðù!7+	3+Þ9@{¥=8+)4ç8_ãCí<+#xi$w±^A¦tã¶øµ×²Ë@i+ Æ�
´+ÿÂØlØ�À+Ò+.S!üÖÝQ¾íßp6T#£6ÒµËC¯ééÉ+<M:§½Àl,µåÉSS>T¶è`<+++Ò+gø¦¬}EyïÀÃ++98bú!].+ÇaÄ]ù{ùsÐ+1w#kHS+++»ÙàÓSÚÞÕ+1éØ+ßÅ}
Ûû8¯K19Ö{ø¤Ñé9r>g+ëÖ:++x:±hq=+y®¢¬+©äoÏblù6+k�*CbúH¬=WÊ®	aC+LH+SË1":È=§Ç±4td+9Õvëa®«ìq)/+KàÍ+îÞ¤	;¿¨ºý+77Ð+ìrgð=�|
½8Vn++<Ü²+ Õ=Æ+Úº¯hS>+Î«Ø+µÚèJ9È+̄SÝK#++¡B++IÅñÀÄy:Ö+̄^-ÆÂB¬+Ñ+fª+«¤7å²+BîU+18¼n\ÙÕ%Õr+º¸t«Q^á¸9+	9+dä+$K+Iþ?Ç+5<à<+XêÇSJ/½ª+ßIs#À93ä&a.Å3ÞïÆ·
¯ÄuðÑv.³¬#=Eõ)÷Ò¯8B"O´+ä=æºá¬ù+++}kº+s¨54++ÌS?qSy4ñî�³%1úÏ¼ÿÚê#>)ñÔùMG#¦a´
ÇcB+BT\Z#tÒ ^Ì(V¦:9é�++d²+üy8	93àVþ+:6!�a¥H>+8øîM	 ¸7DMßbÑ*ÔõÑ!¶XR¡3×ÔÆ!?;++×+£"%çgQ]à§®W+Æ!¶2ü/kk½>a»ªR©ÞD5ã|)+Ë7n =è
ÝQMxhÑêz®ð+G++̈' q|Ê	++c@+zúZc(ü	y]ëSN+H¡øùm+ò·+à4+¾Ú!q¤íÐ¥_B>öÇìUftMaóµD9)&ô¨g4Å>¸+gþ«ò~ç+DYÁRI++̂+ià&_²Ç+iV<++4ö8Ì9&H+õycb+P++R
,G++K÷<ÔwÃ&BÁ+SOT
®^ÄyÞmF@+û+:}a+½xùT¥n§+¤+̄±+Ðâ+#:<	 +4Sy	^Ø0Xnä$kK_8®Ñ++"&°r_'d0·9Yx++%è+mP"Æ1ùÅÔW±úåg®ð+̂	!++}+ÿªÚð+èØ
þÊ¹¸:¶}:÷êµ+T£¡;®þû^Aµ¢¿Nr:!ñ×¦1&ÓN+ 3Ð,6LÚ+cÔU+"Ïl¡WÔÍ+È/1àG§<iº`Òs=)Ø9<ý[Û:+:VB'º'+]+Nt
ÏÑ¨#J'6+�/Qe;¸ã×VÒHW¥6îeGiînßð4ìÊY%Æç&èç:Þ¦ËD6+N¿+À¤3¡++ªA^+õ4ÁÀ¯µ+Ü>Ó+̧#w_Úo¾yåãâJ(¨4Dã$K+ÂÂåJÏFûòØ#u=+gOÉ¹ÓðRgîç÷*+CÚ'»°îÈéÄHâ+Æ+GÞ¹
	 ÂuÏ¸A+õ}¯F7SX55+2¸Þ+äðô·t/>ô<L0rE©§ë8¨++Ô+ÄXKªÁ¤´³Èä++hÄ+Nz«ÿ}êV
iö¡+ag3HHÞtÅ++ÔM:ÿç¥	T+8#+5ltyÂäÜµ,ÞÑ6ö{¹Úsò&·ßúyÞ/K¶+{=ñã"ßâ+á*2õçSqgS+	yXU0ÍÓ%++4
e¨>4BÓ»*X¦Òg_+,+@rã:Û:+F(+Îâ+ÍÓp[9Ò+e³plya1úM�VgýÜlO'è+¿8m>:5+ÀÊa'¥*4=G+":O«ª9+[àÆÃ2+IÜ+ØÐ+_+ÅÆÆ+P+âÝ±¾¬T)m5ÙÓÛ+E+#ÇL¿øL"yà+̈ú+¶Í+lW+Ñ+âGæ08)+hÿT|
ûÒCöß&(+M»+FÃáå!+cò+|¾jý!`++ó+ØðËWUÂ+ú9@Á½¶õ6oý+̈túh++aP£{÷U"î+">}××D'QµÿwðÐÆV+¥e+H§ ÍìÞÃB+/NÙLxÆ°#=Eú+·
ä"Ðy´}"¨�&´Ú+Û`Eq.µ¿ÍðC¼ø(Ö+)èd+Sí¥+[|^\ ^SU%mû¾Xèå++[ï+KbÂ+8Ø+%+õO	 øÏ	Ô½4¥+XUY0y<<<K¨+0ÆÅX{+	Qþ¹ÆF]ÔaìÄqÝ:Ædañ=ZÁº++}o÷�rÕp*6.N<3:p+
�Ï#²+:ó3®þì_Ö;]g+ÍÐDÇ0Aaüÿ+©.+++eÿ+d±b34¢Åd	 gSs8+4+̧Î@9+>f	ý3&þÅ+}(=XÀ2>Ò+++¡x°z°>ùBê!
Ü`Ëí�¼i+:4òiÌNÿ¸#+H@â$¯"Û'ªMdO;£ÖFÙ(X7x+ãªrSqðß®¾arÀL++LjÔ"+Ü:EÈ<ÜkG3+xÿÍ%:+tø+7+Þ92ØØº	 ÕÿÙ>:}+É4øpì++¹ù¿ë+ÆÓÁ+Ó
½++++ÐÆÂ+9Ç·Sã}tÿA½9+h½«+5/ÔE+ÿ+"
Q{ñ?!+++̂×9Û&ÞÂN+yÞ+3UåCaz2aoqTTRtXô/ÒØÞ�5ÅÆI++S+>ÈlÑýÁ	+.+þø+9!2^¢�+++Áq#Q²+F¤+.þÓ¿++Ô§{yVô9¦+Dw÷}Ü+Þr++Vsü}Û+Ì+óéÿO\+ÆfÅ+aâça(
LÒ§Z+aJ	:+¥x¬Æk+,ýj>Oú++

341

342

SIGBOVIK

52 Analysis of A New Error Calculation Technique

Jevin Tong

Keywords: late, erroneous, hackneyed

53 A Third Thorough Investigation of the Degree to which the
COVID-19 Pandemic has Enabled Subpar-Quality Papers to
Make it into SIGBOVIK, by Reducing the Supply of Authors
Willing to Invest the Necessary Effort to Produce High-Quality
Papers

Shalin Shah

Keywords: SIGBOVIK, COVID-19, Lazy, Low-Effort

54 this is not a review

Huilian Sophie Qiu

Keywords: this, is, not, review

343

Analysis of A New Error Calculation Technique

Jevin Tong

March 25th, 2022

1 Introduction

It is human to err. Unlike the cold steel of ma-
chinery, flesh and blood are prone to moments of
weakness, such as forgetting about the existence
of Sigbovik until the day that paper submis-
sions are due. Furthermore, the unpredictabil-
ity of humans makes it difficult to calculate the
amount of errors that they can be expected to
create in a given period of time. We1 propose an
experiment to ”eliminate a pair of avians while
utilizing a singular rock”, as they say, by at-
tempting to create a valid submission for Sig-
bovik in under 30 minutes using one average hu-
man test subject1, in order to determine the av-
erage amount of grammatical and syntactical er-
rors produced during the production of a paper.

2 Experiment Setup

To simulate a scenario of error-proneness, the
subject was situated in a college apartment at
1:48 AM, and instructed to create a submission
for Sigbovik 2022 after being reminded of the
conference’s existence a few mere minutes before
being instructed to type the paper. Very little
LaTeX experience was provided to the subject
(although the internet as a resource was provided
for the sake of LaTeX readability/reader ben-
efit), and the subject’s exposure to the formal
stylings of academic writings has been relatively
limited in scope. In order to compel the sub-
ject to type for the duration of the experiment,
the subject was asked to think about the mag-

nitude of their remaining homework load, thus
motivating it to work on the paper in the spirit
of ungodly procrastination.

3 Results

Due to the squiggly red lines, the subject was
able to identify most of its spelling mistakes im-
mediately and rectify those on the fly. As a re-
sult, most of the simple mistakes that subject
would have made were obfuscated, which thus
made the subject’s biggest error its decision to
choose error calculation as the subject of the
paper. Fortunately, the subject was too sleep
deprived to notice and correct any natural and
egregious grammatical/syntactical2 mistakes it
had made that would not have been caught by
the auto-speller. Furthermore, we observed that
the subject made numerous revisions to the pa-
per regarding the premise of the paper, as during
brief moments of lucidity, it realized the futility
of the paper’s initial premise and frantically at-
tempted to steer the paper in the direction of a
better joke. From the paper produced, we can
tell that about multiple mistakes were produced
over the course of 30 minutes, suggesting that
humans are pretty unpredictable, I guess.

4 Further Research

Due to the subject’s immense propensity for pro-
crastination, further studies into the error pro-
duction of the subject will be easy to reproduce.

1I, me, myself, etc.
2The difference between the two being unknown to the writer

1

52

344

A Third Thorough Investigation of the Degree to which the
COVID-19 Pandemic has Enabled Subpar-Quality Papers to Make

it into SIGBOVIK, by Reducing the Supply of Authors Willing to
Invest the Necessary Effort to Produce High-Quality Papers

Shalin Shah

Carnegie Mellon University

April 1, 2022

Abstract:

Based on this paper’s inclusion in the proceedings of SIGBOVIK 2022 (despite it being barely modified from our similarly

lazy yet accepted submissions to SIGBOVIK in 2020 and 2021), we find that the COVID-19 pandemic has in fact enabled

subpar-quality papers to make their way into the proceedings of SIGBOVIK, even more so than in previous years,

presumably by reducing the supply of authors willing to invest the necessary effort to produce high-quality papers.

Introduction:

Y’all know what COVID-19 is.

Methods and Materials:

You’re looking at the materials. Note that, in order to emphasize the subpar quality of this paper, we have opted to use

extremely lazy Microsoft-Word default formatting, rather than LaTeX. Also, we have restricted the contents of this paper

to a single page, to highlight its lack of substance. Meanwhile, our method was to simply submit this paper to SIGBOVIK

2022 and see what happened.

Note that this paper is in fact almost exactly the same as what we submitted to SIGBOVIK in 2020 and 2021, with only

minor updates. With each passing year, our submission of this paper to SIGBOVIK becomes an even lazier, lower-effort

endeavor, and embodies an even greater lack of creative originality. Thus, this paper’s acceptance into SIGBOVIK 2022

convincingly demonstrates that SIGBOVIK’s standards have fallen even lower since last year.

Results:

As evidenced by the fact that you’re currently reading this in the SIGBOVIK 2022 proceedings, this paper successfully

made it into the SIGBOVIK 2022 proceedings.

Discussion:

The results indicate that SIGBOVIK’s standards of quality have indeed decreased steadily since 2019, presumably due to

the COVID-19 pandemic decreasing the supply of authors willing to invest the necessary effort to produce high-quality

paper submissions.

Conclusions:

In conclusion, COVID-19 sucks.

References:

n/a

53

345

Decision: Strong reject

it is 20:34 set on apr 1st no im not kidding i just started writing this review though i have

pondered on it for a while i think i should say something to make myself seem capable of

reviewing this masterpiece but i have to admit that usually reviewers dont have the ability to

make them sound smart to avoid teaching you something that even i myself dont really

understand i decide to shut up now

wait was there a paper for me to review

oh never mind the paper the paper is never part of a review im a mature reviewer now ive

learned to reject all papers i review

sorry i wrote this in a hurry and probably forgot some punctuation

do i need a punchline

54

346

