the dssociation for computdtional heresy

presents

3 record of the proceedings of

SIGBOVIK 2017

the eleventh annual intercalary robot dance party in celebration
of workshop on symposium about 26¢h birthdays; in particular,
that of harry q. bovik

carnegie mellon university
pittsburgh, pa
april 0, 2017

Association for
Computational Heresy

Advancing computing as Tomfoolery & Distraction

SIGBOVIK

A Record of the Proceedings of SIGBOVIK 2017
ISSN 2155-0166

April 0, 2017

Copyright is maintained by the individual authors, though obviously this all gets posted to the
Internet and stuff, because it’s 2017.

Permission to make digital or hard copies of portions of this work for personal use is granted;
permission to make digital or hard copies of portions of this work for classroom use is also granted,

but seems ill-advised. Abstracting with credit is permitted; abstracting with credit cards seems
difficult.

Additional copies of this work may be ordered from Lulu; referto http://sigbovik.org for
details.

11

SIGBOVIK 2017

Message from the Organizing Committee

These are the proceedings of the 101" annual conference of the Special Interest Group on Harry

Q." Bovik, organised by the Association for Computational Heresy in honour of Harry Q. Bovik’s
2620945 th birthday.

2017 was a monumental year for SIGBOVIK. We experienced a factor of 1,522 increase in submis-
sions over last year, that’s to say, we received 35,000 submissions. For your convenience, we made a
histogram showing the number of submissions across time in Figure 1. As much as we would have
liked to accept all of these scientific breakthroughs, they would have caused our proceedings to weigh
about 868 Ibs or 394 kg,* and face it, nobody needs that heavy of a paper paperweight.

30,000 |- .
w
@ L |
S
2 L |
2 | il
g 20,000
, L |
Z i |
G
5]
° L |
()
'_D | .
S 10,000 |- .
Z L |
lo) | | | | | |

62 64 66 68 70 72 74

Harry Q. Bovik’s age at the submission deadline

Figure 1: Number of SIGBOVIK submissions across time

Our reviewers tirelessly reviewed these submissions, and concluded that only € of them were truly
worthy of being accepted for inclusion in the SIGBOVIK proceedings. “What, if anything, is epsilon?”,
you might ask. In this case, it so happens that € = 0.001, a value of € found in the wild in the C++ species
of programs 5.4% of the time, according to seminal work published in the proceedings of SIGBOVIK

'In case you were wondering: Quahaug.

w Assuming a page weight of 4.5 grams, double-sided printing, and an average
| of 5 pages per submission. This corresponds to a bit more than the weight of

a Kodiak bear (Ursus arctos middendorffi) [Wikiy], pictured left.

11

2014 [PhD14, Figure 6]. Comparing the SIGBOVIK 2017 acceptance rate with the acceptance rates
of other “prestigious” computer science conferences (Table 1), we see that SIGBOVIK is anywhere
from 169 times (SIGCOMM) to 283 times (SODA) more prestigious than other top computer science
conferences.

Conference

Name Year Acceptance rate
FOCS 2016 27.7%

ICML 2016 25%

POPL 2016 23%

SODA 2016 28.3%

SOSP 2015 17%

STOC 2016 24.9%
SIGCOMM 2016 16.9%

VLDB 2016 21.2%

Table 1: Acceptance rates at “prestigious” computer science conferences

SIGBOVIK used a new submissions website this year. Woven from the finest spider webs by
Jordan Brown and Jean Yang, this website survived a DoS attack from the PC"W"W"W"W"W"W"W
successfully handled 35,000 totally genuine submissions. We are grateful for their support and for
letting us stress-test their software.

We hope that you will find the seminal works below informative and illustrative of the high-calibre
research SIGBOVIK has become known for. From breakthroughs in debugging to new advances in
impure math and game theory, we are sure there will be something of interest for everybody.?

Our thanks to the volunteers who made SIGBOVIK possible. In particular, we would like to thank
Sol Boucher for assembling these proceedings; Rose Bohrer, Stefan Muller, and Ben Blum for
reviewing papers and ensuring SIGBOVIK accepts only the highest calibre research; Carlo Angiuli
for maintaining the SIGBOVIK website and his helpful advice; Chris Yu for the artwork; Catherine
Copetas for managing SIGBOVIK finances and other administrative concerns; Ryan Kavanagh for
organising the organisers; and last, but not least, the authors, without whom none of this would be
possible.

The SIGBOVIK 2017 Organising Committee
Pittsburgh, PA

References

[PhD14] Dr. Tom Murphy VII Ph.D. “What, if anything, is epsilon?” In: A Record of the Proceedings
of SIGBOVIK 2014. Apr. 2014, pp. 93-97.

[Wikiy] Wikipedia. Kodiak bear. Mar. 2017. URL: https://en.wikipedia.org/wiki/Kodiak_
bear.

3And if you can't find something you're interested in, you should have submitted it!

v

These papers are so awesome few can bear to look away!

Bear track: Strong Accept 3
1 Is this the shortest SIGBOVIK paper? 4
2 I’'m on vacation so I’'m submitting a vacation picture instead of a paper, or,
perhaps, a vacation photo in the format of a paper; I hope a predatory open
access journal e-mails me about this article00 6
Mule track: I'm Going to Use This! 7
3 Who sorts the sorters? 8
4 Objectionability: A computational view of mathematical computation . . . 12
5 Towards a well-defined and secure flirtation protocol 15
6 A solution to the two-body problem 22
Magpie track: Who Said Money Can’t Buy... 27
7 Call For Partners: Romance with rigor 28
8 Nano electronic transplant in brain and eyes to analyze and process human
thoughts and emotions 34
9 Grant proposal: Monetary policy of sparkly things 36
Monkey track: It’s Only a Game Theory 39

10 Isit Percival time yet?: A preliminary analysis of Avalon gameplay and strategy 40

11 Dr. Boozehead, or How I learned to stop worrying and get drunk: Design
principles and analysis of drinking games in the silicon age A7

12 A boring follow-up paper to “Which ITG stepcharts are turniest?” titled,

“Which ITG stepcharts are crossoveriest and/or footswitchiest?” 54

Dog track: Nonstandard ML 63
13 Batch normalization for improved DNN performance, my ass 64

14 Colonel density estimation 66

15 Degenerative adversarial networks Lo 68

16 Stopping GAN violence: Generative unadversarial networks 76

Groundhog track: Putting the “Under” in “Image Understanding” 83
17 DeepDoggo: Learning the answer to “Who’s a good dog?” 84

18 gooooooooooooo oobbbb ggd boooog DDDDD
OO0 OO0 - - - - o e e e e e e

19 Distinguishing humans from other forms of cattle 94
Chipmunk track: New and “Improved” Languages 101
20 On the Turing completeness of MS PowerPoint 102
21 Effective multi-threading in Befunge 107

22 Automatic distributed execution of LLVM code using SQL JIT compilation 114

23 WysiScript: Programming via direct syntax highlighting 119
24 ZM™T # PRinty# Cwith ABC! 129
Insect track: Debugging 149

25 Amazon Web Services: Field observations related to arachnid cohabitation . 150

26 Blackberry Debugging 153
Moose track: Impure Math and \Big Data 157
27 Fakemnewslogic 158

28 RRR for UUU: Exact analysis of pee queue systems with perfect urinal etiquette163

29 The next 700 type systems Lo 169
30 A modular approach to state-of-the-art big data visualization 172
31 Efficient computation of an optimal portmantout 176
Raccoon track: Talkin’ Trash 191
32 Garbage collection for heaps only a mother could love 192

33 A new paradigm for robotic dust collection: Theorems, user studies, and a
field study 194
Cat track: Work-stealingsaving 199
34 The Zero-color Theorem: An optimal poster design algorithm 200
35 Cerebral genus: Dead duck or phoenix? 203

e e ac g e
A L A L A L A L
) @ & @F & e ¥ e

Bear track

Strong Accept

H) @ & @ & e

Is this the shortest SIGBOVIK paper?
Joe Doyle

I’'m on vacation so I’m submitting a vacation picture instead of

a paper, or, perhaps, a vacation photo in the format of a paper;

I hope a predatory open access journal e-mails me about this article
Jim McCann

Is This the Shortest SIGBOVIK Paper?

Joe Doyle
March 7, 2017

Maybe not.

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2017 Paper Review

Paper 14: Is This the Shortest
SIGBOVIK Paper?

Reviewer ¢
Rating: e/m
Confidence: ¢

While the importance of this work to the SIGBOVIK community can’t be debated (because we
have no established protocol for such a debate), it is not novel. The content of this paper is en-
tirely contained within the papers “The Portmantout” from SIGBOVIK 2015, “A shortmantout”
from SIGBOVIK 2016 and “Efficient Computation of an Optimal Portmantout” from the present
SIGBOVIK. It should therefore only be accepted if our goal is to increase our page count which,
as always, it is.

I’'m on Vacation So I’'m Submitting A Vacation Picture Instead Of A
Paper, Or, Perhaps, A Vacation Photo In The Format Of A Paper; |
Hope A Predatory Open Access Journal E-Mails Me About This
Article.

Jim McCann*
TCHOW llc

Figure 1: At the “Inventions” buffet in Hotel Disneyland.

*e-mail: ix@tchow.com

Mule track

I’m Going to Use This!

Who sorts the sorters?

Alexander R. Frieder

Objectionability: A computational view of mathematical com-
putation

Cameron Wong and Dez Reed

Towards a well-defined and secure flirtation protocol

Rowan Copley

A solution to the two-body problem
Rose Bohrer

Who sorts the sorters?

Alexander R. Frieder*

March 31, 2017

1 Introduction

Any introductory programming class will cover
the basics of different sorting algorithms. Sorting
algorithms are the perfect introduction to algo-
rithmic analysis for a multitude of reasons. First,
there are straightforward proofs of the lower-
bound in terms of performance, thus we can eas-
ily teach students that O(nlog(n)) sorts are op-
timal algorithmically. Second, the naive sorts
are fairly far from optimal and that is simple to
show students. Finally, sorting is a deceptively
easy task for humans. To expand on that final
point, given a list of numbers, it is very easy
for a human to order them correctly. Indeed,
most introductory lessons will have the teacher
prompting the student to describe exactly how
they put them in order.

The important takeaway from the lesson is
that sorting is not a trivial process and it must be
done through some algorithm. It does not suf-
fice to take numbers and simply put them
in order. The lesson will then proceed by walk-
ing the student through multiple algorithms and
then displaying their performance on some large
set of numbers, presenting how long each algo-
rithm took. The teacher will then often conclude
with some statement like “Thus we can see that
merge sort is faster than selection sort”. How-
ever, this directly contradicts the previous les-
son: the teacher has taken performance numbers
and somehow magically put them in order. In-
deed, we need to use a sorting algorithm to deter-
mine which sorting algorithm is best. But which
sorting algorithm is best for that task?

*email: alex.frieder@gmail.com

In this paper, we will review a variety of sort-
ing algorithms and evaluate their performance
on large randomly sorted arrays of numbers. We
will then use the more general version of sort-
ing to compare each sorting algorithm with each
other to correctly evaluate which sorting algo-
rithm is the best for sorting sorting algorithms.
Finally, we will use the same algorithms to de-
termine which sorting algorithm is best for de-
termining which sorting algorithm is best for de-
termining which sorting algorithm is best.

2 Sorting Algorithms

In this section we will review six different sort-
ing algorithms that will be used throughout this
paper and present, without proof®, their algo-
rithmic complexity. If you feel you are an expert
sorter, feel free to proceed to section 3. I will
not be offended. Not at all. I promise. These
are not tears. I am just cutting onions.

2.1 Selection Sort

Selection sort is often the first sorting algorithm
taught and is often the way humans intuitively
sort. The algorithm behind selection sort is ab-
surdly simple: find the smallest element left in
the list, remove it, and put it in the output list.
Repeat. Once the original list is empty, the out-
put list will be sorted.

Since selection sort requires finding the max
at each step, it runs in O(n?) time.

1Unless you count Wikipedia as proof.

Exercise 1

Teach your dog? how to perform selection sort.

2.2 Insertion Sort

Insertion sort is a similar idea to selection sort,
but instead of putting in the effort to pull the
correct element from the original list, we put in
the effort to put a random element from the orig-
inal list into the right location. For each element
in the original list, we remove it, iterate through
the output list, find the smallest element larger
than it, and insert it immediately before that.
Thus, at each step, the output list is sorted, and
at the end, the original list is empty and the out-
put list is sorted.

Since inserting an element may require iterat-
ing over the entire output list, insertion sort runs
in O(n?) time.

Exercise 2

Put the words of this paper into alphabetical
order using insertion sort?.

2.3 0Odd-Even Sort

Odd-even sort is a parallelizable version of the
notorious and often politicized bubble sort?. In
odd-even sort, we first iterate through the odd
indices and for each element that is larger than
the next element, we swap them. We then re-
peat for all the even indices. Finally, we repeat
this pair of steps until no swaps are made. By
definition, the list is now sorted. Since each step
only swaps either exclusively odd or exclusively
even indexed elements with its neighbor, the en-
tire step can be completely parallelized.

Despite being parallelizable, odd-even sort is
not more efficient than bubble sort and runs in
a worst case of O(n?).

20ther pets may suffice for this exercise, but not cats.
Cats are fundamentally incapable of learning algorithms.

3Ensure you have at least 15 minutes of free time be-
fore attempting this.

4https://www.youtube.com/watch?v=k4RRi_ntQc8

Exercise 3

There actually exists exactly one list of in-
tegers on which odd-even sort does not termi-
nate. Find that list, treat the numbers as binary,
read off the ASCII-encoded message, and con-
tinue your quest to find the Fountain of Youth.

2.4 Comb Sort

Comb sort is also a generalization of the noto-
rious and often politicized bubble sort®. Comb
sort, is parametrized by a so-called shrink factor
k, optimally around 1.35. Comb sort begins by
iterates over every pair of elements n away from
each other, where n is the length of the list, and
swapping the elements if they are not sorted rel-
ative to each other. Initially, that is only the
first and last element. The distance is then set
to n/k and the process is repeated. This process
repeats, dividing the distance by k£ until the dis-
tance is 1, at which point we revert to bubble
sort, swapping out of order pairs until the list is
sorted.

Despite having faster run time than bubble
sort, comb sort matches its complexity of O(n?).

Exercise 4
Do 30 push-ups, 30 sit-ups, and wall sit for at
least 2 minutes.

2.5 Merge Sort

Merge Sort is the prototypical divide and con-
quer algorithm. First, recursively sort the first
half of the list and the second half of the list,
then merge them, by removing the smaller head
of the two lists and inserting it into an output
list. Repeat until both lists are empty. The out-
put list is now sorted.

Merge sort takes exactly ©(nlog(n)) compar-
isons and is thus algorithmically optimal.

Shttps://youtu.be/MOzg_Cf4K4w7t=21s
6 As cited from the Epic of Gilgamesh.

Exercise 5

Write an angry letter to the author explaining
that the O(nlog(n)) lower bound only applies to
comparison-based sorts and that some types can
be sorted into linear time so therefore the author
is wrong.

2.6 Quicksort

Quicksort takes, in the worst case, O(n?), but on
average, O(nlog(n)).

Exercise 6

Enroll at Carnegie Mellon and take any of the
following courses to learn in-depth about quick-
sort:

e 15-122
e 15-210
e 15-359
e 15-451

3 Methods/Implementation

For comparing sorting algorithms, the naive
method is to sort a large number of random lists
of numbers and take the average time spent sort-
ing. As mentioned originally, this method is an-
tithetical to the entire purpose of sorting algo-
rithms. But it will suffice as a first level approx-
imation of the efficiency of sorting algorithms.

When comparing higher-order sorting algo-
rithms we need to enforce a partial ordering. In
other words, we need to define a < operator on
algorithms. There are multiple ways to do so,
but we have chosen to use the most natural or-
dering: when comparing two algorithms A and
B, we define A < B to be true iff the total time
spent sorting n random shuffles of some list L
is less when sorting under A than when sorting
under B. This is obviously a probabilistic total
ordering, but in the limit, it is a deterministic
total ordering. We will pretend our numbers are
big enough to be considered “the limit”.

We used n = 3 across all experiments. For
sorting algorithms, we used L = [1,10%) and de-
fined < as the normal integer <. For sorting sort-
ing algorithms, we used L = the list of all sorting
algorithms discussed in section 2. As described
above, we determined for two algorithms A and
B if A < B by running A on 3 random shuffles
of [1,10%) and B on 3 random shuffles of [1,10°)
and using normal integer < on the time taken.
Finally, for sorting sorting sorting algorithms, we
use the same L, that is, all algorithms discussed
above. We define < in the logical expansion of
the previous definition: A < B if 3 runs of A
sorting sorting algorithms takes less time than 3
runs of B sorting sorting algorithms.

These were all implemented in Python 3.6 but
ported to and eventually run in PyPy2.7 v5.6.0
due to time concerns.

4 Discussion

All of the numeric results of these tests can be
found in table 1 on the next page.

For the integer sorting algorithms, we see ex-
actly the results usually presented in introduc-
tory classes and as expected. Quicksort, using
probabilistic magic, is fastest, with merge sort
following closely. Comb sort, using its heuristic
advantage, is fairly fast, with the other O(n?)
algorithms following behind. There is nothing
too exciting here. The full ordering is quicksort
< merge sort < comb sort < insertion sort <
selection sort < odd-even sort.

However, both the sorting sorting algorithms
and the sorting sorting sorting algorithms have
a different order from the integer sorting: merge
sort < insertion sort < quicksort < selection sort
< odd-even sort < comb sort.

There are two interesting changes here. We
can use merge sort as a good baseline since it
does a relatively deterministic and static number
of comparisons.

First, insertion sort is much much better for
higher-order sorting than for integer sorting. For
integer sorting, insertion sort is about 60x slower
than merge sort. However, for sorting sorting,

10

Algorithm Oth Order Time | 1st Order Time | 2nd Order Time
Quicksort 0.06127 s 329.88 s 18.62 min
Merge Sort 0.06757 s 277.32 s 16.65 min
Comb Sort 0.09867 s 792.78 s 235.46 min
Insertion Sort 4.03476 s 314.31s 17.67 min
Selection Sort 8.15739 s 565.02 s 25.33 min
0Odd-Even Sort 15.79098 s 781.93 s 216.02 min

Table 1: The time take for algorithms to sort integers (Oth order), sorting algorithms (1st order),
and sorting sorting algorithms (2nd order)

it is only 1.13x slower, and for sorting sorting
sorting, it is only 1.06x slower. It is conceivable
that since insertion sort spends most of its time
iterating over the beginning of the sorted list that
when comparisons get more expensive, it gets
more efficient.

Second, comb sort is much much slower for
higher-order sorting than for integer sorting. For
integer sorting, comb sort is only about 1.5x
slower than merge sort, but for sorting sorting,
it is about 3x slower, and for sorting sorting
sorting, it is 14x slower. It is the slowest sort
for higher-order sorting and took almost 4 hours
compared to merge sort’s 17 minutes. It is con-
ceivable that comb sort, with its decreasing win-
dow, spends more time doing redundant tests as
it reduces to bubble sort.

We ran tests counting comparisons to test
both of these hypotheses and the evidence is
clear: there is no evidence for these hypothe-
ses whatsoever. Thus we present no explanation
and offer a 50¢ prize for the first plausible expla-
nation submitted to the author.

5 Conclusions

Use quicksort, unless you need to sort algo-
rithms, in which case use merge sort. Most sorts
behave the same across orders, but some do not.
Thinking about higher-order sorting algorithms
may cause temporary’ insanity.

7At least, I hope it is temporary...

6 Future Work

There are numerous ways this novel direction of
research can be expanded:

e Higher-order functions including, but not
limited to, 3rd, 4th, and wth order sorting
algorithms

e Something involving quantum computers
working on big data in the cloud
sorting al-

non-constant

e Determining if there exist
gorithms that excel at
comparison algorithms®

e Other meta-analyses such as:

— A search algorithm for searching for

search algorithms

A database for managing databases

A container for containing other con-

tainers®

— A cache invalidator for managing cache
invalidation algorithms

7 Acknowledgements

The author would like to thank a handful of peo-
ple, including Arley Schenker and Ben Lichtman
for proofreading this and sharing in the mad-
ness, Thomas Bayes, for obvious reasons, the
Academy, for making this all possible, and read-
ers like you, without whom this whole ordeal
would have been meaningless.

8This is actually an interesting problem that I could
not find much research on.
9This may be made redundant by Docker.

11

Objectionability: A Computational View of Mathematical

Computation

Cameron Wong, Dez Reed
March 10, 2017

Abstract

Any student in an “engineering” discipline (that is, the fields of math, computer science,
mechanical engineering, underwater basket weaving, et al) can sympathize with looking at
a equation or problem and realizing that pages of unintelligible scribbles would be required
to reach a satisfactory conclusion. Similarly, professors often add allowances for “algebraic
grunt work” that is often assumed to be correct in grading rubrics. However, such terms
are often, at most, vacuously defined and it is up to the subjective preferences of whoever
is looking to determine whether four pages of equational reasoning is sufficient or to remove
points for omitting a further two pages of integration by parts, second-order substitution and
a re-derivation of the Cauchy-Schwarz inequality.

In this paper, we attempt to provide a mathematical model to describe the “grossness”
of any particular mathematical problem P (the precise formal definition of which is semi-
intentionally left vacuous). In particular, we define G(P) to be the computational grossness of
P and prove several further useless results that come of direct consequence. As such, we also

establish several grossness classes for problems.

Finally, we introduce the concept of objectionability, whether any arbitrarily gross problem
is uncomputable by a non-idealized human. Among other things, we will find that O, determing
whether a problem is objectionable, is itself objectionable.

1 Introduction

In 1936, Alan Turing introduced the concept of
a Turing Machine that could be used to com-
pute formally-defined mathematical functions.
In the same vein, the idea of decidability was in-
troduced, determining whether a given problem
was solvable with pen-and-paper mathematical
manipulations.

We see, though, that some problems, while
perhaps decidable, are simply "gross"- that is
to say, they are difficult to generate solutions
to. This phenomenon has even been referenced
by the famed Jay-Z, referring to "99 problems"
that seemed to be of trivial value compared to
the problems that the song’s subject had been
presented with.

However, in reasoning about decidability, lit-
tle to no thought is given to whether anyone
would want to solve such problems using pen-
and-paper mathematical methods — with the ad-
vent of computers, many of these “gross” compu-
tations can be done with little to no effort on the
part of a human. Even so, the fact remains that
such “gross” problems exist. Further thought re-
veals that (without loss of generality) the prob-
lem of writing Python code to solve something
may be “too gross”.

This paper attempts to resolve this issue by
defining G(P), the grossness of P for a prob-
lem P in E (the set of all problems) then discuss
several schemes by which G may be estimated.
We also briefly discuss how we might determine
whether a problem is objectionable, that some-
one may reasonably object to being asked to
solve it.

2 Repugnance Theory

We begin by defining G(P) for some P € E as
the minimum grossness for any solution to P.
As we will see, however, this is difficult to deter-
mine in a general case.

Consider the following problem:

Problem 1. Fix some alphabet ¥ and other
arbitrary set II. Define the following sets:

L= {(u,n,7) € {w € T*: w every
proper prefix of w is in p} x N x
{CeT: (¢) = n}: [()H(n)] <
!+ ()]}

12

r={(Z% Y)Y e{f: T x T = T¥|
Vz,y € ¥%, f(z,y) = f(y,2)} and
Vo e B¢, a) = 2 = ¢(x,0) }

where (z) is an arbitrary encoding of an
object x over X*.

Let @ be the subproblem of “Given a
string S over ¥*, is S equivalent to {(v, x,w))
where (v, x,w) € T NK?.

Is QQ decidable?

A naive approach might have a student at-
tempt to determine what each set means and
to reason about the properties and behavior of
each. Note, however, that (P) over the alpha-
bet of unicode characters occurring in this pa-
per (which we will take to be the problem state-
ment as given) contains 39 characters when any
symbols that are not considered “common En-
glish characters” are removed. This, too, is a
vacuous definition, however, so we will define a
“common English character” to be anything that
has a standard unicode codepoint less than 95.
With this interpretation, then, we could say that
G(P) = 39, as any solution to this problem must
begin by reading the problem statement. We
will call this approach the “character counting”
approach.

An alternative approach, however, might in-
volve inspecting the types of the sets involved —
1 is a string, n is a natural number and 7 takes
some type t, where ¢t is the type of “things in II”.
This is not to start a discussion of type theory,
so we suffice to say that this apprach leads to
finding that G(P) = T, where T is the set of
all types that fulfill the given criteria. It then
follows that the “character counting” method is
only sufficient to provide an upper bound on G.

A real type-chasing approach, however,
would note that the definition of k is actually
a monoid, giving us that any element of k is
also a monoid in the category of endofunctors
and thus I' x Kk = @. In this case, though, the
problem cannot possibly be less gross than this
observation, giving us that G(P) > "glasgow".

3 Voodoo

In this paper, we will be concerned mostly with
the lower bound of grossness as established via
another measure we have provisionally named
voodoo, denoted with V(P) defined as follows:
Take a problem P € E. If P can be reduced
to some P’ via an application of some subroutine
Q, V(P) > n-G(P’). It naturally falls out, then,
that V(P) = ZP reduces to P’ G(P/) From here,

we can apply the Rauen Incompleteness Princi-
ple to see that V is a complete but undefined
function.

From this, however, we can establish the fol-
lowing lemma:

Lemma 1 (Wong’s Lemma). For all P € E,
let L be the upper bound of G(P) as determined
by the character counting method. Additionally,
define >= G(P’), where P’ is the derivative of
P. Then,

G(P) = V(P)” (mod L) (1

Proof. Fix a problem P. G(P’) is trivially
bounded from above by 1114016 and below by
N. We can then express V(P) type-theoretically
as a combinatorial 4-form, which means that,
by the Chinese remainder theorem, V(P)? can-
not be greater than a type-theoretic solution to
P modulo L. But wait, we already established
that G(P) is bounded from below by the set of
type-theoretic solutions to P, so the claim im-
mediately follows. O

Note that this does not contradict our earlier
statement about character-counting; the modulo
ensures that we remain under our upper bound.

We now present the following result:

Theorem 1 (Reed’s Theorem). For all P,Q €
E,

V(P G(Q) x G(P) - Q)
V(PoQ)2e

where o is the composition operator.

G(P)oG(Q) > (2)

Proof. We begin by applying Wong’s Lemma to
the right hand side of the equation.

V(P-GQ) xG(P)-Q)
V(PoQ)?2e -

Dy Xe(e) XWG(P -G(Q) x G(P) - Q)
GPoQoP

Note that, at this point, all operators are now
all near-computable with sufficient paper (and
we can thus assume that our human prover has
done so).

However, on attempting to apply the same
thing to the left hand side, we get that

(mod L)

G(P) o G(Q) < V(P)’r o V(Q) > > (V(P) o V(Q)) >7e2

From here, however, the authors of this pa-
per object (see section 2) to showing the remain-
ing computations. Without lots of Generality,

TThis is the difference between the highest defined unicode codepoint and 95

13

we see that the two quantities thus have well-
ordered grossness. Specifically, something that
is near-computable cannot be greater than any-
thing that is not. Because the LHS is ultimately
too gross to reduce, then, it must be greater than
the idealized RHS. O

Because of this, we can also establish the fol-
lowing corollary

Corollary 1 (Falk Corollary). (E,G,0) is a
well-defined field.

4 The Principle of Repug-
nant Exclusion

Consider the 3-Body Problem (..). Notice that,
despite being somewhat simple to state, it is dif-
ficult to intuit a value of G(.-).

Suppose P is as follows: Given 1 = h, find
. Simply enough, G(P) = L. Note that P
has triviality and .-, has pure nontrivality, so we
can apply the law of excluded middle to see that
G(.) = T. We will refer to this relation by say-
ing that .. is excluded from P. Without loss of
generality, we can generalize this proof to say
that, given a problem P that can be excluded
from a problem @ such that G(Q) = L must
have G(P) = T (and vice versa). This is the
Principle of Repugnant Exclusion.

5 Objectability

We end by opening a discussion on objectabil-
ity, the discussion of whether a problem is objec-

References

tionable. Consider the 3-Body Problem used to
establish the Principle of Repugnant Exclusion.
This problem involves several abstractions, re-
ductions, equations and several calculus and al-
gebraic impossibilitiest. It would be reasonable
to say that no reasonable person could sit down
and solve this problem, so we would call this
problem objectionable. We consider this to be
a simple enough definition with profound conse-
quences. Formally, we believe that any problem
P for which G(P) is greater than [(P)|/{"} is ob-
jectionable, but we do not have a proof at the
current time (we offer this as an open problem).

By way of example, consider the problem
Given a problem P, is P objectionable? (this
is the problem O). By applying earlier results
from the Rauen Incompleteness Principle and
Wong’s Lemma, we see that O is undecidable.
Any resulting decider M, then, cannot be en-
coded via any finite alphabet ¥, which means
that it must contain an infinite number of non-
common English symbols (thus immediately fail-
ing the character-counting test). Furthermore,
attempting to analyze the types of L(O) (the
set of (P) for all P that are objectionable) is ob-
jectionable without a well-defined proof of the
objectionability of O (see citation 2). If such a
proof existed, then, it must itself be objection-
able (and so we cannot assume that the proof
was ever written or read by any human author).
We, as humans, must thus conclude that O itself
is objectionable.

1. A. M. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230-265, 1937

2. You thought there would be a citation, but it was me, Dio Brando!

3. “Anime was a mistake” - Hayao Miyazaki

It is also already unsolvable.

14

Towards A Well-Defined and Secure Flirtation
Protocol

Rowan Copley,'*
!Department of Love Quantification, Witty Pear LLC

*To whom correspondence should be addressed: rowan.copley @ gmail.com.

Introduction

Human interactions are inconsistent, ambiguous, and fraught with danger. Protocols for in-
teraction are so nebulous that there is an entire cottage industry devoted to after-the-fact in-
terpretations of interpersonal interactions[1]. In fact, many people will live their entire lives
with their own internal understanding of proper communication protocols, which are mutually
incompatable with other such implicitly defined systems.

This is especially true in the communication between sexes, frequently referred to in the
vernacular as “flirtation.” We believe that this is an unsatisfactory state of affairs that can be im-
proved with the application of networking and information theory. Therefore we are proposing

a protocol for inter-gender communication.

1 Architecture

Consider social encounters to be a nested stack of ”consent”. We start by defining a stack of

consent levels that are traversed during the course of the flirtation session. To keep the definition

15

Table 1: The consent hierarchy.

Consent Level Description
-2 Don’t even look at me
-1 Don’t talk to me
0 You may speak to me briefly if there’s a good reason
1 We can talk
2 You can talk to me all you want
3 You can touch my hand
4 Long eye contact might not be creepy

How deep this stack goes is outside the scope of this paper.

intuitive and easy to understand, we define consent levels below in a colloquial and intentionally
non-rigorous way.

Behind this is the idea of a mutual consent to recurse on that stack to a ”deeper” level. You’ll
need a protocol of mutual agreement to recurse that is also recursive: knowing that the other
person knows that you know, and so on. But such a protocol can be implemented as a Two
Generals’ Problem, which, while technically unsolvable, is still provably simpler than everyday
human interactions.

One design decision is whether consent levels should be symmetric, where each participant
is cool with what is going on, or asymmetric, where maybe something creepy is going on. While
our protocol is able to support both by letting the two parties negotiate this at runtime, we focus
on the symmetric use-case here as (we hope) it is more common.

The heart of the protocol is each party’s location in the stack, and the messages about accept-
ing or denying access to deeper levels, as well as revoking access to a level that was previously
accepted. Revoking access to a consent level is left up to the particular implementer,will depend
on localized and internationalized norms. Some examples of revoking access are getting up and

walking out, saying ’no thanks”, and kicking them in the balls.

16

2 Demonstration

Suppose that Alice wishes to initiate a flirtation request with Bob. That is, she wishes to enter
into a negotiated descent down the consent stack. Currently, they are only on speaking terms,
but Alice wants more. However, Alice does not wish to be in a more consenty level of the
stack than Bob. That would expose Alice to embarrassment should Bob not be aware of Alice’s
intentions and similarly change positions on the stack. Alice has lead a life of disillusionment
and disappointment which has left her with a calloused emotional exterior. And she’s too old
for pussy-footing around anymore. She’s had it with immature young men whose only weapon
is flattery. Alice wants a man who can be honest about his flaws, who opens up to you. She

want Bob. Therefore, Alice and Bob must engage in a negotiation which proceeds as follows.

Initiate request
> (Bob

Cselr = .99
Cother= .1

We define two variables, Cy.;r and Coye,, to indicate the degree of confidence that Alice in
herself has that she wants to intimate a more flirtatious atmosphere with Bob (C,;) and the

degree of confidence that Alice has in Bob that he wishes for the same.

17

Request ignored
< Bob

Cseif = .2
Cother = .25

Here we see Bob’s internal variables set at near their default levels. Because he has been obliv-
ious to Alice’s advances, he has no idea what her true intentions are and thus his internal model
is quite inaccurate. The social engagement blunders onward, however, driven by Alice’s deter-

mination.

Resend request
> (Bob

Cseif = .5
Cother = .05

We see that Alice has updated likelihood estimators to reflect a decrease in confidence that
Bob wishes to engage in a flirtation excecrsize with her. However, Alice decides to try again by
calculating that although the chances of payoff are estimated to be low, the penalty for failure

is also low.

18

Permission granted
< Bob

Cself = .8
Cother= 9

In this case, Bob makes the decision to initiate the simultaneous stack traversal immediately.

This may not always be the case, as sometimes a delay is a safer option.

Beginning descent
>(Bob

Cseif = .98
Cother = .9

Alice takes the potentially risky decision to initiate a descent without receiving a response from
Bob. Unfortunately, Bob interprets this as desperation and revokes permission to proceed at the
last minute. Alice must bury her feelings deep inside her and only indirectly express them, such
as in passive-aggressive post-it notes or clinical dissections of human behaviour in academic
journals.

During this exchange, suppose Eve wishes to intercept Alice’s flirtation message as if it
were intended for her. Alice did not intend that Eve receive her obfuscated message to Bob.
Alice desires only Bob, and considers Eve to be an obstreperous harlot. Alice’s only wish is to

hold Bob close, to feel his caresses.

19

Unfortunately, unlike in computing where each machine is assigned a convenient protocol
address (e.g., 127.0.0.1), humans have no such unambiguous addressing. Furthermore, in a
social setting where one is broadcasting flirtatious messages, simply claiming to be the recipient
of those messages may lead to a self-fulfilling prophecy. Therefore, at least until such a time
as this promising academic direction can lead to more concrete results, we recommend three

potential solutions to this problem:

1. Distance method: always be the closest to the person for whom your flirtatious message

1s intended,

2. Focus method: make eye contact with that person continuously through the course of the

social event,

3. Name method: use their name in every sentence.

For redundancy, using more than one of these methods will increase the likelihood of suc-

CESS.

3 Issues With Adoption

An important aspect to consider for any protocol is how difficult it will be to get a substantial
percentage of the population to adopt it. While it is true that the protocol is not useful unless
both parties have adopted it, in this case, we believe the advantages to the protocol are obvious
and the rollout will be smooth. Furthermore, due to network effects, adoption will follow an

exponential growth curve.

20

4 Future Work

We plan to expand the protocol to include flirtation sessions involving more than two partici-

pants, and are recruiting graduate and undergraduate research assistants.

References and Notes

1. Psychology. Wikipedia: the free encyclopedia

21

A Solution to the Two-Body Problem

Rose Bohrer

Abstract
The two-body problem asks whether two massive academics under-
going mutual attraction can locate stable employment and lodging. We
identify an important special case in which a solution exists, the first of
its kind. We give a lower bound on net worth as a function of time. Given
the significance of the result, we give a near-formal proof in Differential
Dynamic Logic dL to increase confidence in the result, without the hard

work of actually doing the proof correctly.

1 Introduction

The three-body problem has been known since Newton: Given three mas-
sive bodies mutually exerting gravity, compute their trajectories. It has
also been known since the time of Poincareé that no analytic closed-form
solution exists in the general case. Poincaré was not discouraged by this.
Rather, (mostly because he and his wife were both on the academic job
market at the same time), he did what any good mathematician would
do and simplified the problem until there was some hope of solvability.
Poincaré’s simplification is what we now know as the two-body problem:
“Given two massive academics in mutual attraction, determine stable em-
ployment and lodging”. This simplification is of massive importance to
academics even today, and as the modern academic knows, no general
solution has yet been found.

2 Related Work and Previous Solutions

In extremely special cases, satisfactory solutions to the two-body problem
have been found. The most notable special case is that of Blum and Blum
who have found simultaneous full-professorships at a Research I university
in an affordable city in related research areas. This is, clearly, the most
difficult instance of the 2-body problem. However, the B? solution requires
at least one Turing award, and thus does not scale to us mere mortals.
It would have worked for Poincaré, I'm sure, but not for me. Who am I
even kidding, the 1-body problem has long been solved.

Other approaches are more ambitious, seeking to provide an answer to
us mere mortals by sidestepping the requirement for an analytic closed-
form solution, satifying themselves with implicit or non-analytic solutions
instead. The most notable approach is that of the Klein Four group,
who take on the even more general three-body problem using nonanalytic
functions such as a cappella: https://www.youtube.com/watch?v=Aiq\
_oalvyak

22

3 Owur Approach

The key issue here, of course, is to identify a salary for two PhD’s at
the same time, as only so many employers are willing to employ the un-
employable. In offline dating, it has been widely recognized that the
problem becomes significantly easier as the distance in thesis topics in-
creases. Thus, the Two-Body problem can be reduced to the Some-Body
Problem as posed by Mercury: Can anybody find me somebody to
love? Who has a PhD in a technical field, but preferably not
CS and definitely not formal methods, oh god please not formal
methods?

Our approach is centrally based on Mercury’s reduction. Further, we
make the simplifying assumption that the relationship between the bodies
is stable, a common assumption which significantly simplifies the dynam-
ics. Because we provide the first and only solution for such a seminal prob-
lem in bodyology, we provide a formal model and proof of our solution
to the two-body problem in Differential Dynamic Logic, an established
logic for verifying hybrid systems, many of which are Cyber-Physical Sys-
tems. This marks its first known use in verifying Cyber-Social-Physical-
;-)-Academic Systems.

3.1 Model of Academics in Motion

In the two-body problem, we are given two rigid ;-) romantic bodies in
motion and seek to show they can sustatin some minimum level of income
over an extended period of time. As in the typical presentation of the
problem, we assume the sole source of income is a university.

In this model, we consider two-dimensional rigid bodies, whose posi-
tions are described by x1,y1,22,y2. Following standard simplifications,
we assume the position of the university is somewhere between the aca-
demics in a way we will make precise soon. According to government
statistics, the salary for each academic is inversely proportional to the
distance from the university. We add another variable ¢ to track the evo-
lution of time.Putting this all together, we arrive at a 10-dimensional ODE
describing the evolution of the system:

_ r r . M2 -Vy 1 , p 0 M1 Uy 2
a = {331 =Vz,1, Vg1 = — 42 y L2 = V2,2, Vg2 = — 42)
r_ ro_ M2 Vg1 ;o M1 Vg2
Y1 =Vy,1,Vy1 = a2 s Y2 = Vg2, Vg2 = T
/ 1 1,
$ = —t' =1}
div d2

Where we define d = /(z1 — x2)2 + (y1 — y2)2 and di,v = /(z1 — 70)2 + (y1 — yu)?
and do,y = \/(CEU — x2)% 4 (yu — y2)? where the university is at a fixed
location zy, yu.

Like all good proofs we have some preconditons. Specifically, the mass
and distance are in harmony such that the bodies will maintain a stable

23

orbit, and the university lie somewhere inside that orbit:

— .2 2 2 2
PT@:’UZJ +’Uy’1 :’Uz’gﬁ-liy’g
ma mao
= —=—"At=0
d d

A (zu — (214 22)/2)° + (yo — (1 +2)/2)* <= d°
And our postcondition establishes a bound on income:

Post2$2$o+%

Putting these together, we arrive at our theorem-statement: Stable
Relationship Solution to the 2-Body Problem:

Pre — [a]Post

Proof. We decompose the proof into its key lemmas, leaving the details
of the proof as an exercise for the reader.

Lemma: Bounded Attraction. A stable relationship requires that
the bodies be attracted to each other, but not so attracted to each other
that they might lose their wits, or in our case, their orbits. The Bounded
Attraction lemma asserts an upper bound on the attraction, or force:

mQ"U%

d?

[oJois + v <

And similar for the second body.

Lemma: Constant Separation. Next, we must prove the essential
simplifying step that distance between the bodies is constant, without
which the rest of the proof is intractible. Because distance makes the
heart grow fonder, we call this lemma constant separation:

[a]d =0

Lemma: Stable Relationship. Stability of relationships is essen-
tial to maintain the healthy life attitudes that allow one to succeed in
academia. Thus we show the bodies are in a stable orbit at the radius d/2
which is centered around the origin, without loss of generality:

[a]a? + i = (d/2)°

And so on for the other body.

Lemma: Home Sweet Home. In order to establish a bound on
salary, we need a bound on the distance to the university. Because the
university stays at its starting position inside the circle, we can bound
this distance by the diameter:

[a](z1 —20)® + (1 —yv)? < d°

Lemma: Continuous Cash Flow These combine to give us a bound
on the continuous rate at which cash changes, which leads directly to the
theorem:

> 2

24

4 Conclusion

We have proven the first known lower bound on salary in the two-body
problem under realistic situations. Practical applications of this solution
abound for otherwise-broke academics on the job market. Our simple
closed-form solution simplifies financial planning for the affected academic
masses. We “formalized” the result for increased confidence, in case any. ..
body should dispute its correctness.

25

26

“e S e T Te e e N e e T te e e te e e e S e

Magpie track

Who Said Money Can’t Buy...

“e S e T Te e e N e e T te e e te e e e S e

Call For Partners: Romance with rigor

Rose Bohrer

Nano electronic transplant in brain and eyes to analyze and
process human thoughts and emotions

Chinmaya Lele

Grant proposal: Monetary policy of sparkly things
Pete, Luna, and Stefan Muller

27

Call For Partners: Romance with Rigor

Rose Bohrer

1 Introduction

Traditional dating sites are based on simple premise: participants are capable
of identifying, with a reasonable degree of accuracy, which of their proposed
matches are appropriate for them. Millions of years of empirical dating evi-
dence show this premise to be false. As in all human pursuits, the dating field
is rife with biases and irrational judgements, such as “You're too ugly”, “you
don’t make enough money”, and “at least he can remember my birthday, Rose.”
While no system can completely eliminate human biases, the scientific
community has, by and large, done an impeccable job of minimizing the influ-
ence of bias through its system of peer review. Even in non-blind review, simply
entrusting the review process to a disinterested third party with no conflicts of
interest greatly increases the quality of the outcome. If only the same could be
said for love.

Unlike all other dating sites, callfor.partners addresses the underlying
problem in online dating: lack of rigor. We do so by applying that most suc-
cessful of human inventions, peer review. As with academic peer review, not all
decisions are made by peers. Just like you get to choose what paper to submit,
YOU are in charge of who you want to date, by writing your own personal
CALL FOR PARTNERS and YOU get to make the best impression by
submitting your own PARTNERSHIP ABSTRACTS. Only the messiest,
most error-prone part is spread between peers: Deciding which partnerships to
pursue and which to reject. The part that nobody wanted to do anyway.

2 Design

The central feature of the Call For Partners Partnering Workflow is the Part-
nering Committee. As with the peer review process, one selects a group of one’s
closest friends to make decisions as to which advances should be accepted or
rejected. Usually (but not always) the reviewing process is mutual: users are
motivated to join their friends’ partnering committees for the reviewing services
they themselves receive in return. The standard dating website trope of “pro-
files” appears in Call For Partners under the guise of Calls For Partners. The
distinguishing feature of a CFP vs. the traditional profile is that unlike a tradi-
tional profile, a CFP is all about what YOU want, specifying in utmost precision
the desired features in a partner. CFPs come in multiple styles. For example, a
Journal CFP often has a rolling deadline or no deadline at all, where potential

28

partners are encouraged to submit at whatever time they find convenient. In
contrast, a Conference CFP generally has a strict deadline which is extended
only after a disappointingly small number of submissions. The Conference CFP
is especially useful for implementing rebound relationships, a implemented on
many sites, but never before with such rigor.

The CFP model acknowledges that you are TALENTED, and your history
will speak for itself. In addition to a CFP, every participant has a CV listing
relevant accomplishments. Because we are living in the future, Call For Partners
applies advanced Al technology known as “Facebook Stalking” to automatically
generate large portions of a CV. This open-access model (with a level of open-
ness exceeding many leading-edge academic organizations including SIGPLAN)
reduces harrassment and other abuses of the system, because participants are
held accountable for their behavior in public. Remember, boys: Before you
do something you’ll regret, DBLP don’t forget.

Given a CFP and CV, particpants have all the information necessary to write
a Partnership Abstract. A partnership abstract gives a brief, concise descrip-
tion of the contents of the proposed relationship. The Partnership Committee
compares the abstracts against each author’s CV and own CFP, and uses this
to write reviews, ranking each abstract and/or each individual’s self-worth on
a scale of A-F. In most cases, the reviews are clear enough that the PC can
reach an anonymous conclusion as to whether the abstract should be accepted
or not. In the case of a dispute, a PC Chair can be appointed with tie-breaking
authority.

Upon acceptance, the relevant parties gain the ability to message each other
Often, the author of the CFP will request revisions from the author of the
Partnership Abstract before starting the Parternship. While the proposer does
not have the ability to reject the proposee nor request changes of them, it is
traditional to disclose further results publicly, which over time has a significant
affect on the proposee’s Impact Factor.

As with most dating sites, CFP provides funcitonality to help you search
through potential matches into to identify someone to whom you wish to submit
a Partnership Abstract. In addition to the barebones necessities like salary, race,
and number of previous partners, CFP allows you to perform custom searches
that solve the problems specific to academic communities. In fact, we provide
the first known solution to the Two-Body Problem, a generalization of the
Three-Body Problem initially posed by Newton.

The Two-Body Problem was originally phrased by Newton is stated as fol-
lows: Given two bodies A and B each with an attraction and a PhD,
find a place of residency and a salary.

The key issue here, of course, is to identify a salary for two PhD’s at the
same time, as only so many employers are willing to employ the unemployable.
In offline dating, it has been widely recognized that the problem becomes sig-
nificantly easier as the distance in thesis topics increases. Thus, the Two-Body
problem can be reduced to the Some-Body Problem as posed by Mercury: Can
anybody find me somebody to love? Who has a PhD in a technical
field, but preferably not CS and definitely not formal methods, oh

29

god please not formal methods?

At this point, the astute reader will notice that this problem is amenable to
solution via an adequate search feature. The first-of-its-kind CFP Field Search
allows one to specify the exact desired distance between their mate’s work and
their own, using traditional metrics such as Er'os Numbers, Bacon Numbers,
Erdos-Bacon Numbers, and also less traditional metrics. In our companion
paper, we have verified our solution to the Two-Body Problem using Mercury’s
Reduction.

3 Implementation

Call For Partners is currently available to the public as an open beta at callfor.
partners. Call For Partners is implemented with Scala, Slick, Play, Post-
greSQL, Heroku and assorted other buzzwords.

At present the implementation is limited, with the primary limitation being
one known as “grad school”, specifically, “actual work”. However, and especially
due to the subject matter, the implementation process has been utterly free of
the other canonical time limitation known as “girlfriends,” which the author
credits with the implementation progress made so far.

Producing a robust, production-ready implementation of an application like
CFP requires many things. The most important requirement from a business
perspective is the ability to rapidly acquire, and potentially disseminate to St.
Petersburg, a wide variety of sensitive personal information on customers. In
this critical area, we already accell, through a robust account application pro-
cess. Our application process is based on well-established social engineering
techniques that lull a user into a false sense of security before we go in for the
kill. For example we ask them common questions such as their Social Security
Number and mother’s maiden name before getting them to divulge information
that many users find sensitive, such as their thesis topic.

Common wisdom in the software industry is that a successful web application
also needs “features”. One contribution of our work is to refute the above, phony
claim. Websites like Match.com and eHarmony.com have implemented almost
all the features shown in their business proposals and an even more astonishing
fraction of features featured in their advertising materials. CFP, being authored
by the expeditious academics that it is, has more or less elided this step, yet
derived an equal number of publications.

4 Evaluation

An early version of callfor.partners was tested on select attendees of SIBOVIK
2016 in a private beta for the past year. In retrospect, this choice of test users
presented a huge logistical problem: In large part due to their collective scientific
prowess, the average attendee of SIGBOVIK 2016 had at the start of our trial
2.3 girlfriends, 6 boyfriends, 1.9 wives, 4 husbands, 24 desperate exes trying to

30

get back together with them and the occasional 1.5 Texas. In order to keep
the evaluation simple, all such relationships were terminated at the start of the
study, the last of them much to the chagrin of James K. Polk. This in fact
interfered significantly with the validity of our study by sending a vast tidal
wave of fresh singles throughout the surrounding community. However, keeping
with the long-held standards of the scientific community, we will publish the
study anyway.
Our experimental evaluation sought to answer the following questions:

e How does CFP affect the overall number of people dating in a population?
We call this the mojo quotient.

e How does CFP affect the romantic success of individuals within the pop-
ulation? We call this the love-potion factor.

e How effective is CFP at enabling the treatment group to restore itself to its
equilibrium quantity of relationships when the equilibrium is disturbed?
We call this the rebound factor.

A treatment group of 125 attendees was provided with an experimental pre-
release version of CFP. A control group of 75 attendees was provided with
industry-standard dating software. Out of the control group, only 15 partici-
pants made it to the end of the trial. Out of the remaining 60, 40 quit the trial
early due to the despicable dating options available to them, 18 died of loneliness
and two of them decided to date each other as an excuse to stop talking to hot
singles in their area. By the end of the trial, the treatment group had reached
a size of 500, for the participants had produced on average 3 offspring, with
the remaining 25 additions consisting of a mixture of immaculate conceptions,
Russian hackers, and Peruvian drug kingpins bribing their way into the trial.

We initially proposed that the mojo quotient be computed as the fraction
of an overall population engaged in a romantic relationship, but this had two
failings:

e The structure of the population changed vastly over the course of the
study due to widespread procreation.

e By the end of the study, each participant had an average of 550 relation-
ships, contracting common wisdom as to the value of Dunbar’s Number.

The former failing was ameliorated by the fact that a large number of the
resulting newborns also started dating each other. However, this result was so
surprising and potentially-unethical that we felt it, too, ought to be somehow
reflected in our metric.

Thus we settled on the following definition of mojo quotient:

ZPGParticipants |7“€ls(p)| . Cdiapers(p)

l{plage(p) > 18}]

Qum =

31

Where rels is the number relationships a participant is engaged in, age(p) is
their age, diapers(p) is the average number of diapers they use in a day, and c is
an experimentally determined constant set to 5 for the purposes of this study.

The love-potion factor is defined as the median ratio of number of relation-
ships/year after /before the introduction of CFP. Naturally this metric was com-
puted only for participants already in existence at the beginning of the study.
We computed the love-potion factor to be exactly 3, no more, no less, whereas
the control group had a love-potion factor of 0.4. This factor was arguably not
too meaningful given the large number of deserters.

The unique structure of this study greatly simplified our calculation of the
rebound factor, because all participants were artificially reduced to 0 relation-
ships at the onset of the study. The rebound factor is computed by calculating
the time it takes for both the treatment group and control group tor reach
their initial fraction of romantically active participants, then taking the ratio
between the two groups. Unfortunately, the control group never reached its
initial fraction, and thus we have computed a rebound factor of co.

In conclusion, CFP is infiitely better than all competing options.

5 Testimonials

As if the cold, hard, numbers from the previous section were not enough, we
have also obtained a series of testimonial comments from participants in our
study. While testimonials lack the rigorous proof of superiority that we already
provided above, they aid us in the analysis of subjective aspects of the work,
such as why we are the superior dating service.

Initially, I was skeptical about entrusting all my personal information
to a website that encrypted my communications with a Vic cypher,
and whose idea of a salted hash was cannabis with a dash of sodium
chloride, but the minute Anastassia SQL-injected her way into my
financial records, she injected herself into my heart! Nothing spells
true love quite like breaking past a firewall, compromising private
records and selling my credit card to the Russian mafia. We’ve been
together for months now and we really just click. — Ryan Kavanagh

Before I used CFP, I was in, like, one relationship, tops. Now I'm
in so many relationships I think the US Navy is jealous of just how
often I am shipped. — Stefan Muller

6 Related Work

Many websites have addressed the related work of dating, though the author
strongly suggest that you do not date your relatives for it is bad for the gene pool.
Websites such as eHarmony are based on the pseudo-science of compatibility.
Anyone who has ever tried to open a Word 2016 in Word 95 knows that most

32

things we say are compatible, are not, and thus it is with humans. OkCupid
appeals to paganistic rituals in the hopes of receiving optimal pairings from
the divines, who, unfortunately, do not believe in computers. Match.com and
Tinder both determine optimal dates by lighting large groups of singles on fire
and seeing which ones burn to the ground. Those which do not burn are witches
and thus not good dating material, but unfortunately by that point all the good
ones are dead, making the method ineffective in practice.

7 Promotional Offers

Most scientific papers offer you so-called “knowledge” for “free”, where “free”
means you already belong to an institution which has already paid an ex-
horbinant fee in order to access the publication, or perhaps you have located the
author’s so-called “web-site”. At CFP, we believe in doing things differently.
This article has already provided you with free knowledge, free not only as in
beer but as in speech, and now we are going to provide you with even more
freedom like the good patriotic Americans that we are.

Typically, like all profitable businesses, CFP does not come for free. It
can be paid for in several different ways, including not only the typical monthly
subscription models, but also more academic-friendly methods such as co-author
status on your publications or NSF grant funding (after extensive lobbying of the
NSF Computer Science Directorate, acquisition of life partners is now considered
a billable research expense). Since you, dear reader, have gotten in early by
reading our very first publication, you can try CFP for a limited time, free-of-
cost. This year’s SIGBOVIK 2017 proceedings come with an included 6-month
membership to CFP (this was totally not a bribe in order to get the present
article published), which can be extended to at least 2 years via our affiliate
program: every friend or lover you recommend to CFP (to the paid service, of
course) will extend your membership by 1 month.

Now how’s THAT for some science?

8 Conclusion

In this paper, we have presented Call For Partners, an online dating service
based on academic peer-review. Call For Partners uses the rigor of peer-review
to reduce the number of dating errors due to human bias. An implementation
is provided using the Inter-Net, by which users can try out the proposed dating
methods for themselves and significantly increase the author’s material wealth.
An empirical study shows that not only does CFP significantly reduce the num-
ber of errors, but it drastically increases the amount of dating at the same time.
Not only are the results of our empirical study significant, but a promotional
offer is given whose savings are significant as well.

33

Nano Electronic Transplant in Brain and Eyes to Analyze and Process Human Thoughts and
Emotions.
Chinmaya Lele
University of Pittsburgh
chinmaylele1993@gmail.com

Striking a conversation is very important and saying the right words is as important as to
identify what’s going in the mind of the other person. Identifying the emotions of the other person
helps us in narrowing down the things which we must say to turn the conversations into
opportunities.

The transplant is supposed to be implanted in brain and eyes, where the eye implant would
capture the facial expressions of the person. The brain implant is going to communicate with the
eye implant which would send the information signals to the brain implant to analyze the
information captured.

The brain implant will analyze the information which would send back signals to the eye
implant to display the appropriate response to be given to the person while engaged in a
conversation. The eye implant would also have a omni display interface which helps the implant
wearing person to see the information displayed. The eye implant is of the size of an eye contact
lens which can be worn out when not required and which is charged through the solar energy which
the eye absorbs while looking around. The brain implant would also have space to store the
conversations which are being recorded by the eye implant which could be retrieved to be seen

again and reviewed on the eye implant.

34

The idea resembles to the 2008 movie ‘Iron Man’ in which Tony Stark could see all the
information through his display inside the armor suit. The only difference is that in this case it is

the implant which is doing all the processing of images and emotions.

35

Grant proposal: Monetary policy of sparkly things

Pete and Luna, co-purrnciple investigators

Stefan Muller, research assistant

1 Introduction to sparkly things

We propose an investigation into the policy surrounding a currency recently introduced into our economy,
known as the sparkly thing.

Figure 1: The purrnciple investigators with the sparkly things.

Sparkly things are earned by individuals as compensation for labor (see Figure 2) and can be exchanged
for products and services such as prime lounging spots (see Figure 3).

Figure 2: Working hard to earn sparkly things.

Figure 3: The spoils purchased with sparkly things.

Sparkly things can also be saved in long-term accounts.

36

Figure 4: Savings account.

2 Central bank of sparkly things

We believe that the supply of sparkly things is controlled by the Sparkly Thing Reserve System, headquar-
tered in the silverware drawer (Figure 5).

Figure 5: The Sparkly Thing Reserve Bank.

37

3 Interest Rates

The interest rate was recently lowered for the third time in two months, after we discovered that the sparkly
things are not food.

4 Financial Crimes

As part of our investigation, we hope to discover ways of better identifying crimes such as money laundering.

]

|

38

o ol €l €l €l ©els ©
Monkey track

It’s Only a Game Theory
g Colie Ceals ez Tz el *©

10 Is it Percival time yet?: A preliminary analysis of Avalon
gameplay and strategy

Yuzuko Nakamura

11 Dr. Boozehead, or How I learned to stop worrying and get
drunk: Design principles and analysis of drinking games in the
silicon age

Kelvin M. Liu-Huang and Emily J. Simon

12 A boring follow-up paper to “Which ITG stepcharts are turni-
est?” titled, “Which ITG stepcharts are crossoveriest and/or
footswitchiest?”

Ben Blum

39

Is it Percival time yet?: A preliminary analysis of Avalon
gameplay and strategy

Yuzuko Nakamura
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
yuzi@cs.cmu.edu

ABSTRACT

The Resistance: Avalon is a hidden-roles-style board game. In this
paper, we use data collected over dozens of Avalon games to make
recommendations on role sets and game sizes that maximize the
game-playing experience. We also evaluate the effect of various
strategies on good and evil’s chances of winning.

KEYWORDS

Board games, hidden-role games, game design

ACM Reference format:

Yuzuko Nakamura. 2017. Is it Percival time yet?: A preliminary analysis of
Avalon gameplay and strategy. In Proceedings of SIGBOVIK, Pittsburgh, PA
USA, April 2017 (SIGBOVIK’17), 6 pages.

DOI: 10.475/123_4

1 INTRODUCTION

The Resistance: Avalon [1], like Mafia, is a multiplayer game cen-
tered around hidden roles. Hidden role games involve players being
randomly assigned roles that are not revealed to other players.
These games often feature two or more sides with their own win
conditions; in particular, there is frequently an evil or sabotaging
side that attempts to bluff and win people’s trust in order to win the
game, and a good (but generally information-less) side that must
correctly guess who to trust in order to win the game.

Avalon is a two-team game themed around King Arthur: the
loyal knights of King Arthur (good team) attempt to succeed three
quests (missions), and the minions of Mordred (evil team) attempt
to be placed on the missions so as to sabotage them and lead three
of them to fail. As such, the aim of evil is to be trusted by good
players and the aim of good is to determine who can be safely
trusted to be sent on a mission. In addition, all members of the evil
team know each other (with possible exceptions).

Avalon in its simplest form! features two special roles, Merlin
and the Assassin. The addition of two other special roles, Percival
and Morgana, creates more opportunities for bluffing, trust, and
strategy so we are interested in games with these four roles:

1 Avalon may also be played without any special roles (in which case it resembles its

predecessor, The Resistance). However, the main feature of Avalon are these special
roles.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGBOVIK'17, Pittsburgh, PA USA

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

40

e Merlin (good): The player with this role knows all evil roles.
They must guide other good players to this knowledge.
However, Merlin must be subtle in the way they do this
due to the role of the Assassin.

o Assassin (evil): If good successfully passes three missions,
the player with this role gets to choose one good person to
assassinate (after discussing with the rest of the evil team).
If the assassinated player was Merlin, evil snatches victory
from the jaws of defeat and wins the game. As such, this
person serves as a check on Merlin’s ability to help the
good team.

e Percival (good): The player with this role knows who Mer-
lin is. As such, they can also gain indirect information
about who to trust by quietly observing Merlin’s actions
and can appear to evil as a decoy Merlin. However, due to
the role of Morgana, Percival must first determine which
Merlin to trust.

e Morgana (evil): The player with this role appears as a sec-
ond Merlin to Percival, forcing Percival to spend some time
determining who to trust, and possibly leading Percival to
sabotage the good team by trusting Morgana instead of
Merlin.

Good players who are neither Merlin nor Percival (generic good)
know nothing about any player other than themselves. Merlin and
evil players know the full evil team. Percival knows the two people
who are Merlin and Morgana, but not which is which. This selective
information is revealed to the appropriate players at the start of the
game - termed the “nighttime phase” - by asking players to close
their eyes, and then open their eyes to get information or raise their
thumb to identify themselves, as appropriate.

In this paper, we seek to evaluate how rules and game size affect
the funness of the gaming experience, and how different strategies
are more or less successful for good and evil.

2 GAME ANALYSIS

2.1 Evaluating funness

2.1.1 Ideal win ratio. One feature of Avalon is that, not only are
the good and evil teams asymmetrical (having different abilities,
information, and objectives), but they are also of asymmetric sizes
(the evil team in Mafia-style games needing to be a minority to
avoid the game being trivially easy).

Supposition A: Funness is maximized by maximizing uncertainty.
In other words, we want the probability of winning to be 1/2 re-
gardless which team one is on. This means overall win chance of

SIGBOVIK’17, April 2017, Pittsburgh, PA USA

Table 1: Ideal win ratios for each possible size of Avalon
game under Supposition B (making evil wins as likely as
good wins).

Game Size #Evil Ideal Good Win Chance
5 2 .40
6 2 .33
7 3 43
8 3 .38
9 3 .33
10 4 .40

good and evil must be balanced to be 1/2 for an ideal game-playing
experience.

Supposition B: Funness is maximized by making each person’s
wins equally likely to be earned while on the good team as while
on the evil team. Equivalently, across all games, the good and evil
teams both produce roughly the same number of winners. Under
this supposition:

1
Pr(iis good | i wins) = Pr(i is evil | i wins) = 3

(1)
Or...

Pr(iis good N iwins) Pr(iisevil N i wins)

@)

Pr(i wins) Pr(i wins)

Assuming player i doesn’t affect the win probability of their
team, this is the same as:

Pr(iis good) - Pr(good wins) = Pr(i is evil) - Pr(evil wins)

®)

If pgooa is the win probability for good, and G is the chance of
being good (i.e. the number of good roles over the total game size),
then this equation is:

G *Pgood = (1-6)-1 _Pgood) 4)
G *Pgood = 1-G ~Pgood T G- Pgood ©)
Pgood = 1-G (6)

In other words, under this supposition of equalizing the portion
of good and evil wins, the ideal win ratio for win is 1 — G, or the
chance of being evil.

The number of evil players changes depending on the total num-
ber of players. Table 1 summarizes the ideal win chances under this
second supposition.

2.1.2 Game duration. Another important component of fun is
the length of a board game session. We hypothesize that length of
game goes up as the number of players in the game increases due
to more discussion. We also are interested in comparing the typical
game length to the 30 minutes claimed on the box.

41

Yuzuko Nakamura

2.2 Strategy

2.2.1 Percival claims. The rules in the instruction manual are
not clear on whether players are allowed to claim to be Percival.
However, the role of Percival is similar to the role of generic good
— and unlike Merlin or the evil roles — in that claiming the role
can potentially help the claimant’s team (whether good or evil).
Therefore, we allow players to publicly claim to be Percival.

A true Percival claim (Percival claiming Percival) can increase
trust among good members but can possibly make Merlin assassina-
tion easier for the evil team. We are interested in whether claiming
to be Percival, and the timing of such claims, tends to help good or
evil.

2.2.2 The first mission fail. Evil players have the choice whether
to throw in a fail card or a success card for missions that they go
on. A sole evil player on the first mission may decide to pass the
mission to avoid detection / suspicion for being on a failing team.
However, an early mission fail can make the evil team’s task of
failing three missions total easier.

We are interested in whether first mission fails overall help the
good or evil team, and how the size of the first mission factors in
to this.

2.2.3 Evil coordination failures. When two or more evil players
are on a mission team, they each have to choose whether to throw
in a fail or success card, not knowing what their teammates are
planning to do. As a result, sometimes evil players may end up
passing the mission, or may put in more than one fail card, revealing
key information about the make-up of the team. As such, a team
with more than one evil person is not ideal for the evil team, and
they may be cautious about proposing or approving teams with
this make-up.

How often do coordination failures happen, and how do they
affect evil’s chance of winning? We investigate these questions in
this paper.

3 METHOD

A body of 38 graduate students played games of Avalon (20 of
which played “semi-regularly” i.e. five or more times during the
data collection period). In total, 66 games were recorded although
5 were discarded due to incomplete information, resulting in 61
games overall.

All games were played using the Merlin, Percival, Morgana, and
Assassin special roles. In addition, 10 of these games added the
special roles Mordred and/or Oberon.

The following data were collected for each game:

o Number of players and role of each

e Approved mission teams and mission outcomes (but not
proposed mission teams)

e Outcome of each mission (pass/fail)

e Outcome of game (win for either good or evil), including
the win condition (three mission fails (evil win), mission
success but Merlin assassination (evil win), or mission suc-
cess and failed Merlin assassination (only good win condi-
tion))

e Which player(s) claimed to be Percival and when (if appli-
cable)

Is it Percival time yet?: A preliminary analysis of Avalon gameplay and strategy

Number of games played for each

game size

16
§14
r—&u
2 10
8
*
5 4

2 |
0

6 7 8 9 10 11

Game size

Figure 1: Number of games played for each size of game.

e Which player was assassinated (if applicable)

e Duration of game (measured from the end of night-time
phase to either three mission fails or evil’s Merlin assassi-
nation choice)

Linear regression was used to determine whether game size
affected duration.

Chi-squared tests were used to determine whether (1) the pres-
ence of Percival claims affected the evil’s team Merlin guess rate
(Percival claim/no claim vs. Merlin guess/good win condition); (2)
evil failing the first mission affected the chance of evil winning (first
mission pass/fail vs. winner of game); (3) the presence of missions
requiring evil coordination affected the chance of evil winning
(zero/non-zero coordination missions in game vs. winner of game).

4 RESULTS

4.1 Number and size of games

Fig. 1 shows how many games of each size were played in the
dataset. Although Avalon can in theory be played with game sizes
of 5 to 10, players did not enjoy games of size 5 and so only played
Avalon if at least 6 players were present. A game of size 11 can
be played with the 10-player board and 4 evil characters (as in a
10-player game), and an extra set of vote tokens.

4.2 Win ratio

Overall, the win rate of the good team was .34. Fig. 2 shows how
this win ratio changes with the size of the game. The good win
ratio for 9-player games stands out as unusually high. This is also
the game size with the fewest data points (see Fig. 1), so that may
be part of the reason.

Under Supposition A of game funness, 6- and 9-player games
are the only ones close to the ideal difficulty for good. 7-, 8-, and
10-player games fall short of both ideal win ratios. As such, it may
be worthwhile to use gameplay mechanics that tilt the game in
favor of good (Oberon as one of the evil roles, Lady of the Lake,
etc.).

Under Supposition B of game funness, the 6- and 9-player games
need to be altered to be more difficult. In particular, a 9-player

42

SIGBOVIK’17, April 2017, Pittsburgh, PA USA

Win ratio by game size

(o]
= 0.8
©
- 0.6
S| B e N
- 0.4
(@]
802

0

6 7 8 9 10 Qverall
Game size

Ideal win ratio (A) Ideal win ratio (B)

Good win ratio

Figure 2: Good’s win record at each game size. The dotted
line shows the ideal .5 win ratio under the supposition that
good and evil should be equally likely to win. The dashed
line shows the ideal win ratio under the supposition that
people earn wins equally as good people as they do as evil
people.

game might benefit from 4 evil roles (instead of 3), one of which is
Oberon.

4.3 Game duration

Fig. 3 shows the distribution of game length. The mean game length
is 57.3 minutes and the median game length is similar — 57 min-
utes. Most (80% of) games can be played within 80 minutes. This
is markedly longer than the 30 minutes estimated in marketing
materials.?

We can break down game length by the size of game, resulting
in Fig. 4. Games of size 9 are again an outlier, being unusually
quick, and being the only game size that approaches the 30-minute
estimated play time.

There seems to a slight trend of longer games with more players
in line with our hypothesis; however linear regression (removing
the 9-person games) does not quite reach significance (p=.0663) and
game size has low explanatory power for duration (R?=.0524).

4.4 Percival claims

Fig. 5 compares the outcome of games where a Percival claim is
made vs. ones where no Percival claims are made. Games with
Percival claims are much more likely to end in mission failure,
which makes sense because one reason why Percival might claim
is because several failing missions have happened, and Percival (or
Merlin) is trying to increase the chance of choosing an all-good
team (i.e. scenarios with multiple failing missions are scenarios
where Percival is likely to claim).

Among the remaining cases where three missions succeed, we
are interested in comparing how often Merlin is assassinated in

21t is possible that this particular group of graduate students discusses an unusually
large amount during Avalon.

SIGBOVIK’17, April 2017, Pittsburgh, PA USA

Histogram of game length

10 12

8
|

Frequency
6
l

—

[I I I 1
20 40 60 80 100

Duration (minutes)

Figure 3: Histogram of game lengths.

Duration by game size

Duration (mins)
20 40 60 80 100
! !
HI -
L1 H
T -
--4
H1

0
|

Game size

Figure 4: How length of game changes with game size.

Table 2: Merlin assassination successes under the conditions
of a Percival claim vs. no such claim.

Merlin assassinated Good wins

Percival claim 16 11
No Percival claim 10 10

each case (Percival reveal vs. no reveal). Table 2 shows the number
of games in each condition. The Merlin assassination chance when
Percival reveals (.59) is higher than when there is no Percival reveal
(.50). However, the chi-squared test shows no significant difference

(p=.738).

Yuzuko Nakamura

Game outcomes by Percival claim

Portion of games
© © o o o
-] w BN €]
4
N
A Y
~
(N

o

Mission fail Merlin Good wins

assassination
Game outcome

=4= No Percival claim —#=—Percival claim

Figure 5: Portion of games that end with mission fails (evil
win), Merlin assassinations (evil win), or neither (good win)
under the conditions of Percival not revealing and Percival
revealing.

Table 3: Game victor under the conditions of a first mission
fail vs. a first mission pass (games sizes 8+).

Evil Good
First mission fail 13 3
First mission pass 5 4

There was not enough data to do an analysis of how the timing
of Percival claims affect good’s chance of victory. We leave this to
future work.

4.5 The first mission fail

Although the intent was to analyze how first mission team size (two-
person first missions (in games with 5-7 players) vs. three-person
first missions (in games with 8+ players)) affects the outcome of
the game, in practice, only one two-person first mission with an
evil player (out of 16) was failed by the evil player. This is a difficult
strategy to pull off for the evil player because for the rest of the
game, at least one good person knows for sure one member of the
evil team, and the evil person must consistently behave to give the
impression of being someone in that situation.

Therefore, we instead look only at games with three-person first
missions. Of the 24 games with evil players present on the first
mission, 16 (67%) were failed by those players. Table 3 shows how
evil’s play during the first mission affected the victor of the game.

There is not enough data to perform a reliable chi-squared anal-
ysis, but it is possible that failing the first mission is overall a good
strategy for the evil team.

4.6 Evil coordination failures

Of the 61 games, 32 (52%) featured no evil coordination missions,
while the rest had at least one evil coordination team. Fig. 6 indicates
how often games featured a certain number of evil coordination

43

Is it Percival time yet?: A preliminary analysis of Avalon gameplay and strategy

Number of games featuring evil
coordination missions

0 1 2 3
Number of coordination missions in game

Figure 6: Number of games featuring zero, one, two, or three
missions with more evil people than the required number
of fails.

Frequency of different number of
fail cards (2-evil mission)

of fail cards played

Mission 1 —#—Mission 2

== Mission 3 === Chance

Figure 7: How often zero, one, or two fails come out for one-
fail-required missions.

teams. Overall, this suggests the chance of any mission containing
multiple evil people is roughly 15%. Note: It is impossible to have
coordination issues on the fifth mission because any number of fails
is acceptable for the evil team. Coordination issues on the fourth
mission of games of 7+ players, where two fails are required, are
rarer (as this only happens when three evil people are placed on
the team) but are still important to the game.

38 of the 41 coordination missions (92%) involved two evil people
on one-fail-required missions. Fig. 7 summarizes how frequently
zero, one, or two fails come out in this situation. This figure shows
that the number of fails that come out in Mission 2 and Mission 3 are
roughly what you’d expect based on random chance (independent
events with .5 probability of occurring). However, Mission 1 is much
more skewed toward zero fails, corresponding to roughly a 20-25%
chance of each person throwing out a fail. This makes sense as a
two-fail result on the first mission can be costly to the evil team.

44

SIGBOVIK’17, April 2017, Pittsburgh, PA USA

Table 4: Game victor under the conditions of zero or at least
one evil coordination mission.

Evil Good
No evil coordination missions 15 10
1+ evil coordination mission 22 7

Evil win ratio by coordination
performance

-

g ./—"/.
o
c 06
204
2 02

0

No More fails Mixed More
coordination success successes
teams

Coordination success

Figure 8: Evil win rate broken down by ability of evil to co-
ordinate.

We also analyze how evil coordination missions affect the chance
of good or evil winning the game. Removing from consideration
games where evil never gets the chance to go on any mission,
Table 4 summarizes the game outcomes when there are no evil
coordination missions vs. when there’s at least one. Evil’s win ratio
in the presence of coordination missions (.76) is higher than when
there are no coordination missions (.60), although this effect does
not reach significance (p=.338).

Figs. 8 and 9 break down the effect of evil coordination further.
Fig. 8 takes into account evil’s coordination performance — success
means throwing out exactly the number of fails needed to fail the
mission, and failure means throwing out more or fewer fails than
needed. Fig. 8 separates the data into three conditions: games where
evil mostly failed at coordinating (14 games), games where evil both
succeeded and failed at coordinating once (4 games), and games
where evil more often succeeded at coordinating (11 games). Fig. 9
shows how evil’s win rate changed as the number of coordination
missions in the game increased.

In all cases, there is not enough data to draw any definitive
conclusions. However, contrary to expectations, it is possible that
evil coordination situations might be slightly beneficial to the evil
team.

5 DISCUSSION

We analyzed data from 61 games of Avalon. We found that games of
size 9 were unusual in the amount they were played (less popular),
how long they lasted (shorter), and game difficulty (good team
more likely to win). Some games might require adjustment to their
difficulty. In particular, 9-player games might require more evil
characters, and 7-, 8-, and 10-player games might require a slight
good handicap. Typical game time is more than one hour.

SIGBOVIK’17, April 2017, Pittsburgh, PA USA

Evil win ratio by number of
coordination missions

B

Evil win ratio
o o
(o2} o0 -

o o
N

(=)

0 1 2 3
Number of coordination missions in game

Figure 9: Evil win rate broken down by how many times dur-
ing the game evil needed to coordinate.

In this particular dataset, Percival reveals resulted in slightly
more Merlin assassinations; evil failing the first mission resulted
in more evil wins; and the presence of evil coordination missions
resulted in more evil wins. One possible explanation for this last
finding is that it is hard for good people to reason about teams
where more than one of the members was evil, and so they may
be more likely to make decisions that assume only one evil person
was on the team.> However, more data might reveal these trends to
be spurious/random noise.

A notable gap in the dataset is the general absence of two-person
first missions failed by an evil player on the team. In the future, it
would be interesting for evil to experiment with failing two-person
missions to see if this strategy might be beneficial for evil overall.
A more detailed analysis of Percival claim timing would be also be
good to do with more data. Another promising avenue of future
work would be to analyze the effect of rejecting missions on good
and evil’s chance of winning.

5.1 Conclusion

Hidden role games like Avalon provide a large space for both game
design (e.g. number of players, set of specialized roles) and player
strategy (e.g. failing the first mission, claiming Percival, team ap-
proval strategies, etc.). As such, collecting and analyzing data under
different game conditions can be useful in improving the player
experience and evaluating the strength of different strategies. Al-
though limited by the amount of data, this work represents a pre-
liminary step in the direction of analyzing the gameplay of Avalon.

ACKNOWLEDGMENTS

The author would like to thank Kristy Gardner for kick-starting
this collective Avalon Problem in the department, Ryan Kavanagh
for taking better care of the Avalon stats sheet than the author, and
Liam K. Bright for listening to the author’s shaky probability math.

31f evil does indeed benefit from coordination issues, this might interestingly increase
the value of Zhu-Brown strategies (multiple evil proposing multiple evil people on
their teams).

45

Yuzuko Nakamura

REFERENCES

[1] Don Eskridge. 2012. The Resistance: Avalon. Indie Boards and Cards. Board
game.

CONFIDENTIAL COMMITTEE MATERIALS
SIGBOVIK 2017 Paper Review

Paper 92: |s it Percival time yet?:
A preliminary analysis of Avalon
gameplay and strategy

Percival
Rating: Vote your conscience
Confidence: I’m so confused, guys...

It’s no fun when Merlin gets assassinated or evil wins, so Supposition A sounds like something a
spy would say. As a result, I question one of this paper’s fundamental premises. Is the author a
spy?! Regardless, this paper is a first-class analysis of our collective obsession with Avalon.

Percival 11
Vote: Approve
Confidence: We’ve got to do this.

I’m totally not evil, and I'm the real Percival. I support this mission.

Ryan Kavanagh
Rating: Approve
Confidence: I think Percival is the real Percival?

No more Percivals, please! Think of the poor stats sheet!

Normally we would recuse ourselves from reviewing papers we’re involved with,! but the program
committee couldn’t think of anybody anybody who hadn’t contributed to this paper’s data set. This
paper provides a fun analysis of Avalon’s innate funness. Section 4.5 claims there was insufficient
data to perform a reliable chi-squared analysis. Consequently, I encourage the author to switch her
research area to the analysis of Avalon and hire the program committee as research assistants so
that we can play more Avalon, err, I mean, help her collect important data for a follow-up paper.

IBecause SIGBOVIK is a serious conference with serious reviews.

46

Dr. Boozehead, or How | Learned to Stop Worrying and Get Drunk:
Design Principles and Analysis of Drinking Games in the Silicon Age

Kelvin M. Liu-Huang
Carnegie Mellon University
kmliu@cmu.edu

Abstract

From beer pong to beer bong, drinking games
have a storied past, seated at the intersection of
sublimating puritanical repression [1] and the
great ape's boundless curiosity. Animals utilize
play to express themselves and practice
behaviors. For humans, play is so important that
rules of play are codified into games. VYet,
scientific study of human games and game design
has been greatly underrepresented, and even
more so for drinking games. In the present study
we sought to distill the essential principles of
those traditions, which lie at the intersection of
interactive gaming and indulging in poisonous
fluids. Through careful field analysis and
repetitive study, we propose that concrete
prerequisites, mental requirements, and social
abetment are all fundamental attributes of a
successful drinking game. To evaluate our design
principles, we designed three novel drinking
games, beer baseball, soccer shots, and beer nim.
We also evaluate the popular drinking game, beer
pong, as a benchmark. Comparing our
innovations to the benchmark, we demonstrate
the effectiveness of applying our design principles,
showing that beer baseball and beer pong knock it
out of the park, while beer nim (our straw man)
eats dirt.

1. Introduction

Animals evolved play to communicate and
manipulate [2][3]; learn aggressive, predatory,
and foraging behaviors [4]; and improve cognitive
function [5]. To the great ape, play is so important
that rules of play are codified into numerous
philosophies called “games.” Popular games are
standardized internationally, generously funded,
vicariously enjoyed by large fractions of the
population, and game elders typically receive the

Emily J. Simon
Carnegie Mellon University
ejsimon@andrew.cmu.edu

highest salaries at learning institutions
[6]. Furthermore, games (as well as all other
activities) are often integrated with ingestion of
poisonous liquids to stimulate social interaction
and enjoyment. In many ways, these “drinking
games” may be regarded as paragon forms of play
because they achieve so many different objectives
of play.

Despite the importance of such games
and the complexities of game design, very little
formal study and scientific discourse have been
devoted to game design. Ordinary tabletop games
require delicate balance of tool complexity, rule
complexity, computational complexity, game-to-
game variance, audience appeal, and mechanical
and narrative harmony.

The design of drinking games requires
arguably even more sensitivity. Between the
innately chaotic environment of parties, the need
to facilitate communication, and judicious
application of refreshments [1], drinking games
embody the highest achievements of human
design gathered from the likes of Chess, Go, or
Ping Pong. Yet the design and study of drinking
games is even lower in the pecking order than
ordinary games. Even fewer serious examinations
have been made of drinking game design
[1]{a][8]. Popular with men and women fond of
classical languages, drinking games have
historically been typecast as intellectually and
socially inferior. At the risk of resorting to
platitudes, we know that correlation does not
imply causation [9], so this alone should not be an
indictment of the noble pastime of drinking
games.

2. Design Principles
A fecund party is a palpable maelstrom of active,
bass/brainless, clumsy, dance, and entropy. Look

47

for these symptoms using the simple acronym,
ABCDE. A drinking game should satisfy all the
principles of game design, as well as judiciously
accounting for these party properties.

2.1. Easy to organize (ABCDE)

Due to spontaneity and inattentiveness (A), a
drinking game must require minimal planning,
simple setup, and little infrastructure. Due to
heavy bass (B), brainlessness (B), and entropy (E),
mobilizing players and organizing a game must be
simple. Props (if used) should be low cost and
ubiquitous, or at least portable. There should be
few and simple rules to explain due to (A) as well
as interjection from the hard bassline (B). Due to
brainlessness (B), clumsiness (C), and entropy (E),
the drinking game should be low risk. Messes and
injuries are sure to dampen a thriving
party. Above all, the drinking game needs to be
technically feasible given the specific parameters
of the party. Space for a large game can
depreciate due to dancing (D) and entropy
(E). Too much bass (B) might also drown out the
speaking portion of some would-be drinking
games.

2.2. Social (NP, P=NP, KEG)

Parties must facilitate social interaction to avoid
noncompliant prairie-dogs (NP), individuals who
wallflower, stand alone, or look around
perplexed. In general, we don’t want players not
playing (P=NP). A drinking game readily serves
this need by providing a platform for players to
communicate [1]. Meanwhile the game itself
cannot require too much focus, so as to allow
informal conversation. To facilitate social
networking, a drinking game ideally allows players
to join or leave as they please. We introduce a
metric for this fungibility called the KEG (keep
entering/exiting games) norm. Though some
partygoers may wish to linger on one game, the
option to devote only an aliquot of time is
vital. Therefore we must always remember the
KEG!

2.3. Appropriate difficulty (NP-complete)

The computational complexity of such critically
acclaimed board games as Agricola and 7 Wonders
tend to be unpalatable for a drinking
environment. Other forms of play, such as
football, hunting, and monster truck driving, carry
a level of risk and finesse that should not be
expected of inebriated patrons, due to
brainlessness (B) and clumsiness (C). That is not
to say that refreshments do not go well with a
titillating round of Elder Dragon Highlander, but
rather, the choice of drinking game depends
heavily on the mood and flavor of the party.
Because intoxication impairs judgment
(B), a drinking game has an ideal runtime
complexity between O(0) and that of ordinary
games, inclusive. As with ordinary games, the
level of difficulty needs to carefully chosen,
commensurate to the mood and audience. The
game is boring if too easy and either boring or
draining if too hard. That optimal level just
happens to be lower than for ordinary
games. More importantly, a drinking game should
have a runspace complexity much less than that of
ordinary games because impaired memory
capacity is one of the first symptoms of
intoxication (B). We must avoid a game that is
completely not playable (NP-complete).

2.4. Low cost, high reward (PING PONG)
Given the whimsical yet effusive milieu (A) of a
party, patrons should not feel too physically,
mentally, or emotionally drained after a single
game. Therefore we propose the following
heuristics to optimally calibrate the primary
investment energy gift (or PING) against the
principle output and gain (PONG). (1) A single
game should not occupy an unreasonably large
aliquot of the party time. (2) Players should not
have to learn unreasonable skills. (3) Players
should receive maximum fun output in exchange
for participation input.

Points (1) and (2) requires a reduction in
the activation energy for playing the game due to
inattentiveness (A) and brainlessness (B). This
disqualifies widely lauded games such as Settlers
of Catan with the Cities and Knights expansion,
Warhammer 40,000, and Dungeons and
Dragons. These games may offer high payoff in

48

the currency of intrigue and imagination, but
prove unfeasible for the passing tourist without
dedicating hours or weeks preparing and learning
the strategy. Unless the social norms of partying
undergo a dramatic paradigm shift to
accommodate pre-party strategy sessions and
avatar development, drinking games will remain
limited to simple setup and rules.

To satisfy point (3), players cannot be
excessively focused on winning or losing (since
only a fraction of players can win each
game). Point (3) comes attached with the caveat
that anyone who does not find the game “fun” will
be ceremonially denominated as “excretory
celebrants.” It thus follows that any reasonable
partier should find the game entertaining and
exciting in a manner linearly related to BAC.

2.5. Drinking is integral (DUI)

We all like games, from corn hole to cricket to
Chrono Trigger, and we all like drinking, but
drinking games stand alone. While drinking can
be performed alongside almost any activity,
games that are not designed with drinking in mind
often fail to synergize logistically and
thematically. Therefore we propose the Drinking
is Utterly Indispensable principle (the DUI
principle). A drinking game must be unable to
progress without players taking their apportioned
drinks [1].

For example, while Twister surely makes a
fun party game, drinking is at best encouraged but
not mandatory. In contrast, flip cup cannot
progress until the beverage has been downed (or
players start flipping full cups whereupon the
game surreptitiously transforms into Stand on a
Sticky Wet Floor). Secondly, drinking games are
reserved for parties. If one were to play them
sober, they would be reduced to “games for
people with poor fine motor dexterity” due to (C),
or alternatively, “stupidly easy games” due to
(B). Third, winning and losing, and increasing
inebriation by proxy, should not make the game
less fun [1]. In fact, a good drinking game ripens
with age as the party progresses!

3. Examples

3.1. Beer Pong

Few drinking games are as popular and time-
honored [1] as beer pong, also known as Beirut
[10]. Beer pong is often considered the
progenitor of the shooting into cups (SIC) drinking
games archetype. Thus due to natural selection,
one would expect beer pong to be a highly
optimized drinking game which satisfies many of
our design principles.

With regards to feasibility, beer pong
requires virtually no planning (just selecting two
or four players), ubiquitous resources (red solo
cups and ping pong balls), and little
maintenance. However, the full rule set can be
quite cumbersome and vary dramatically with the
east and west coast populations. Furthermore,
the large number of cups poses a high risk of a
pathogenic state known as a “party foul.”

Socially speaking, players can freely apply
KEG if they can find a substitute, or even take
“celebrity shots.” Watching balls land in cups can
be as exciting for the players as the crowd. The
strategy is simple enough for any patron to
enjoy. In fact it may be too simple. We estimate
an O(0) runtime complexity for determining the
optimal strategy. Beer pong satisfies low-cost,
high-reward in many ways. Little preparation and
time are necessary. Games can often be decided
by the last cup, providing excitement until the last
moment.

Drinking is heavily integrated into beer
pong, both thematically and mechanically. The
cups both hold and are stabilized by the
beverage. However this historical methodology
has been hotly contested by hygiene
scientists. Furthermore, inebriation conveniently
amplifies the dexterity challenge. However, one
potential issue is that the loser drinks more,
becoming less dexterous, which positively feeds
back to losing even more.

As we can see, aside from the risk of party
foul, excessive simplicity, and potential positive
feedback, beer pong is virtually a paragon of
design principles. So can we do better? We will
demonstrate that improvement is in fact possible.

49

3.3. Beer Nim

We designed a game entitled beer nim, which is
exactly equivalent to the classical game, nim,
played with beer cups instead of stones [11]. A
number of red solo cups filled with an arbitrary
quantity of beverage are arranged into three
groups. Players take turns drinking a number of
cups (instead of removing a number of
stones). The player to drink the last cup wins.

Beer nim requires little planning, simple
setup, little maintenance, relatively few and
simple rules, and low risk of party foul. However
it fails to adhere to, and even actively opposes,
virtually all other design principles. Socially, beer
nim can only be played with two players,
facilitates little conversation because it requires so
much thinking, and requires a great deal of
attention. It does, however, allow the crowd to
vicariously play the game mentally. In terms of
difficulty, the runtime complexity of beer nim is
technically O(t), though the constant is much
larger than the other games
discussed. Furthermore, the runspace complexity
is significantly larger and left as an exercise to the
reader. This is more problematic due to impaired
memory constraint.

Based on utter failure to satisfy most of
the design principles, we must conclude that beer
nim is a terrible innovation. Therefore we can use
beer nim as a lower bound benchmark.

3.2. Beer Baseball

In preparation for an Olympics themed house
party, Gisolfi and Liu-Huang developed a sports-
themed drinking game, beer baseball. We
describe beer baseball’s rules below and compare
its funness and adherence to design principles
against beer pong, the benchmark.

3.2.1. Setup

e 2 teams of 4+ players (do not have to be the
same size)

e Small table

e Line 4 "base" cups moving away from the
shooter

e Put 6 additional "out" cups, one on each side of
second, third, and home base

home
3rd base area
base area
out/error cups
batter
adequate distance
(not shown to scale)

area

Q00
ololole
QYL

out/error cups

1st base area

3.2.2. Gameplay
e Teams take turns "batting" and "fielding"
e Batting:
o Players on the batting team take turns trying
to shoot the ping pong ball into base cups
o During her turn, a batter can keep shooting
until she makes a base cup or gets out
o Outs:
= |f the batter misses the cups, he gets a
“strike”
= |f a batter gets three strikes, he is out.
= |f the batter ever makes an out cup, he is
immediately out regardless of the
number of strikes
= After three outs, the inning ends, and the
teams switch batting and fielding roles
o If the batter makes a base cup, he takes that
base by moving to that side of the table (1st
base = right side, 2nd = opposite, 3rd = left,
home = he goes all the way around)
o Whenever a batter returns home, each
fielder must take a drink
e Fielding:
o Whenever a batter takes a base, a fielder
can choose to make a play
= |f so, she tries to shoot for the same base
cup made by the batter
= |f she makes it, the batter is out
= |f she hits an out cup, it is an error, and
all the batters advance an extra base
= |f she misses or hits any other cup,
nothing happens and she does not get
another try

20

2nd base

3.2.3. Alternate rules

1. At the start of fielding, each fielder chooses a
base and is the only one who can defend that
base (requires teams of 4+).

2. If a fielder hits a different base cup than the
one made by the batter, it is a “foul.” Nothing
happens for a foul; the batter does not get a
strike.

3. Whenever the batter misses the cups but does
hit (anything on) the table, players on the
batting and fielding team may both race to
retrieve the ball and touch it to the table. If a
fielder succeeds, it is a strike. If a batter
succeeds, it is a “ball.” If a batter gets two
balls, that batter walks to first base for free.

3.2.4. Analysis

Just like beer pong, beer baseball is also a SIC
(shooting into cups) game. As such, beer baseball
shares the same desirable properties in terms of
setup, low-cost high-reward, and integration of
drinking. However, beer baseball is more
engaging. Players on both the batting team and
fielding team have a role to play at all
times. Using alternate rule 3, it is even possible to
engage all players during each shot. Furthermore,
there is nontrivial strategy involved in deciding
when to field. Therefore we estimate that the
runtime complexity of beer baseball is O(t) with
the duration of the game. Having nonzero
strategy means the crowd can also engage in
discussion and mock strategizing. Considering
these points, we believe beer baseball satisfies
more design principles than beer pong, and is
likely to be a better game.

3.4. Soccer Shots

3.4.1. Setup

e 2 teams (teams must be same size) of 1-3
players (can accommodate even more players,
but the table may get crowded)

e Large table

e A ping pong ball

e Two empty six-pack cartons (or some other way
to mark the goal)

3.4.2. Gameplay

e Players run around the table using the index
and middle fingers of one hand of their choice

e The objective is to flick the ping pong ball into
the opposing team’s goal

e Whenever a team scores, the opposing team
members must each drink a shot

e No flying: either the index or middle finger must
be in contact with the table at all times

e No sliding: you may only move by running along
the table using index and middle finger

e Players cannot touch the ball with anything
besides the index finger, middle finger, and
back of hand of the chosen hand

o If a player breaks a rule, he must drink a shot

3.4.3. Analysis

Among all the games described, soccer shots
boasts the easiest setup, requiring only a
table, ping pong ball, and two readily available
markers (such as a six-pack carton). It is also
easy to organize in all other respects, with
simple setup and few rules. Socially, soccer
inherently requires communication and
engages the audience. While soccer shots is
easier than soccer, it still requires strategy
with respect to formation and coordination.
Therefore we estimate that soccer shots has a
runtime complexity of O(t). Drinking is not
integral because the game is identical without
beverage, though “shots” is in the name.

4. Discussion

We sought to codify the core principles common
to drinking games. Through close analysis and
repeated playthrough of the aforementioned
games, we found that the proposed principles are
indispensable for a successful drinking
game. Through creativity and adherence to the
principles, we also designed a drinking game, beer
baseball, which satisfies more design principles
than even the highly regarded beer pong, our
benchmark. While more testing is required,
theory suggests that beer baseball is better than
beer pong.

51

5. Acknowledgements

The authors would like to thank Junxing Wang for
inspiration and numerous discussions on game
design; Nick Gisolfi for helping to compile and
prune the list of core principles, and for extensive
play testing; and Zachary Batts for extensive play
testing.

References

[1] Brice, M. (25 January 2015). “lI went to a
drinking game jam and this is what | did.”
www.mattiebrice.com.

Horowitz A. (2004). “Dog minds and dog
play.” In M. Bekoff (Ed.), Encyclopedia of
Animal Behavior. Greenwood Publishing
Group, Westport, CT, 835-838.

Horowitz, A. (2009). “Domestic dogs (Canis
familiaris) use visual attention cues when
play signaling.” Journal of Veterinary

(2]

(3]

Behavior: Clinical Applications and Research,

4, 53-54.

Berghdnel, A.; Schilke, O.; Ostner, J. (2015).

"Locomotor play drives motor skill acquisition

at the expense of growth: A life history trade-

off". Science advances 1 (7): 1-8. doi:
10.1126/sciadv.1500451

Robin M Henig (17 February 2008). "Taking

Play Seriously". The New York Times.

Fisher-Baum, R. (9 May 2013). “Infographic: Is

Your State's Highest-Paid Employee A Coach?

(Probably).” Deadspin.

[71 Tom Murphy VII. "New results in k/n Power-
Hours." In Proceedings of SIGBOVIK 2014
(2014).

[8] g_squidman (2016). “Any Tips for Designing a

Good Drinking Game?” Red(dit.

“Correlation does not imply causation”

Wikipedia.

[10] “Beer Pong.” Wikipedia.

[11] “Nim.” Wikipedia.

(4]

(5]
(6]

&)

52

@ CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2017 Paper Review

Paper 79: Dr. Boozehead, or How | learned to
stop worrying and get drunk: Design principles
and analysis of drinking games in the silicon age

Robert J. Simmons, second general chair of the 2%ish family of SIGSBOVIK

Rating: Unpleasantly sober
Confidence: Mostly shattered by JavaScript

There is yet again a drinking paper that doesn’t cite my seminal work. Kids these days.

23

A Boring Follow-Up Paper to
“Which ITG Stepcharts are Turniest?”
Titled, “Which ITG Stepcharts are
Crossoveriest and/or Footswitchiest?”

Ben Blum

bblum®@cs.cmu.edu

Abstract

In which I deliver on last year’s promise of future work.

Categories and Subject Descriptors D.D.R.|[Exerciseand
Fitness): Arcade Dance Games

Keywords crossovers, footswitches, jacks, sidefoots

1. Introduction

Let’s resume right where I left off in my last paper (Blum
2016), shown in Figure 1. Unlike mainstream conferences,
SIGBOVIK doesn’t make me waste space repeating all the
background material, and I can just say go read that paper
first and get back to me. It’s probably a lot funnier than
this one anyway, which is gonna be sort of dry, and really
of interest only to other ITG players who already know
what’s going on.

The TL;DR is that I made a program which figures out
how to foot stepcharts in the least crossovery possible
way (short of double-stepping everything), then found
which charts ultimately had the most. The algorithm also
naturally identifies footswitches and jacks, and some-
times it’s smarter than me in amusing ways. I put all the
goodies in a giant spreadsheet at http://tinyurl.com
/crossoveriest, and the program itself is of course
freely available athttps://github.com/bblum/sigbo
vik/blob/master/itg/code/ITG.hs.

2. Revisiting Turniness (Flashback Scene)

Recall Table 1 from the last paper, in which I left un-
defined the facings for LL, DD, UU, and RR, the four

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee, provided... honestly, provided nothing. The ACH is already flattered enough that you're even reading this notice.
Copyrights for components of this work owned by others than ACH must be laughed at, then ignored. Abstracting
with credit is permitted, but abstracting with cash is preferred. And please tip us, for the love of Turing.
SIGBOVIK '17 Pittsburgh, PA, USA

Copyright (¢) 2017 held by owner/author(s). Publication rights licensed to ACH.

ACH ...$15.00

Figure 2. An TG cab. RIP in peace, Roxor (Konami 2005

Ben Blum

Which ITG Stepcharts are Turniest?
bblum@cs.cmu.edu

1. Introduction

Figure 1. (okay twist your head to read this)

Right foot
—| 2 UR UL U
l | DL 2 L UL
T | DR R ? UR
—| D DR DL 2

Left foot

Table 1. Facing directions.

footswitches. I show a typical DD/UU footswitch pat-
tern in Figure 2(a), and typical LL/RR switches (hence-
forth “crossover footswitches”) in Figure 2(b). To step
these patterns, the player still alternates feet as usual, but
must lift one foot off the repeated arrow before stepping
it with her other foot. Chart authors will often, but not
always, include a “mine cue” (shown in the figure) to hint
that the second foot should switch onto the same arrow.

o4

(a) DD, UU

(b) LL, RR ()RR, LL

Figure 2. Footswitches of various crossoveriness/facing.

It is tempting to assign the facings L, U, U, and R
respectively to the LL, DD, UU, and RR footswitches.
However, Figure 2(c) shows that if a footswitch begins
with a crossover on U, the facing should be reversed: the
RR footing should face L, and LL should face R. “Spin-
switches” with D facing are also theoretically possible,
arising from patterns such as LURDDL or LDRUUL,
or similarly, “270-switches”, as shown in Figure 4(a).

Before I realized that, I modified the turniness algo-
rithm (Blum 2016) to face footswitches as above, and it
surprised me with charts of 7 > 2, in excess of the theo-
retical maximum! I show one such chart in Figure 3(a), in
which the step from LL (¢ = L) to UL (¢) = DR) has in-
dividual T=3,and soonfor UL~ UU ~; RU ~ RR.
The steps RR ~; LR ~» LL are both candles (T = 2),
resulting overall in 7 = 8/3 for the whole chart.

Indeed, when I further modified the algorithm to force
D D switches to face D (i.e., always facing the direction
of the repeated arrow), it produced the chart shown in
Figure 3(b), with overall T = 3. (Note its resemblance to
the basic spin pattern, LD RU, whose T =2.)

To fairly represent a human player’s desire to step in
the least turny of ambiguous ways, I extended the algo-
rithm to provide either the assigned facing, from above,
or its polar opposite, chosen at runtime by whichever is
closer to the presequent facing. This restores the maxi-
mum overall chart turniness to T = 2, a new example of
which is shown in Figure 3(c). Figure 4(b) also shows a
real-world chart exhibiting this pattern.

However, note that individual steps may still have
T = 3, as shown in Figure 3(d). In this example, the step
DL~ LL assigns LL to face L, but the subsequent step
to LD cannot avoid facing UR. The reason charts still
cannot exceed overall T = 2 is that setting up such a sit-
uation requires a 7 = 1 step, which negates the benefit.
A chart could conceivably end right before such a step,
sneaking through some small € extra turniness (VII 2014)
(similar to the case of 270s in (Blum 2016)), but sustained
average J > 2 remains impossible.

Another approach could assign such a footswitch the
opposite footing of the previous facing, regardless of the
arrow itself; so in this case the LL would face UL, and
each step would have exactly T =2.

(c)T=2. (d)T=2+e.

Figure 3. The turniest footswitch patterns. (a) and (b) are
false positives (see prose), while (c) and (d) provide theo-
retically maximal turniness.

>

»>

T}

i))

29
’1L|_a-

T
(

W

¢
4
N

o
¥

) _p
!)‘, Ll
'y e

» o
»(
»

nEEREN
»(
»‘>‘>’>|>‘

2. PN
(b) Fuego
(12, Best of Gazebo)

(a) Web33,260.8
(12, Rikame 5)

Figure 4. Real-world examples of turny footswitches.

3. Analyzing Crossoveriness

The major flaw of the turniness algorithm (Blum 2016)
was that it didn't care whether a stream started with the
left or right foot; it simply exploited the symmetry of Ta-
ble 1 to find turniness regardless of footing. Hence, it
could not distinguish technical footing patterns which

95

data Step =L | D | U | R | Jump deriving Eq

data AnalysisState = S { steps Int, xovers Int, switches Int, jacks Int,
lastStep :: Maybe Step, doubleStep :: Bool, lastFlip :: Bool,
lastFoot :: Bool, stepsLR :: [Bool] }
commitStream :: AnalysisState -> AnalysisState
commitStream s = s { xovers = xovers s + if £ then ns - nx else nx,
switches = switches s + fromEnum (f == lastFlip s && doubleStep s),
jacks = jacks s + fromEnum (f /= lastFlip s && doubleStep s),
lastFlip = f, stepsLR = [] }
where ns = length $§ stepslR s
nx = length $ filter not $ stepsLR s

reverse the stream’s footing if

more L/R steps were crossed over than not.

f =nx *2>ns || nx * 2 == ns && ((switches s > jacks s) == lastFlip s)
analyzeStep :: AnalysisState -> Step -> AnalysisState
analyzeStep s step
| step == Jump = (commitStream s) { lastStep = Nothing, doubleStep = False }
| lastStep s == Just step = stream (commitStream s) { doubleStep = True }
| otherwise = stream s

where foot = not $ lastFoot s
-- record whether we

stepped on a matching or crossed-over L/R arrow.

steps -- U/D don’t help to determine L/R footing.

addStep ft L steps = steps ++ [ft]
addStep ft R steps = steps ++ [not ft]
addStep ft _ steps =

stream s = s { steps =

steps s + 1, lastStep = Just step, lastFoot = foot,

stepsLR = addStep foot step $ stepsLR s }

analyze
analyze =

[Step] -> AnalysisState
commitStream .

foldl analyzeStep (S 0 O 0 O Nothing False False False [])

Figure 5. Pseudocode description of the crossoveriness and footswitchiness algorithm.

could affect the way a human would play the chart. It of-
ten played charts inhumanly, facing backwards and/or
stepping 270s for most of a song.

So, my contribution this year is an algorithm which
plays more naturally, and which consequently can report
on a chart’s technical patterns beyond simple turniness.
The algorithm realizes three principles of ITG:

1. Alternate feet as much as possible.
2. Step crossed-over as little as possible.
3. Jumps or jacks allow the player to reset her footing.

Figure 5 describes the algorithm in pseudocode. To
summarize it in prose:

e Split the chart into several units of stream, the bound-
aries of which occur at every jump and any time an ar-
row is repeated.

e Step each stream with alternating feet.

¢ Compare the number of matching steps (i.e., L foot on
L arrow or R on R) versus crossover steps. If the latter

is greater, re-step the stream with opposite feet from
before (this kills the crossovers).

e After flipping each stream, if necessary, count the total
crossovers in the whole chart.

4. Analyzing Footswitchiness

Because we split the chart whenever an arrow is repeated,
figuring out whether that arrow is stepped with different
feet on either side of the stream boundary is a natural
consequence of figuring out how to step each stream in-
dividually. This is also shown in Figure 5’s pseudocode.
To summarize in prose, if neither stream needed to be
flipped (or if both did), then the alternating feet assump-
tion holds, and the repeat must be a footswitch.

5. Analyzing Jackiness

A jack occurs when a repeat arrow is stepped with the
same foot, rather than alternating (hence the name, from
“jackhammer”). You've got the idea by now, right?

56

(b) Heartbeat
(13, TranceNation)

(a) Paradise Lost
(16, Cirque du Lykan)

Figure 6. The doublesteps in some streamy charts must
be identified, and the stream split, lest “too much” of the
following stream appear completely crossed-over.

6. Forced Doublesteps

After painstakingly translating the pseudocode from Fig-
ure 5 into a real implementation, I found it vulnerable
to false positives when a single double-step could force
a long section of stream to be stepped backwards. As an
extreme example, consider the pattern LRLRLRLR—D—
LRLRLRLR.Because no jumps or jacks allow the footing
to be reset, either the first or last 4 pairs of LRs must be
stepped crossed-over.

Figure 6 shows two examples from real-world charts:
in (a), the player must not alternate feet across the mea-
sure break, while in (b), two L arrows are replaced with
rolls for an artistic visual accent, which must be stepped
twice each. Oninspection, these charts should be stepped
with no crossovers, but were evaluated otherwise (730
XOs (27.9%) and 173 XOs (9.6%), respectively).

To handle such cases, I extended the algorithm with a
heuristic to identify when a stream becomes “too crossed-
over” for “too long”, and to force a doublestep by split-
ting the stream to flip it back. Algorithm 1 shows the im-
plementation. I will not summarize how it works due to
space limitations, but the description should be intuitive
enough. The heuristic evaluated Figure 6's charts as hav-
ing 0 crossovers each and 1 and 21 doublesteps, respec-
tively. In my analysis next section, I will use n;;, =9 (de-
termined by inspection of a few favourite charts, which
should be scientifically rigorous enough for anyone).

Algorithm 1: HeuristicallyDoublestep(8)

Input :S§, astep sequence s;...Ss,
Invariant: Vs;,s; €8, j=i+1—
—StreamBoundary(s;, 5;)
Input : 7, heuristic minimum length
Input : %j,, heuristic percentage, initially 100
for i € length(8) A ~defined(ipg) do
8" —{sclsk € LRs({sj|s; €SN j = i) Ak < ngpip}
if |8'| = ngy;, A |Crossovers(8')| = %y, X 8’| then
lpg <1
end
end
if defined(ipg) then
if i@g =0 then
| ipg — FindUnflippedSection({s;|s; € SAi #0})
end
HeuristicallyDoublestep({s;|s; €SAi < ipg})
HeuristicallyDoublestep({s;|s; €SAi = ips})
12 else
13 | CommitStream(s)
14 end

© 0N G s W N -

-
-

7. Evaluation

Our experimental corpus has grown considerably since
last year, and now comprises 11,666 stepcharts. I ran the
crossoveriness/etcetera algorithm on all of them, and
counted the total steps (not including jumps), crossovers,
footswitches, jacks, forced doublesteps, and crossover
switches for each. I also grouped the charts by author
and by song pack to calculate each author’s/pack’s over-
all crossoveriness/etc. You can view the entire dataset at
http://tinyurl.com/crossoveriest.

Tables 2, 3, 4, 5, 6, 7, 8,9, 10, 11, and 12 summarize
the dataset as “leaderboards” for each category. They
present the data the same way as last year (Blum 2016), so
Iwon't explain it again. Suffice to say that ITG enthusiasts
should use their personal chart style preferences to navi-
gate these tables and find song or pack recommendations
or feel proud of themselves or whatever.

In the by-author analysis, I excluded authors with
fewer than 10 charts, like last time. Also, in by-author and
by-pack, I excluded 1-, 2-, and 3-foot charts, on the pre-
tense that they often ignore the alternating feet assump-
tion (though I also admit this biases the analysis against
DDR/Konami). Nevertheless, DDR charts generally ruled
the single-digits, even in footswitchiness, showing per-
haps more technical depth than I gave them credit for.

By the way, the theoretical maxima for XO%, FS%, and
JK% are 50-¢, 100-¢€, and 100-¢, respectively (VII 2014).

o7

Ft. | Name Pack #XO0 Ft. | Name Pack #FS
6 | Autoload ITG 3 54 6 | Sweat Shop ITG Rebirth 2 Beta 56
7 | Tetris CuoReNeRo M'PacK | 58 7 | Silent Hill DDR 3rdMIX 29
8 | Pulse CuoReNeRo M’PacK | 94 8 | Pulse CuoReNeRo M’PacK 41
9 | MAX Forever CuoReNeRo M’PacK | 107 9 | Dr. Boom-Bombay | fort rapids vii 34
10 | J-PARA SUPER MEGAMIX CuoReNeRo M’PacK | 141 10 | Eat’Em Up! Mute Sims 5 54
11 | Somebody I Used To Know | Best of Gazebo 114 11 | Nemeton The Legend of Zim 4 97
12 | Credens Justitiam Stuff B Likes 136 12 | Nemeton Subluminal 140
13 | Banshee Strikes VocaJawnz 152 13 | Love Is Eternity Subluminal 140
14 | Slow Down Sexuality Violation 2 | 160 14 | Switch Getty 347
15 | yoshikawa45 vs siesta45 Rikame’s Simfiles 4 111 15 | Danse Macabre Aoreo’s Ariginals 201
16 | Your Best Nightmare Undertale 97 16 | Weird Science Stamina Showcase 61
no 17s-19s with >50 XOs 17 | Arcane Apparatus Tachyon Gamma 32
20 | Rainbow Dimension Rikame’s Simfiles 2 84 18 | Metallic-A- Oh Henry! Mad Stamina | 27
21 | Teenage Dream Sexuality Violation 2 | 280 19 | Geronimo Sexuality Violation 3 39
20 | Scatman’s World Jimmy Jawns 2 22
Table 2. Charts with the most total crossovers (XOs). 21 | He He He Jimmy Jawns 2 4
22 | Architecture SPEEEDCOOOORE 4 24
23 | Geronimo Sexuality Violation 3 39
Ft. | Name Pack X0%
4 | DAM DIRIRAM DDR 3rdMIX 27.3 Table 4. Charts with the most total footswitches (FSs).
5 | STRICTLY BUSINESS DDR 1st 21.4
6 | STRICTLY BUSINESS | DDR Ist 20.9 Ft. | Name Pack FS%
7 | MOBO-MOGA DDR EXTREME 17.3 3 | Sweat Shop ITG Rebirth 2 Beta | 15.3
8 | PARANOIA DDR 1st 19.6 4 | DROP THEBOMB | DDR 3rdMIX 9.8
9 | Dazzlin Darlin r21twins 22.0 5 | MAKEIT BETTER | DDR 2ndMIX 200
10 | Enchanted Journey ITG Rebirth 19.3 6 | Sweat Shop ITG Rebirth 2 Beta | 18.2
11 | Lune Noir r21freak Friendship 13.4 71511 DDR MAX 12.9
12 | W’pegis Fucking Over best of r21freak ii 14.3 8 | LaSeforita Virtual | DDR 3rdMIX 8.4
13 | The Sampling Paradise | The Paradise Sampler | 15.6 9 | PARANOIA KCET DDR 2ndMIX 10.2
14 | Slow Down Sexuality Violation 2 13.3 10 | Delnitn Mute Sims 6 11.6
15 | yoshikawa45 vs siesta45 | Rikame’s Simfiles 4 10.8 11 | Sweat Shop ITG Rebirth 2 Beta | 11.8
no 16s-19s with >10% XO 12 | Nemeton Subluminal 14.8
20 | Rainbow Dimension Rikame’s Simfiles 2 10.7 13 | Love Is Eternity Subluminal 16.8
21 | Teenage Dream Sexuality Violation 2 11.8 14 | switch Getty 15.7
15 | Flames of the Sky | fort rapids vii 16.5
Table 3. Charts with the highest percentage of XOs 16 | Mermaid Island Tachyon Alpha 9.5
among total steps. no 17s+ with>5% FS

. . Table 5. Charts with the highest percentage of FSs.
8. Discussion

To verify the algorithm’s accuracy, I manually inspected

Ft. | Name | Pack | #XF

a random (read: not random) sample of the charts at or 10 8s- with > 12 XFs
near the top of the various leaderboards (read: I played a 9 | Dr. Boom-Bombay fort rapids vii 18
lot of Stepmania). I also consulted a leading expert in the 10 | Toxic Sexuality Violation 2 | 12
field of automated ITG chart analysis (read: myself), who 11 | Heart Shooter VocaJawnz 44
reported that the algorithm is infinitely more accurate 12 | Web 33,260.8 Rikame’s Simfiles5 | 16
than the prior state-of-the-art. 13 | Toxic Sexuality Violation 2 | 12

Honestly though, it works really well. Last year’s algo- 14 | Fancy Footwork Cirque du Zeppelin | 40
rithm was often finicky and prone to all sorts of false- 15 | yoshikawad5 vs siesta45 | Rikame's Simfiles4 | 20

positives, while this one plays ITG in a recognizably hu- no 155+ with 212 XFs

man way (almost) without fail. It was a joy to use.
Surprises. On occasion, the algorithm surprised me
by stepping with crossover footswitches which, at first
glance, I would probably jack or double-step. However,
these always proved to be perfectly valid alternative foot-
ings, in some cases requiring considerable look-ahead.

Table 6. Charts with the most crossover footswitches
(XFs). (Here I chose 12 as the cut-off to exclude a bunch
of ambiguously-patterned charts from DDR.)

o8

Author Charts | Total Steps | XO0%
Konami 530 114623 | 8.03
sssmsm 41 17219 | 6.55
NEMORIGINAL 44 20165 | 5.36
M. Emirzian 23 9307 | 5.16
J. DeGarmo 16 4362 | 4.86
D. Renzetti 18 7877 | 4.47
R. McKanna 47 14855 | 4.23
M. Puls 26 8379 | 4.18
King of Light 24 8817 | 4.13
D. Bernardone 217 76290 | 4.10
D. D’Amato 107 36265 | 3.92
bblum 32 32382 | 3.76
B. Vergara 13 15454 | 0.091
Aoreo 21 27990 | 0.089
Zaia 368 448460 | 0.080
tOni 85 128964 | 0.058
Burn 27 60052 | 0.057
Dirk 12 21996 | 0.055
Happy Feet 30 57888 | 0.040
@@ 63 199530 | 0.026
Arvin 79 108612 | 0.023
Drazu 153 221460 | 0.021
teejusb 11 11298 | 0.018
Fraxtil 19 25612 | 0

Author Charts | Total Steps | JK%
King of Light 24 8817 | 12.94
R. McKanna 47 14855 | 9.95
Konami 530 114623 | 9.63
P. Shanklin 21 9834 | 8.91
M. Puls 26 8379 | 8.90
K. Ward 281 86475 | 8.80
ATB 31 20673 | 8.46
J. DeGarmo 16 4362 | 8.30
D. Bernardone 217 76290 | 7.98
Renard 45 15035 | 7.94
C. Foy 133 52418 | 7.72
Yoko 10 4128 | 7.63
bblum 32 32382 | 1.56
B. Vergara 13 15454 | 1.31
Arvin 79 108612 | 1.30
Drazu 153 221460 | 1.06
Zaia 368 448460 | 0.86
Aoreo 21 27990 | 0.78
T. Swag 13 22909 | 0.70
@@ 63 199530 | 0.61
warpdrive 16 19090 | 0.49
Dirk 12 21996 | 0.35
Burn 27 60052 | 0.28
Hsarus 18 70162 | 0.27

Table 7. Chart authors with the highest/lowest X0%.

Author Charts | Total Steps | FS%
Konami 530 114623 | 2.29
bblum 32 32382 | 1.29
M. Puls 26 8379 | 1.16
R. McKanna 47 14855 | 1.11
mudkyp 63 42792 | 1.09
S. Venkat 24 11084 | 0.96
K. Ward 281 86475 | 0.89
xRGTMx 19 11734 | 0.88
sssmsm 41 17219 | 0.85
D. Bernardone 217 76290 | 0.83
ATB 31 20673 | 0.82
Happy Feet 30 57888 | 0.82
Hsarus 18 70162 | 0.070
Drazu 153 221460 | 0.057
@@ 63 199530 | 0.037
Revolver 11 8302 | 0.036
T. Swag 13 22909 | 0.031
Dirk 12 21996 | 0.023
B. Vergara 13 15454 | 0.019
warpdrlve 16 19090 | 0.016
Burn 27 60052 | 0.015
teejusb 11 11298 | 0.009
tOni 85 128964 | 0.002
S. Tofu 26 34609 | 0

Table 9. Chart authors with the highest/lowest JK%.

Pack Charts | Total Steps | XO0%
DDR 1st Mix to Extreme 530 114623 | 8.03
12112 47 18377 | 4.50
the best of r21freak 100 45156 | 4.22
the best of r21freak ii 48 25024 | 4.16
In The Groove 2 222 66113 | 4.05
In The Groove Rebirth+ 108 43758 | 3.99
r21twins 52 22347 | 3.89
In The Groove 3 320 106363 | 3.61
CuoReNeRo MeGaPacK 423 248625 | 3.45
In The Groove 1408 491819 | 3.27
r21freak Friendship Pack 47 20363 | 3.13
BemaniBeats 4 31 18464 | 3.02
Tachyon Epsilon 150 208830 | 0.064
SPEEEDCOOOORE 4 101 123814 | 0.064
TranceMania 80 121415 | 0.062
Cirque du Lykan 129 160312 | 0.059
Cirque du Zonda 45 74890 | 0.057
Jimmy Jawns 109 170894 | 0.044
Getty 26 53528 | 0.043
Tachyon Delta 32 36712 | 0.038
Tachyon Gamma 32 36134 | 0.033
Oh Henry! Mad Stamina 46 152326 | 0.028
Causality Violation 10 19507 | 0.021
Fast Track to Brutetown 29 46082 | 0.020

Table 8. Chart authors with the highest/lowest FS%.

99

Table 10. Packs with the highest/lowest XO%.

Pack Charts | Total Steps | FS%
Subluminal 17 13418 | 4.70
Aoreo’s Ariginals 2 16 15222 | 2.42
DDR 1st Mix to Extreme 530 114623 | 2.29
Aoreo’s Ariginals 31 26418 | 2.26
rocky mount xi 113 79986 | 0.97
In The Groove 2 222 66113 | 0.93
FA and Chill 35 22045 | 0.86
Getty 26 53528 | 0.85
Undertale 19 14722 | 0.84
12112 47 18377 | 0.82
Fort Rapids VI 75 75563 | 0.77
Mute Sims 8 72 47140 | 0.71
SPEEEDCOOOORE 4 101 123814 | 0.093
Stamina Showcase 38 126146 | 0.088
VocaJawnz II 128 183153 | 0.084
Cirque du Zeppelin 109 102991 | 0.082
SPEEEDCOOQOORE 3 66 69236 | 0.071
Causality Violation 10 19507 | 0.051
TranceNation 41 123940 | 0.047
Oh Henry! Mad Stamina 46 152326 | 0.046
Tachyon Epsilon 150 208830 | 0.040
Noisiastreamz 20 41917 | 0.019
TranceMania 2 40 64109 | 0.003
TranceMania 80 121415 | 0.001

Table 11. Packs with the highest/lowest FS%.

Pack Charts | Total Steps | JK%
DDR 1st Mix to Extreme 530 114623 | 9.63
r2112 47 18377 | 8.80
In The Groove 2 222 66113 | 8.64
Gensokyo Holiday 87 51652 | 7.87
r21Freak’s Friendship Pack 2 32 15649 | 7.71
Omnifarious 10 5594 | 7.53
r21twins 52 22347 | 7.18
Piece of Cake 7 20 11554 | 6.97
In The Groove 1408 491819 | 6.97
In The Groove Rebirth+ 108 43758 | 6.97
TLOES Chapter 1 85 42201 | 6.89
ITG Rebirth 2 Beta 262 99078 | 6.79
TranceMania 2 40 64109 | 1.03
Causality Violation 10 19507 | 0.98
VocaJawnz II 128 183153 | 0.98
Tachyon Epsilon 150 208830 | 0.94
Tachyon Delta 32 36712 | 0.87
Cirque du Lykan 129 160312 | 0.87
Cirque du Veyron 31 51545 | 0.79
Cirque du Zeppelin 109 102991 | 0.77
Oh Henry! Mad Stamina 46 152326 | 0.67
Stamina Showcase 38 126146 | 0.56
Cirque du Zonda 45 74890 | 0.47
TranceNation 41 123940 | 0.25

Table 12. Packs with the highest/lowest JK%.

(b) Toxic
(10/13, Sex’y Violation 2)

(a) Dr. Boom-Bombay
(9, fort rapids vii)

Figure 7. Sometimes the algorithm was smarter than me.

In Figure 7(a), the chart repeats L (later R) thrice, begin-
ning with the right (later, left) foot. While a human player
would jack these repeated arrows, the crossoveriness al-
gorithm performs a double-footswitch, effectively reduc-
ing the total crossover steps by 1 each time. In Figure 7(b),
a mine cues the player to double-step with her right foot,
but the crossoveriness algorithm can begin this section
already crossed-over, owing to an earlier L jack on which
it could switch feet.

Honourable Mentions. I omitted a table for the jacki-
est charts, on account of most of them being either trivial
beginner charts or extra-long megamixes. One deserves
a special mention: Sandstorm (Jimmy Jawnz 2), shown in
Figure 8(a), has more than twice as many total jacks as the
next jackiest chart, clocking in at 1049 (78.5%) with its 15
and 992 (69.6%) with its 17. And looking at that chart, can’t
you just hear Sandstorm playing in your head already?

I also wanted to highlight the chart with the most
crossover switches, shown in Figure 8(b), mostly because
the skittle notes should add some nice variety of colour to
the paper (with apologies to the dead-tree SIGBOVIK au-
diencereadingin greyscale). Figure 8(c), with 2nd place in
crossover switches following (b), comes with an edit chart
titled “no sidefoots”, and to be perfectly honest I just kept
saying the word “sidefoots” to myself and giggling a lot
while writing this paper.

Sweet spot. Finally, in case it wasn't obvious in the ta-
bles, I'll point out that 9-15 is clearly the sweet spot of dif-
ficulties for technical stepcharts.

60

(a) Sandstorm (b) Heart Shooter (c) 76 (Slow Train) (d) Conflict (e) Matador
(15/17,]. Jawnz II) (11, VocaJawnz) (11, Mute Sims X) (12, Stephcharts) (11, Valex 8)

Figure 8. Miscellaneous interesting charts I discovered while browsing the giant spreadsheet.

9. Never Work

Let’s be honest: this isn’t gonna be a paper trilogy. Okay;,
with that said, here are some things that would be cool to
implement in a fantasy universe with infinite free time. (I
have renamed this “future” work section accordingly.)

There are a few remaining cases the algorithm doesn’t
yet understand:

¢ Doublesteps forced either by mine cues or by holds;

¢ Crossover and/or bracket jumps, not usually forced
but often way less turny than the alternative;

* Forced footings across stream boundaries arising from
bracket jumps or jump-footswitches.

For example, Figure 8(d) shows many sequential dou-
blesteps, each forced by a mine cue, but which the al-
gorithm interprets as spins because the flipped stream
length falls below ny;,,. Figure 8(e) shows an example of
jump-footswitches which the algorithm fails to count be-
cause it ignores the footing of jumps.

These patterns would all have to be identified heuris-
tically. Apart from that being more work than I wanted
to do, I also feel that adding too many heuristics to SIG-
BOVIK research compromises the simple and innocent
beauty of an implementation unbound by the demands
of mainstream conferences.

10. Conclusion

Please accept my paper. I worked hard on it.

61

References
B. Blum. Which ITG stepcharts are turniest? SIGBOVIK, 2016.
T. VII. What, if anything, is epsilon? SIGBOVIK, 2014.

62

Batch normalization for improved DNN performance, my ass

Joshua A. Wise

Colonel density estimation

Harish Krishna et al.

Degenerative adversarial networks

Raphael Gontijo Lopes and Diptodip Deb

Stopping GAN violence: Generative unadversarial networks

Samuel Albanie, Sébastien Ehrhardt, and Jodo Henriques

63

Batch Normalization for Improved DNN Performance, My Ass

Joshua A. Wise
joshua@joshuawise.com
Emarhavil Heavy Industries

Abstract
Batch normalization is an extremely popular tech-
nique to enable faster training, and higher network
performance after training. We apply batch normal-
ization to a relatively small network, and find it to be
completely ineffective, and indeed, to reduce network
convergence and overall network performance.

1. Introduction

Batch normalization [4] is a strategy used
to accelerate learning in deep neural networks.
Theorized to work by reducing “internal covari-
ate shift”, it dynamically computes normaliza-
tion coefficients at each channel internal to a
convolutional network while training, and then
during validation and operation, hopes that they
generalize. Although the effect of batch nor-
malization can, in theory, be baked into weights
at each neuron, the batch normalization coeffi-
cients are not learned through gradient descent,
and only their second-order effects are. Through
a convoluted process, this means that adding
more parameters somehow makes the network
converge more readily, and so everybody does
it.

Batch normalization has been used in many
networks from deep to shallow: recent DCGAN
architectures (for instance, pix2pix [5]) have
used batch normalization between layers when
training regression, and Google’s Inception net-
work has used it when training classification.
Batch normalization is said to be tolerant to
hyperparameters; for instance, the decay hy-
perparameter is said to reasonably range from
0.999 through 0.99 all the way down to 0.9 and
“etc.”, which is apparently one nine fewer than
0.9. It also has a configurable value of epsilon
[2], which is likely to be valuable during times
of shortage [9].

In this work, we sprinkle batch normalization
pixie dust onto an existing neural network to
improve its performance, and analyze the per-
formance gained.

Training performance over time

" validation resu\t‘s, tra\n\né with batch normalization
validation results, training without batch normalization

01 +

mean squared (L2) error
=
=
2

0001 F 3

0.0001 L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

epochs

Figure 1. Batch normalization performance vs. classical

training.

2. Related Work

Everybody who does work on deep neural net-
works cites the founding paper on the subject
that was written long before anyone had ever
heard of a GPU. So we do so here too [7]. But
let’s be real here, this whole lab report is actu-
ally a take-off of Kovar and Hall [6], who did
this way better than I did.

3. Experimental Procedure

We took an existing neural network of a few
layers, a corruption of the work in [3]. It already
did not work very well, but the batch normal-
ization pixie dust was expected to substantially
improve it, and make everything all better. We
inserted batch normalization layers in all but the
final convolutional layer, since adding a normal-
izing layer before the output seemed obviously
stupid and likely to produce absurd nonlineari-
ties.

The batch normalization layer was built using
TensorFlow’s tf.contrib.layers.batch norm
[10] function. (The contrib in the Python mod-
ule path means that the routine is extra-well-
tested.) We experimented with multiple sets of
hyperparameters, primarily because the first set
of hyperparameters were no good. The initial
set of hyperparameters used a value of 0.9 for
decay and a value of 1072 for epsilon, because

64

Training performance over time (with enhanced stability)

" validation resu\t‘s, trammé with batch normalization | +
validation results, training without batch normalization ®

mean squared (L2) error
o
=
2

0001 F i

0.0001

.
0 50 100 150 200 250 300 350 400 450 500
epochs

Figure 2. Batch normalization performance, with stability en-
hancements.

that’s what pix2pix did. The results were, hey,
wait, this is the wrong section for that.

The second set of hyperparameters used in-
creased the decay coefficient to 0.999, and en-
abled zero_debias moving mean, because it is
said that one should do that if one’s results are
unstable.

Training on both runs took place overnight
using TensorFlow on 8 NVIDIA Really Big
GPUs in parallel. On the new power-efficient
Pascal architecture, training consumed approxi-
mately 1.5 kW, for 12 hours, or 18 kWh of total
power, or enough for my coworker to boil 540
cups of tea [1].

4. Results

The results were utter crap. The first run
was dramatically unstable (see Figure 1). When
measures were taken to make the system more
stable, it responded in the opposite fashion (see
Figure 2). Convergence did not happen faster
than without batch normalization, inasmuch as
anything that the batch normalization runs did
could be at all described as converging.

Visual quality of the output batch-normalized
runs was not verified, because, let’s face it, it’s
going to be noisy crap. Also, I didn’t finish
writing the support to load and save the batch-
normalization coefficients into checkpoint files,
so that’s another strike against that.

5. Future Work

Maybe someone can get this crap to work.
Like, everyone else who sprinkles batch nor-
malization pixie dust on their CNNs gets them
to train right quick, and the Google folks say
that you don’t even need Lo normalization with
them, let alone any other kind of normalization.
Work should be done to investigate whether the
Google folks just got a really lucky RNG seed
each time they did their batch-norm runs, or
maybe a really bad one for their control runs,
because clearly this stuff ain’t working for me.

Other experiments could be run with other
normalization schemes, like Dropout [8]. Initial
experiments are under way that indicate that all
of the literature about Dropout is also a lie.

6. Conclusion

I still don’t know anything about how neural
networks work, and as far as I can tell, neither
does anyone else.

References

[1] Personal correspondence.

[2] Tom 7. What, if anything, is epsilon? SIGBOVIK,
you know, like the only one that year, 2014.

[3] Chao Dong, Chen Change Loy, Kaiming He, and Xi-
aoou Tang. Image super-resolution using deep con-
volutional networks. CoRR, abs/1501.00092, 2015.

[4] Sergey Ioffe and Christian Szegedy. Batch nor-
malization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015.

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and
Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. CoRR,
abs/1611.07004, 2016.

[6] Lucas Kovar. Electron band structure in germa-
nium, my ass. Online, http://pages.cs.wisc.edu/
~kovar/hall.html, 2007.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code
recognition. Neural Comput., 1(4):541-551, Decem-
ber 1989.

[8] Infected Mushroom. Drop out. From the album,
Converting Vegetarians, Disc 2, 2003.

[9] Chris Tuffley. The great epsilon shortage. Mathe-

matical Intelligencer, 21(4):37, 1999.

Someone who didn’t proofread their code sam-

ple. Tensorflow API documentation. Online,

https://www.tensorflow.org/api_docs/python/

tf/contrib/layers/batch_norm, 2017.

(10]

65

Colonel Density Estimation

Harish Krishna
harishkrishna.v@research.iiit.ac.in
Bharat Lal Bhatnagar
bharat.bhatnagar@research.iiit.ac.in
Nishant Prateek
nishant.prateek@research.iiit.ac.in

Bhaktipriya Shridhar
bhaktipriya.r@students.iiit.ac.in

Kohli Center for Intelligent Systems
INT-H
Hyderabad

Abstract

The highly relevant and important problem of Colonel Density Estima-
tion has seen little focus in recent times. In this work, we present fresh
approaches to solve both classes of Colonel Density Estimation - Colonel-
Density Estimation and Colonel Density-Estimation. The proposed solu-
tion is currently the state-of-the art in both classes of the problem. We
also discuss how this approach can easily be extended to solve the more
General Density Estimation problem.

1 Introduction

Colonel Density Estimation is an important problem in the fields of
statistics, physics, biology and military recruitment but has surprisingly
got almost no interest from research groups. In contrast, the easier and
similar sounding problem of Kernel Density Estimation has seen a sig-
nificantly disproportionate amount of effort trying to advance the current
state-of-art. Recently, [4] suggested the method of diffusion while [12]
explained how to go about choosing the kernel and bandwidth.

Figure 1: A colonel

Despite the apparent similarities of the two problems, the methods
used for Kernel Density Estimation can’t be used for Colonel Density Es-
timation [11]. Kernel Density Estimation can give only the density of
the bones of the colonel, not the whole colonel. Finding the density of
a whole colonel is one of the two classes of problems Colonel Density
Estimation must solve. Also, while Kernel Density Estimation is a non-
parametric method, Colonel Density Estimation is non-paramilitaric. The

method suggested in this paper is more akin to generalization when com-
pared to the existing approaches for Kernel Density Estimation.

There are two classes of Colonel Density Estimation. The first, Colonel-
Density Estimation is the problem of estimating the density of colonels.
The second, Colonel Density-Estimation involves using colonels for the
problem of Density Estimation. In this work, we provide a novel approach
for Colonel-Density Estimation that beats all prior research that attempts
to solve this problem. For the second problem, we propose a solution that
needs much fewer resources when compared to the state-of-the-art.

2 Colonel-Density Estimation

We solve the problem of estimation of the density of colonels by first
finding the mass and volume of the colonel and dividing the two quantities
to get the density.

2.1 Finding mass

We were disappointed that though several earlier works like [7], [9] , [3]
claim to introduce a novel method, they do not actually use any novels.
‘We introduce a novel method that does actually involve novels. Though
we are the first to use novels for mass in the context of density estimation,
the idea we propose and the novel have been time-tested in a different
field for several centuries now.

Inspired by religion where a novel is used for obtaining mass, we let out
colonels read out from the same novel. The money raised in the process
(but expressed in the SI units of mass) is the mass of the colonel.

2.2 Finding volume

We use the classical method [2] to find the volume of a colonel. The
colonel is immersed into a tank filled to the brim with a Newtonian lig-
uid. The volume of the colonel is equal to the volume of the liquid dis-
placed. We experimentally found that better results were achieved when
the colonel was immersed for quite a while so that the liquid displaces the
air in the lungs of the colonel as well.

2.3 Calculation of density

We calculate density as
mass

(O]

volume

where the mass and volume are in SI units (when the volume is zero, it
would mean that Nishant had probably messed up somewhere.)

2.4 Results

‘We choose colonels who know their densities for evaluating our perfor-
mance. The calculated density D of a colonel is correct if it falls between
D— ¢ and D+ ¢ where D is the actual density of the colonel. The accuracy
of the method is equal to the ratio of the number of correct estimates of
density to the total number of colonels who participated in the experiment.

‘We compare our performance with [8], [1] and [6]. The results are
summarized in Figure 2. It is to be observed that we perform significantly
better than other methods. We reason that this could be because these
earlier works did not intend to solve the problem of Colonel-Density Es-
timation at all. We leave this for future work to verify.

66

Figure 2: Comparison of accuracies of our method (blue) with respect to
other methods (red) for the task of Colonel-Density Estimation

3 Colonel Density-Estimation

There is very limited prior knowledge and experiences in using colonels
for density estimation. Colonels, usually found shouting for attention,
are easy and efficient tools for density estimation. In our experiments,
we found that if we asked a colonel politely to guess the density of an
object we were pointing to, the colonel usually obliged. However, eval-
uation of colonel-based density estimation is hard [5] as the accuracy of
the method is so heavily dependent on the choice of colonel and how an-
noyed the colonel is. This is one similarity this shares with Kernel Density
Estimation where the choice of Kernel makes a difference.

Instead, we assert the relevance of our approach by comparing the
kind of resources our method needs with prior work that uses colonels for
density estimation. The only works that we found that could perhaps give
a more accurate estimate of density using a colonel are in [13] and [14].
‘We believe that the method of just asking the War Machine with Colonel
J Rhodes in it has the potential to be more accurate than our method. This
is because Jarvis, the Artificial Intelligence that helps control the metal
suit, is pretty smart and probably knows the densities of most objects.
However, the cost of building such a War Machine or Iron Patriot suit is
very high [10] and can only be afforded by billionaires. In comparison,
the cost of our suggested method is negligible (refer Figure 4). Also, since
Colonel J Rhodes is currently recovering after an injury sustained in a civil
war, our colonel-based density estimation technique is the state-of-art, at
least until he returns.

Figure 3: Colonel Rhodes and Jarvis, the only competition for Colonel
Density-Estimation

4 Generalizability

The solutions to the problem of Colonel Density Estimation proposed in
this paper are perhaps among the most easily generalizable solutions ever.
This only involves replacing the colonel with a general in every step of
each process. We found that in general, generals perform better at den-
sity estimation. An interesting observation was that the colonel-density
and general-density are different, despite both colonels and generals be-
ing humans. We attribute this to the fact that generals are more mean, and
hence probably more thick-skinned.

Figure 4: Colonel Rhodes in his War Machine suit was the state-of-art for
Colonel Density-Estimation until he was injured.

35

30

25

20

15

10

Figure 5: Cost of [14] (red) and our proposed solution (blue) for Colonel-
Density Estimation. Note that the y-axis is a logarithmic scale.

5 References
[1] Larry C Andrews and Ronald L Phillips. Laser beam propagation

through random media, volume 1. SPIE press Bellingham, WA,

2005.

Archimedes. Eureka eureka, 220BCE.

Geoffrey H Ball and David J Hall. Isodata, a novel method of data

analysis and pattern classification. Technical report, DTIC Docu-

ment, 1965.

Zdravko I Botev, Joseph F Grotowski, Dirk P Kroese, et al. Kernel

density estimation via diffusion. The Annals of Statistics, 38(5):

2916-2957, 2010.

Theophilos Cacoullos. Estimation of a multivariate density. Annals

of the Institute of Statistical Mathematics, 18(1):179-189, 1966.

Ian Holyer. The np-completeness of edge-coloring. SIAM Journal

on computing, 10(4):718-720, 1981.

Kazutaka Katoh, Kazuharu Misawa, Kei-ichi Kuma, and Takashi

Miyata. Mafft: a novel method for rapid multiple sequence align-

ment based on fast fourier transform. Nucleic acids research, 30

(14):3059-3066, 2002.

Rainer Martin. Noise power spectral density estimation based on

optimal smoothing and minimum statistics. /EEE Transactions on

speech and audio processing, 9(5):504-512, 2001.

Nicholas J Miller, Catherine Rice-Evans, Michael J Davies, Vimala

Gopinathan, and Anthony Milner. A novel method for measuring

antioxidant capacity. Clinical science (London, England: 1979), 84

(4):407-412, 1993.

[10] moneysupermarket.com. The cost of building one iron man suit.

[11

Nishant Prateek. On the differences between colonel density esti-
mation and kernel density estimation, 2006.

Simon J Sheather and Michael C Jones. A reliable data-based band-
width selection method for kernel density estimation. Journal of the
Royal Statistical Society., pages 683-690, 1991.

Marvel Studios. Iron man movies, 2007-2017.

[12]

[13
[14

Marvel Studios. Avengers movies, 2011-2017.

67

Degenerative Adversarial Networks

Raphael Gontijo Lopes* & Diptodip Deb
Georgia Tech, Atlanta, GA
{raphaelgontijolopes, diptodipdeb}@gatech.edu

Abstract

In recent years, Deep Learning researchers have collectively achieved a pace of
useful information extraction that is dangerously close to outstripping the second
law of thermodynamics. To solve this problem, we propose a new framework for
estimating degenerative models via an adversarial process, in which we simulta-
neously train two models: a degenerative network D that destroys the data distri-
bution and a discriminative model D that estimates the probability that a sample
came from true noise rather than D. The training procedure for D is to maximize
the probability of D making a mistake. Within the space of arbitrary D and D, we
roll a D20 and check for damage. This system corresponds to entropy maximiza-
tion, which ensures a timely heat death. Experiments would have demonstrated
the potential of the framework, but most of our results were degenerated in the
process of running them.

1 Introduction

The promise® of deep learning is to discover rich, hierarchical
models [5] that represent probability distributions over differ-
ent kinds of data, such as natural images, audio waveforms con-
taining speech, and symbols in natural language corpora (see
Figure 1). All of this structuring of data works to decrease en-
tropy by creating discriminators that are able to classify this .
datzyintg well—de%ined labels. Furthermore, we now see th)é suc- learning. [photos: Bobolas, 2009
cess of deep generative models due to Goodfellow et. al [5] and [1]. Maley, 2011 [10]]

Kingma et al. [8], which further accelerates the pace of structured data generation.

Figure 1: The power of deep

All of this model discovery is creating too much information. At this rate, we will outstrip the
second law of thermodynamics and begin to decrease entropy in the universe (see Figure 2). In
order to maintain reality as we know it, we present the Degenerative Adversarial Network, or DAN,
which sidesteps the successes of deep learning models in order to maintain a steady and healthy pace
towards the sweet release of heat death.

In this proposed adversarial degeneration framework, the degenerative model is pitted against an
adversary: a discriminative model which attempts to distinguish whether actual data has been de-
generated or whether the observed sample is true noise. The degenerative model can be thought
of as a team of steamrollers, flattening data into a uniform distribution for maximum entropy. The
discriminative model can be thought of as a team of protractors, trying to determine if its input has
been properly flattened into true noise. Competition in this game will drive both groups to improve
until the discriminator cannot reliably distinguish between generated noise and degenerated data.

*Currently looking for grad school.
Please accept me into your lab.
Junfulfilled

68

ull entropy

=L @
9(0%
“‘(‘L\ -
R\ -~
-
o = -
1 /
=
2
g effect of deep learning
=
~ —— - -
v/
Years — Now 10'* from

Figure 2: Plot showing the dangers of deep learning. In hindsight, this plot generates information so
please refrain from looking at it.

This framework can give specific algorithms for degeneration and discrimination. We explore the
case in which the degenerative model destroys data by passing it through a multilayer after being
perturbed by noise and the discriminator model is also a multilayer perceptron. We refer to this
special case as a DAN and show that we can train both networks using backpropagation in an end-
to-end fashion. Uniquely to our approach, there is no need to actually code this network.

2 Related Work

Training adversarial networks is infamously hard [12], be-

cause the optimization objective equates to trying to find |

a Nash equilibrium in a non-cooperative game. We found 19
this to be even more complicated when degenerating, be- rg Do |
cause the procedure makes it very easy for the Degenera- v L
tor to output images of PhD students®.

To solve this, some work in the field has argued that a
balance between the two adversaries needs to be found in
order to stabilize the game and avoid local minima. How-
ever, Goodfellow [4] shows how a more robust solution
involves creating an overpowered adversary Discrimina-
tor, which ensures that the values of collaboration and
looking past one another’s differences will not come into play. Therefore, we proceed with the
adversarial technique. Our methods are described below.

Figure 3: Example of bad Nash Equilib-
rium for the DAN model, the degenerate
result is a PhD candidate hard at work”
on his thesis.

Goodfellow et al. [6] also use adversarial techniques to degenerate data. However, their method is
limited in that it is only able to trick other neural networks. While this is useful for slowing down
the pace of data creation by generative models, it is not sufficient for our objectives as their results
preserve enough structure that humans can still discriminate with ease. The method we present is
robust even to human discriminators.

+.007 x +.007 x

(a) Adversarial Degeneration in Goodfellow et al. (b) Adversarial Degeneration using DANs

Figure 4: Comparison of the results presented in [6] and ours. Note how DANS are able to degenerate
data well enough to trick both neural networks and humans, whereas Goodfellow et al. are only able
to trick neural network models.

*with our apologies to degenerates

69

3 Degenerative Adversarial Nets

3.1 Description

The two models D and D play the following role-playing game:

domp subp V (D, D) = Egeossllog(D(eep))] + Erinton[log(l — D(addy))] (1)

Some might say that this notation is confusing. Those people would be wrong. H

In practice, Equation 1 provides absolutely no information at all on how to train either D or D. We
think this is OK, as reproducibility is the least important aspect of science.

The adversarial framework is most straightforward to apply when we straight copy paste someone
else’s code. As such, to learn the degenerator’s distribution pg over z, we don’t do anything at all and
just use the method from [5], except we ignore the given input and replace it with noise generated
using Python’s random module.

Real or
Generated?

o

Generator Network Discriminator Network

Real or
Generated?

Discriminator Network

Degenerator Network

Figure 5: Comparison of the GAN (top) and the DAN architectures (bottom). In the former, noise is
used to generate data. In the latter, data is degenerated into noise.

See Figure 6 for an approximately probably equally formal > explanation of our approach. We
would include more explanation here, but our model is basically just a GAN so we refer the reader
to Goodfellow et. al[5].

In the next section, we present some theoretical results about our adversarial degeneration, essen-
tially showing that the training criterion presented above allows one to lose all of their data.

3i.e. not at all

70

o N NN R W N =

—
>

...... e e . S
7)1 /\< | N/ NN)
/| / AN %// / L MAANEN N
(a) (b) (©) (d)

Figure 6: Degenerative adversarial nets are trained by simultaneously updating the discriminative
distribution (D, blue, dashed line) so that it discriminates between samples from the original data
(black, dotted line) p, from those of the degenerative distribution pg (D) (green, solid line). The
lower horizontal line is the domain from which we sample noise. The higher horizontal line is part of
the domain of x, which we destroy. The upward arrows show how the mapping x = D(z) imposes
the uniform distribution p4 on transformed samples, which later overwrite the original x. D learns
to scatter uniformly. (a) Consider an adversarial pair before divergence: p, is dangerously similar to
Pdata and D is much too accurate a discriminator. (b) In the inner loop of the algorithm D is trained
to discriminate samples from data that have been ruined, and starts to diverge. We also see that the
data distribution has started to disperse, and that the degenerator distribution is heavily unlearning
the data. (c) After an update to D, the gradient of D no longer exists. We see that we have reached
uniformity of data. (d) After several steps of training, if D and D have enough capacity, there is no
need to map the noise to the degeneration anymore. The DAN has learned to generate its own noise
(hence the self loop) and the data distribution has reached what we call “super-uniformity,” which
is how we boost entropy at a high enough rate to counteract others in the field. A key step in this
procedure requires that we mention it here in this figure only, and never mention it in the rest of the

paper.

3.2 Method

We download an out-of-the-box GAN model [7] and repurpose it to a DAN — by which we mean we
trained it on a new dataset without modifying a single line of code. We present our algorithm below.

Algorithm 1: Degeneration algorithm.

Input: Internet connection, GAN, Python noise module
Output: Noise

Open browser.

Go to www.google.com.

Type in “google.”

Click on Google.

Type in “gan tensorflow”.

git clone

Generate noisy images in Python.

Train your GAN on the noise.

Leave on the counter for 15 minutes to cool.
Overwrite your original data with the generated noise.

We believe this algorithm can be generalized to other kinds of models. This would involve optimiz-
ing the algorithm’s search strategy for those other models (e.g.: you might need to type “infogan
tensorflow” in step 5). We leave this discussion for future work.

Additionally, in our algorithm we are overwriting the original data through manually-written disk
writes. We believe in the potential of end-to-end learning in tackling this task, but we also leave this
for future work. Some Al ethics alarmists might claim such a model would accelerate the impeding
doom of civilization [13]. However, we see this as a reasonable alternative to heat death, and thus
posit that it’s a worthwhile pursuit.

In other subfields of Machine Learning, one would use a dataset like MNIST [9] or ImageNet [3].
For our purposes, we’d need a randomness dataset, such as the ones used in the cryptography field.

71

However, in a desperate bid for citations, we ignore existing options in favor of fabricating our own,
which we call DANOISE®. We discuss the implications of this decision below.

When training a DAN, it’s important to keep in mind that the generated data must represent true
randomness. Unfortunately, the availability of true randomness is scarce in a deterministic Turing
machine, so we settle for the python approximation random module.

It’s crucial to note, however, that the random module does not give you true randomness. The
validity of this claim is based in the fact that we seek to model true randomness through a neural
network. If randomness were readily available through a simple module import then there would be
no point in using Deep Learning. ;)

4 Theoretical Results

The degenerator D implicitly defines a probability distribution p,; as nothing. Therefore, we would
like Algorithm 1 to converge to nothing, which is equivalent to diverging to a uniform distribution
that maximizes entropy. The results of this section are organized in a similar manner: uniformly
random and without meaning.

We will show in section 4.1 that our role-playing game has no meaning, but that the network has a
global optimum when pg = Puniform-

4.1 Global Optimality of Entropy

We first consider the optimal discriminator D for any degenerator D.

Proposition 1. For D fixed, the optimal discriminator D gets overwritten by D.

D} (x) = /dev/urandom 2)

Proof. The training criterion for D (whichever D) does not really matter. What does matter is that
no matter what the trained degenerator is, the final step is to overwrite your data. Therefore, the
discriminator simply ceases to exist. This is accomplished by overwriting the data with values that
are equivalent to /dev/urandom (since D is optimal). O

Theorem 1. The global minimum of the training criterion occurs when the universe reaches max-
imum entropy. However, reaching a local optimum is equivalent to enabling D to degenerate data
(and write to disk) into uniformly random noise. Therefore, any local optima is actually just a saddle
point on the way to global optimum.

Proof. We have an elegant proof, however this saddle point is too itchy, forcing us to abstain from
including the it in this paper. In future, we plan to also abstain from including proofs if the margins
are too small. O

4.2 Divergence of Algorithm 1

Proposition 2. Regardless of the capacity of D and D, if at each step of the algorithm we ignore
the meaningless criterion of and overwrite data, the algorithm will always diverge.

Proof. We wou 1d W& 10 Sh' oy, /4 O

t #%f5[-3]

Note: Unfortunately, we lost the above proof as well other results due to the model overwriting them.

Swe’re accepting suggestions for potential acronyms that justify this dataset name

72

5 Results

(b) Random sample taken from Python.

Figure 7: Comparison of results from DAN and results from Python.

The noise examples generated by DAN look very visually similar to a sample from a true random
source (or its equivalent python non-approximation), as can be seen in Figure 7. Therefore, it’s
probably approximately correct to say we’ve established the state of the art in degenerating data.
The definitive results were destroyed by our preliminary experiments in end-to-end training, so we
present a novel metric of Data Degeneration: percentage of data destroyed (%44). We compare our
methods with other models in Table 1

Model Y%qq in training set | %g4q in my family photos album
VGG trained on ImageNet 0 0

Inception trained on Britney Spears MP3s 0 0

AlphaGo trained on MNIST 0 0

DAN trained on DANOISE dataset’ 100 100

Table 1: Comparison of different models on the task of permanent data degeneration. It’s clear from
this comparison that our architecture is inherently superior to these other ones, because of the bold
font highlighting the DAN results.

6 Conclusion

We have presented an entirely new®, model that achieves the state of the art in data degeneration.
With it, we get the field one step closer towards stopping Big Data terror and maintaining a steady
pace towards heat death.

We hope that this has inspired the reader to help us further these novel Data Degeneration models.
We conclude by presenting a few examples of potentially interesting and useful future research
directions:

Inspired by InfoGAN [2], InfoDAN would preserve the property of uninterpretability of latent space,
by degenerating the data, as well as any structural features it is composed of.

Similarly to work by Radford et al. [11], DCDAN is a model with the same architecture as a DAN,
but with twice the number of convolution layers, and half as many learnable parameters.

Lastly, also inspired by the work of Chen et. al [2], EntropyDAN could use the data input as a latent
representation of how true the generated noise is.

8i.c.: plagiarized repurposed

73

References

[1] Bobolas. brain-neurons.
[2] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. In-

(3]

(4]

(5]

(6]

(7]
(8]

[9]

(10]
(11]

(12]

(13]

fogan: Interpretable representation learning by information maximizing generative adversarial
nets. In Advances in Neural Information Processing Systems, pages 2172-2180, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pages 248-255. IEEE, 20009.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672-2680, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572, 2014.

Google. First result when googling “gan tensorflow”.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114,2013.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten
digits, 1998.

Maley. neuron.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Tim Urban. The ai revolution: The road to superintelligence.

74

7 Appendix A

Because 7 pages wasn’t enough.

% X wh!
S L5
2 %"&g%é& SEsaus

e

’g"gé.?’i S i Ao e ARG g g‘."ég
é""ﬂ o Emaa S ,ﬁdﬁ ,f
: %%5 . =

ﬁi’{{‘ﬂ‘éﬁ

s ; L
e "',;, gg,g-,é% e 5‘32'
AL ’s- r’(«r n 5 = «'(:W v "- e
, ,,,.z, mm.@%v e
4(:(1« i);:;, i Ry m’:;:g:
S e

Figure 8: Generated image samples after one pass through the dataset. The degenerator is still trying
to unlearn the structure of the input data.

Figure 9: Generated image samples after 15 passes through the dataset. There appears to be evidence
of visual under-fitting via repeated noise textures across multiple samples.

75

Under review as a conference paper at SIGBOVIK 2017

STOPPING GAN VIOLENCE:
GENERATIVE UNADVERSARIAL NETWORKS

Samuel Albanie*
Institute of Deep Statistical Harmony
Shelfanger, UK

Sébastien Ehrhardt*
French Foreign Legion
Location Redacted

Joao F. Henriques*
Centre for Discrete Peace, Love and Understanding
Coimbra, Portugal

ABSTRACT

While the costs of human violence have attracted a great deal of attention from
the research community, the effects of the network-on-network (NoN) violence
popularised by Generative Adversarial Networks have yet to be addressed. In this
work, we quantify the financial, social, spiritual, cultural, grammatical and der-
matological impact of this aggression and address the issue by proposing a more
peaceful approach which we term Generative Unadversarial Networks (GUNs).
Under this framework, we simultaneously train two models: a generator G that
does its best to capture whichever data distribution it feels it can manage, and a
motivator M that helps G to achieve its dream. Fighting is strictly verboten and
both models evolve by learning to respect their differences. The framework is
both theoretically and electrically grounded in game theory, and can be viewed
as a winner-shares-all two-player game in which both players work as a team to
achieve the best score. Experiments show that by working in harmony, the pro-
posed model is able to claim both the moral and log-likelihood high ground. Our
work builds on a rich history of carefully argued position-papers, published as
anonymous YouTube comments, which prove that the optimal solution to NoN
violence is more GUNS.

Takes skill to be real, time to heal each other

Tupac Shakur, Changes, 1998

1 INTRODUCTION

Deep generative modelling is probably important (see e.g. Bengio et al. (2013a), Bengio et al.
(2013b), Bengio et al. (2007a), Bengio et al. (2015) Bengio et al. (2007b) and (Schmidhuber et al.,
circa 3114 BQ)). Justifications recently overheard in the nightclubs of Cowley' include the ability
to accurately approximate data distributions without prohibitively expensive label acquisition, and
computationally feasible approaches to beating human infants at chess?. Deep generative modelling

* Authors are listed according to the degree to which their home nation underperformed at the 2016 European

football championships

!'The nightclubs of Cowley are renowned for their longstanding philosophical support for Dubstep, Grime
and Connectionism, and should not be confused with the central Oxford nightclub collective which leans more
towards Dubstep, Grime and Computationalism - speak to Old Man Bridge at 3am on a Friday morning under
the stairs of the smoking area for a more nuanced clarification of the metaphysical differences of opinion.

YInfants of other species (fox cubs, for example) remain an adorable open question in the field.

76

Under review as a conference paper at SIGBOVIK 2017

PROPS

\/
ACKS

Figure 1: The proposed unadversarial training protocol. The generator G proposes samples, PROPS,
and in return receives acknowledgements and praise, ACKS from the motivator M. As a direct
consequence of the sense of teamwork fostered by our optimisation scheme, synergy abounds. Note:
this figure best viewed at a distance, preferably at low resolution.

was broadly considered intractorable, until recent groundbreaking research by Goodfellow et al.
(2014) employed machiavellian adversarial tactics to demonstrate that methaphorical tractors could
in fact be driven directly through the goddamn centre of this previously unploughed research field
(subject to EU agricultural safety and set-aside regulations).

The key insight behind Generative Adversarial Networks (commonly referred to as GANs, GANGs
or CAPONE:s depending on sources of counterfeit currency) is to pit one model against another in a
gladiatorial quest for dominance. However, as ably illustrated by respected human actor and philan-
thropist Russell Crowe in the documentary Gladiator, being an actual gladiator isn’t all sunshine
and rainbows—although it’s possible to get a great tan, one still has to wear sandals.

Even though we are only in the introduction, we now bravely leap into a series of back-of-the-
envelope calculations to compute a lower bound on the cost of that violence for the case of middle
aged, median-income Generative Adversarial Networks living in comfortable, but affordable accom-
modation in the leafy suburbs of an appropriate class of functions.

Following the literature, we define the adversaries as two models, a discriminator D and a generator
G. However, since we don’t agree with the literature or wish to condone its violent actions in any
form, we immediately redefine the models as follows:

D,G:=G,D (1)

Note that the equation above is valid and above board, since the current version of mathematics
(v42.1 at the time of writing) supports simultaneous assignment®. Therefore, in the following ex-
position, D represents the generator and G represents the discriminator. Next, we define a cost
function, C' : ¥V — $, mapping the space of model violence V into the space $ spanned by all
mattresses stuffed with U.S. dollars, as follows:

(V) =a / By (G) @

in which By is a violent and discriminatory mapping from the discriminator G to the closest math-
ematical structure which appears to be a human brain and « is a constant representing the cost of
human violence, to be determined by trawling through posts on social media. Note that 3y, may be
a violent function, but not crazy-violent (i.e. it must be Khinchin-integrable)*.

3We caution readers not to rely on this assumption in future versions. Mathematics has not supported
backwards compatability since Kurt “Tab-Liebehaber” Godel re-implemented the entire axiomatic foundations
of the language rather than be constrained to four-space equation indentation (see Godel (1931) for the details).

“Since Neuroscience tells us that human brains are AlexVGGIncepResNets almost-everywhere, in practice
we found that these functions need not be overly belligerent.

77

Under review as a conference paper at SIGBOVIK 2017

To evaluate this cost, we first compute o with a melancholy search of Twitter, uniquely determining
the cost of violence globally as $1876 for every person in the world (Twitter, 2016). Integrating
over all discriminators and cases of probable discrimination, we arrive at a conservative value of 3.2
gigamattresses of cost. By any reasonable measure of humanity (financial, social, spiritual, cultural,
grammatical or indeed dermatological), this is too many gigamattresses.

Having made the compelling case for GUNs, we now turn to the highly anticipated related work
section, in which we adopt a petty approach to resolving disagreements with other researchers by
purposefully avoiding references to their relevant work.

2 RELATED WORK

These violent delights have violent ends

Geoff Hinton, date unknown

Our work is connected to a range of adversarial work in both the machine learning and the machine
forgetting communities. To the best of our knowledge Smith & Wesson (1852) were the first to
apply GUNS s to the problem of generative modelling, although similar ideas have been explored in
the context of discriminative modelling as far back as the sixteenth century by Fabbrica d’ Armi
Pietro Beretta in an early demonstration of one-shot learning. Unfortunately, since neither work
evaluated their approach on public benchmarks (not even on MNIST), the significance of their ideas
remains under appreciated by the machine learning community.

Building on the approach of Fouhey & Maturana (2012)°, we next summarise the adversarial liter-
ature most closely related to ours, ordered by Levenshtein edit distance: GAN (Goodfellow et al.,
2014), WGAN (Arjovsky et al., 2017), DCGAN (Radford et al., 2015), LAPGAN (Denton et al.,
2015), InfoC6}AN (Chen et al., 2016), StackedGAN (Huang et al., 2016) and UnrolledGAN (Metz
etal., 2016)°.

Unadversarial approaches to training have also received some attention, primarily for models used
in other domains such as fashion (Crawford, 1992) and bodybuilding (Schwarzenegger, 2012)).
Some promising results have also been demonstrated in the generative modelling domain, most
notably through the use of Variational Generative Stochastic Networks with Collaborative Shaping
(Bachman & Precup, 2015). Our work makes a fundamental contribution in this area by dramatically
reducing the complexity of the paper title.

3 GENERATIVE UNADVERSARIAL NETWORKS

Under the Generative Unadversarial Network framework, we simultaneously train two models: a
generator GG that does its best to capture whichever data distribution it feels it can manage and
a motivator M that helps G to achieve its dream. The generator is trained by learning a function
G(Z; 6,) which transforms samples from a uniform prior distribution p, (Z) into the space graciously
accommodating the data’. The motivator is defined as a function M (&;60,7) which uses gentle
gradients and persuasive language to encourage G to improve its game. In particular, we train G to
maximise log(M (G(Z)) and we simultaneously train M to maximise log(M (G(Z)). Thus, we see
that the objectives of both parties are aligned, reducing conflict and promoting teamwork.

The core components of our framework are illustrated in Figure 1. The GUN training scheme
was inspired largely by Clint Eastwood’s memorable performance in Dirty Harry but also in part
by the Transmission Control Protocol (TCP) three-way handshake (Postel et al., 1981), which was
among the first protocols to build harmony through synergy, acknowledgements and the simple act of

SThis innovative work was the first to introduce the concept of an alphabetically-related, rather than
scientifically-related literature review.

°In the interest of an unadversarial literature review, we note that Bishop (2006) and Murphy (2012) make
equally good (up to e = 107°) references for further exploration of this area.

"The choice of the uniform prior prevents discrimination against prior samples that lie far from the mean.
It’s a small thing, but it speaks volumes about our inclusive approach.

78

Under review as a conference paper at SIGBOVIK 2017

I

(a) (b) (c)

.

Figure 2: (a) GUNs are trained by updating the generator distribution G (yellow line) with the help
and support of the motivator (red line) to reach its dream of the data distribution (blue dashed).
(b) With a concerted effort, the generator reaches its goal. (c) Unlike previous generators which
were content with simply reaching this goal, our generator is more motivated and gives it ‘110%’
moving it a further 10% past the data distribution. While this isn’t terribly helpful from a modelling
perspective, we think it shows the right kind of attitude.

Algorithm 1 Training algorithm for Generative Unadversarial Networks

1: procedure TRAIN

2: for #iterations do

Sample n noise samples from prior p, () and compute G(71V;6,), ...G(Z(™);6,).
Sample n data samples (1), ...#("), from the data distribution.

Let G show pairs (F(), G(7(9;0,)) to M as slides of a powerpoint presentation®.
Sample constructive criticism and motivational comments from M.

Update the powerpoint slides and incorporate suggestions into 0.

AR A

shaking hands. A description of the training procedure used to train G and M is given in Algorithm
1.

Algorithm 1 can be efficiently implemented by combining a spare meeting room (which must have a
working projector) and a top notch deep learning framework such as MatConvNet (Vedaldi & Lenc,
2015) or Soumith Chintala (Chintala, 2012-present). We note that we can further improve training
efficiency by trivially rewriting our motivator objective as follows’:

05 = Iglin yﬁ log(R) + log(1 — () G)
M sie)

Equation 3 describes the flow of reward and personal well-being on the generator network surface.
(is a constant which improves the appearance of the equation. In all our experiments, we fixed the
value of ¢ to zero.

8To guarantee polynomial runtime, it is important to ensure that the generator is equipped with the appro-
priate dongle and works through any issues with the projector before the presentation begins.

°If this result does not jump out at you immediately, read the odd numbered pages of (Amari & Nagaoka,
2000) . This book should be read in Japanese. The even-numbered pages can be ripped out to construct beautiful
orizuru.

79

Under review as a conference paper at SIGBOVIK 2017

Figure 3: Visualised samples from the GUN model trained on MNIST!!(the nearest training exam-
ples are shown in the right hand column). Note that these samples have been carefully cherry picked
for their attractive appearance. Note how the GUN samples are much clearer and easier to read than
the original MNIST digits.

4 EXPERIMENTS

Give the people what they want (MNIST)

Yann LeCun, date unknown

In this section we subject the GUN framework to a rigorous qualitative experimental evaluation by
training unadversarial networks on MNIST. Rather than evaluating the model error-rate or proba-
bility on withheld test data, we adopt a less confrontational metric, opportunities for improvement.
We also assess samples generated by the trained model by gut feeling, enabling a direct comparison
with a range of competing generative approaches. Following academic best practices, key imple-
mentation details can be found in our private code repository!'°.

We warm-start the network with toy data taken from the latest Lego catalog. To nurture the right
kind of learning environment, we let the network find its own learning rate and proceed by making
e-greedy updates with an e value of 1. We consider hard-negative mining to be a gratuitously harsh
training procedure, and instead perform easy-positive mining for gentler data digestion.

We now turn to the results of the experiment. Inspired by the Finnish education system, we do not
test our models during the first formative epochs of development. A quantitative comparison with
two other popular generative approaches has been withheld from publication to respect the privacy
of the models involved. However, we are able to reveal that GUN had by far the most opportunities
for improvement. We observed a sharp increase in performance once we all agreed that the network
was doing well. By constrast, the adversarial nature of standard GAN methodologies usually elicits a
fight-or-flight behavior, which can result in vanishing gradients and runaway losses. Samples drawn
from the trained network are shown in Figure 3.

5 CONCLUSION

In this work, we have shown that network-on-network violence is not only unethical, it is also
unnecessary. Our experiments demonstrate that happy networks are productive networks, laying the
groundwork for advances in motivational machine learning. Indeed, unadversarial learning is an
area rife with opportunities for further development. In future work, we plan to give an expanded

treatment of important related subjects including nurtural gradients and k-dearest neighbours'2.

%We also make available a public copy of this repository which almost compiles. For the sake of
brevity, all code comments, variables and function calls have been helpfully removed and replaced cross-
platform, universally compatible ascii art. The code can be found at http://github.com/albanie/
SIGBOVIK17-GUNs.

"For ease of visualisation, the GUN samples were lightly post-processed with ISTEX.

2While we have exhaustively explored the topic of machine learning GUNs, we leave the more controversial
topic of machine GUN learning to braver researchers.

30

Under review as a conference paper at SIGBOVIK 2017

ACKNOWLEDGEMENTS

The authors would like to acknowledge the quality of Karel Lenc’s homemade pancakes. This work
was supported by the NRA (National Research Association).

REFERENCES

Amari, Shun-ichi and Nagaoka, Hiroshi. Methods of information geometry, volume 191 of transla-
tions of mathematical monographs. American Mathematical Society, pp. 13, 2000.

Arjovsky, Martin, Chintala, Soumith, and Bottou, Léon. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Bachman, Philip and Precup, Doina. Variational generative stochastic networks with collaborative
shaping. In ICML, pp. 1964-1972, 2015.

Bengio, Yoshua, Lamblin, Pascal, Popovici, Dan, Larochelle, Hugo, et al. Greedy layer-wise train-
ing of deep networks. Advances in neural information processing systems, 19:153, 2007a.

Bengio, Yoshua, LeCun, Yann, et al. Scaling learning algorithms towards ai. Large-scale kernel
machines, 34(5):1-41, 2007b.

Bengio, Yoshua, Courville, Aaron, and Vincent, Pascal. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798-1828,
2013a.

Bengio, Yoshua, Yao, Li, Alain, Guillaume, and Vincent, Pascal. Generalized denoising auto-
encoders as generative models. In Advances in Neural Information Processing Systems, pp. 899—
907, 2013b.

Bengio, Yoshua, Goodfellow, Ian J, and Courville, Aaron. Deep learning. Nature, 521:436-444,
2015.

Bishop, Christopher M. Pattern recognition. Machine Learning, 128:1-58, 2006.

Chen, Xi, Duan, Yan, Houthooft, Rein, Schulman, John, Sutskever, Ilya, and Abbeel, Pieter. Info-
gan: Interpretable representation learning by information maximizing generative adversarial nets.
In Advances in Neural Information Processing Systems, pp. 2172-2180, 2016.

Crawford, Cindy. Shape your body workout, 1992.

Denton, Emily L, Chintala, Soumith, Fergus, Rob, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In Advances in neural information processing systems,
pp. 1486-1494, 2015.

Fouhey, David F and Maturana, Daniel. The kardashian kernel, 2012.

Godel, Kurt. Uber formal unentscheidbare sitze der principia mathematica und verwandter systeme
i. Monatshefte fiir mathematik und physik, 38(1):173-198, 1931.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sher-
jil, Courville, Aaron, and Bengio, Yoshua. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672-2680, 2014.

Huang, Xun, Li, Yixuan, Poursaeed, Omid, Hopcroft, John, and Belongie, Serge. Stacked generative
adversarial networks. arXiv preprint arXiv:1612.04357, 2016.

Metz, Luke, Poole, Ben, Pfau, David, and Sohl-Dickstein, Jascha. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2016.

Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.

Postel, Jon et al. Transmission control protocol rfc 793, 1981.

81

Under review as a conference paper at SIGBOVIK 2017

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,2015.

Schwarzenegger, Arnold. Arnold: The education of a bodybuilder. Simon and Schuster, 2012.

Twitter. Erik solheim: Cost of violence globally = $1876 for every person in the world. global peace
index here: http://ow.ly/WouI3014Czf, 2016.

Vedaldi, Andrea and Lenc, Karel. Matconvnet: Convolutional neural networks for matlab. In
Proceedings of the 23rd ACM international conference on Multimedia, pp. 689-692. ACM, 2015.

AUTHORS’ BIOGRAPHIES

SAMUEL

Samuel started writing biographies at the tender age of 24, when he penned his first short story
“Ouch that seriously hurt, keep your **** cat away from me” about the life of Jack Johnson, his
brother’s lovable albino cat with anger management issues. His career as a biographer has gone
from strength to strength ever since, flourishing in several other phyla of the animal kingdom. He is
a noted expert on the much beloved native English Panda and is a self-award winning author on the
challenges of hunting them.

SEBASTIEN

Sebastien holds a self-taught liberal arts degree, and passed his driver’s license exam with highest
honours. Secretly a [JJij national, he then joined the French Foreign Legion and was deployed

in Nicaragua, [J] of ||} IR

JOoAO

Joao El Tracko F. Henriques holds a joint bachelors degree in guerilla warfare tactics and cakemak-
ing from the University of Coimbra, where he has been tracking down the vietims subjects of his
critically acclaimed biographies for over five years. Little did they know that his visual object track-
ing skills extend to real-life. Though some (all) of his subjects have since passed away, their legend
lives on his thoughtfully written monograph, “How to most effectively interview someone who is
trying desperately to escape from you”.

82

-~ 2 wE L e . L owE - - -
P):;— L Y X ?):;; ,) P ERY X R N R T)::-; LE AT A SO

-~ «t

Groundhog track

Putting the “Under” in “Image Understanding”

DE

'»)5 ': ») :: T })3 b o))3 '- })3 L

-~ at

17 DeepDoggo: Learning the answer to “Who’s a good dog?”

Benjamin J. Lengerich

18 (Jogoooooooggdd oooodd oobo ggdoo
ooooo go ggoood

Ooogoood 00d ouobbddo - Oggooodd ggooogdo

19 Distinguishing humans from other forms of cattle

Boppity Bob Martinez and Flokkka® Haurilet

33

Under review as a conference paper at SIGBOVIK 2017

DEEPDOGGO: LEARNING THE ANSWER TO “WHO’S
A GOooD DoG?”

Benjamin J. Lengerich
Carnegie Mellon University
Pittsburgh, PA 15213, USA
blengeri@cs.cmu.edu

ABSTRACT

Humans tend to rate every dog as a good dog. This leads to significant social
conflict and suboptimal pet choices. To fix this, we introduce DeepDoggo, the
first neural network to classify images of dogs as either good dogs or bad dogs.
DeepDoggo is available at deepdoggo . com.

1 INTRODUCTION

For centuries, humans have known that dogs are “man’s best friend” (Laveaux & King of Prussia,
1789). But until now, it has been impossible to answer the question: “Which dog is man’s best
best friend?” As Figure 1 shows, the difficult task of evaluating dog goodness has led to significant

interpersonal conflict.
brant® @brant - 12 Sep 2016
your rating system sucks. Just change your name to “CuteDogs”.
WeRateDogs™ @dog_rates - 12 Sep 2016
\ Why are you so mad Bront

B
¥

L)
®
L)
e ™
) ‘ WeRateDogs 2 Follow
dog_rates

they're good dogs Brent
RETWEETS LIKES T& a jﬁ; D & % w & %

brant® @brant - 12 Sep 2016
well you give every dog 11s and 12s. It doesn’t even make any

sense.

Figure 1: When left to their own devices, humans tend to classify every dog as a good dog. This
creates social friction. Figure reproduced from WeRateDogs (2016).

84

Under review as a conference paper at SIGBOVIK 2017

One proposed mechanism to evaluate dog goodness includes the training of dogs to perform
“tricks”!. These “tricks”, which include sitting or shaking a paw on instruction, vary in difficulty
and quality of execution. Thus, the evaluation of such “tricks” naturally induces a partial ordering
on the set of dogs. However, this ordering requires pre-trained dogs.

Unfortunately, the reliance on biological neural networks makes dog training procedures computa-
tionally intensive. Even with recent hardware advances, speedups remain fixed at approximately 9
dog years per human year(Larson & Bradley, 2014). These limitations leave dog owners unable to
compare the goodness of either untrained dogs or rare puppers. Furthermore, dogs are often good
dogs for reasons that are unrelated to tricks (Knight, 1940; Dunham, 1993). As dogs are frequently
selected to be pets when they are untrained puppers, our inability to estimate dog goodness has led
dog owners to select suboptimal pets.

Here we pursue the natural extension of constructing an artificial neural network to classify dogs
as either good dogs or bad dogs. This approach has several advantages over current rating systems.
First, it has the ability to evaluate dog goodness for all dogs, not just trained dogs. Secondly, it is
extensible to evaluate many facets of dog goodness, such as the ability to get help when one falls in
a well. Finally, and perhaps most importantly, it is deep learning.

2 RELATED WORK

There has been almost no related work on this problem as it is completely useless.

3 DATA

Pictures were taken from Google Images after searches for “good dog” and “bad dog”. As most
dogs in the world are very good dogs, we represent this class imbalance by using 360 pictures of bad
dogs and 585 pictures of good dogs. Standard data augmentation procedures, including subsamples,
translations, and rotations, were followed to generate the full training dataset. Data was split into
60% training data, 20% validation data, and 20% test data.

4 MODEL

We used the pre-trained Inception-v3 model (Szegedy et al., 2016) as a base, and retrained a final
layer to classify dogs as good or bad. This approach is justified because the Inception-v3 model is
easy to download in Tensorflow.

5 RESULTS

Our model successfully converged to 73.0% classification accuracy. This is significantly higher
than the 61.9% classification accuracy of the naive baseline which labels every dog as a good dog.
Representative dogs and their classification labels are shown in Table 1.

6 DISCUSSION

6.1 THE MoST GooD DoG

A natural question is which dog is the most good dog. Here, we answer this question by identifying
the sample in the training set that maximized the good dog output value. The most good dog,
with a good dog score of 0.902, can be seen in Figure 2. Areas of significant contribution to the
classification label are highlighted in colored rectangles. As these areas are concentrated on the the
dog’s face, we recommend that dog owners looking to increase the goodness of their dog increase
the size of their dog’s face. To continue the search for the most good dog, we have constructed the
website deepdoggo . com, where users can upload new images and receive dog goodness scores.

!They’re illusions, Michael.

85

Under review as a conference paper at SIGBOVIK 2017

Table 1: Representative Samples
Model Classification (Goodness) Ground Truth

Good (0.895) Good
Good (0.732) Good
Good (0.566) Good
Bad (0.468) Bad
Bad (0.350) Bad
Bad (0.277) Bad

6.2 ADVERSARIAL DOGS

Unfortunately, adversarial examples can fool this classifier. This is bad; a bad dog wearing an
imperceptible noise filter should not be treated the same as a good dog. One adversarial example is
shown in Figure 3.

7 FUTURE WORK

This work raises several questions for future work. In particular, we are interested in the possibility
of training generative models of dog goodness. In a similar spirit to Crichton (2012), generative
models will enable us to engineer the next generation of more good dogs.

We are also interested in the implications that this work has for the future of the dog training indus-
try. Current training procedures involve the use of supervised treat-based reinforcement learning;
however, it is possible that the rich literature on stochastic optimization will have much to offer the
dog training industry.

86

Under review as a conference paper at SIGBOVIK 2017

Figure 2: The most good dog from the training set, with areas of significant contribution to the
classification label highlighted.

(a) A very good dog. (b) An imperceptible filter. (c) An image classified as a
bad dog.

Figure 3: When (a) a very good dog and (b) an imperceptible filter are combined, they form (c) an
adversarial image which is classified as a bad dog.

8 ACKNOWLEDGEMENTS

We would like to thank Michael Guo, Willie Neiswanger, and Christine Vetter for helpful comments,
especially about the proper usage of memes.

REFERENCES

Crichton, Michael. Jurassic park: A novel, volume 1. Ballantine Books, 2012.

Dunham, Duwayne. Homeward bound: The incredible journey. Movie, 2 1993. homeward.
Knight, Eric. Lassie Come-Home. The John C. Winston Company, 1940.

Larson, Greger and Bradley, Daniel G. How much is that in dog years? the advent of canine
population genomics. PLoS Genet, 10(1):e1004093, 2014.

Laveaux, C.J. and King of Prussia, F. The life of Frederick the Second, King of Prussia: To which
are added observations, Authentic Documents, and a Variety of Anecdotes. 1789.

Szegedy, Christian, Vanhoucke, Vincent, loffe, Sergey, Shlens, Jon, and Wojna, Zbigniew. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818-2826, 2016.

WeRateDogs. they’re good dogs brent [tweet]. Twitter, 9 2016.

87

L2390 139 P01 Y3m 108 ERey
CAL4R BCRm § S I LAWK
LQ0VRLE £8¢ MU RLDOS, ERCFTHLC T i 380K

MHR30 iz DOILDAZLE SE A$PFO Rz,
Sk HeA VoY PLVDALR, IROFL L3¢LOL ¢ D

Byadd e, oo

Eoi3e4 *H €04 98 4 HIOHREIT ¢ 8%, AFd QULIR DT I HIRDED 3
o PLO 193 L4RK #EDLE BF vEDPY ¥DALL3L LR

NZX-FE-NIN PN

Vo, PS¢ Hek-HeLPOY, EEI0N Q34 4I LPEOHIOL AFLA F3-
BdO medL A DY HHRDED LY, $ELO AL R ALLO [HR304EH ALDY
RPIPCIAYRE Wvd 20 AFd HIsRIOYE DOIOKS 3%, LOM O
AEDE SO0, ALEPRE T PO O8A FALSY L4RVPOT 3%
POLE AL ILE FImLO mdl A BuRs LmlO¥ LR OQL TR $e-
QORI ADEG L€ A PPy SE £4DO 4L A$O <3 3% ¥ ¢ L2D4X
AQ HOIPRESARE L3P L Addm b BEY A ¢ AQum$ L8 FIZPVOR:
Q3R O¢emEd ALd VRURIm $I§ + ¥ v¢ E30M 834, AL A
LAY SLRAF BF ALROTDO vOAF BILOF 8O4EDEE, 1O w Q¥A B
Afdm $ R DOHDLRE $OX $EHHO HMIOHRE3ET V¢ S4E¢ 194-
OPEDPIOL ARCILRG MPDILDO3DILDO T L4 A0 FmIOF JOX
QOO AYRRYILRDIR <40 AL ALDY $OX, ¥¢ Fom¢
$PkIDRED L IO JRISRDALE ALI A, QWOEd LPADEL AT DO
ALd PORRIPA PIE IRKEY 3% AL REPIAY LOX HDILDO3DHF
$4ATEP0 LImI0F 1O QULPR IPEBORIR £4PO Y (¥ ¢ evH)H
DO ALDE PWARDEIADW ¢ PRIFYOX AF$ SILRILADCO SE
53¢ ¥ LRIRDALE Odum dnt TEREH

FYaldd $hY 05 8@ 45 $AY

88

E2 384 H 30=R40L 18440, [HeS EOR L F$ PHOORE 43 LS4 Y EQORS

c PDOARSIP LD WO

To, AFE Hek-HAVOY udrd $WALPL vOLS $ILOY NIRDO ¢
Afd 3R-K3LO PR PO XS, LA Afd A@md, LE 8 YOSV, w¢
TR LR T AL 2DIO FepimeR DO -0, REOF LEAR AFY
3RK310 $QOERDEL v E SHER v Fi 1O SRRV LLOE O
AEERE P E 1O DOLONIOL PO 30V CE FOLS Y, LOR L i8¢ Cm
Sk HeLVOY s4ddud IARLONGN vOAF & F4oY S F3m O i
CO¢ AP0 RILH LQ LOCAELR LOR AL dek-EHeA-PBY viad
¢4 AL RDLO O w SR$ -

FLORR, Q3R PRI LR vHILY DO $WOLRDIW L8 AL L3-
BLO Laadul, ¥ ¢ FIOd 08 $FIOFE AQ PUVAZRS ALLOR
MHOVE (mmm - pEROED I P00 FIm IO V¢ A@D¢R AQ
LA QAL R $LRALRE <4PDO$E, £34 $§ ELI0M 834 AFL A L3mlOd
I8¢ 4 74 DOIRIHDIOL CE FERIOL 0 ERiH H

ALDE DF vF40 $¢ FALRASE A Q IHOR Q3R VI LS PO~
A3R¢ F3mL0F ERCE AL4OR Y 8m ¢ vORKN A W Orién LS PUP-
A3R¢ AfdE DOF O IPDL303INE, LQ LHSOH RDIVDO I Q38 KOV K E-
Bl ADS RIRIALDCOE, 34 ¢ Tdx & IR APm ¢ HDILDO 1398~
P01 LmlOd BRSO\ ALd QALSR 3R4PO4E ALL A LA A L40R
$8m ¢ v eRWX

Té LR PILRADPINL &KE Du P RS FF$D <3 LImLO $OFY, +EDPY
IR BIRM, XIOHRE3Y, LLIWILINT DOIDERS, O 2&%Uwm
ERIIRE LFREIM AFd EDINEE SE $Lerdy #4¢ EDiH oA

AQ 33 FImIOF JOX $EYE LR VRIPADPIRRE DORDILDO~
139801 4RS, 4O 3€ @3 AL Hmd ESR $HEO 3R LHEL LR~
18R A m & HEPREP I <3 HOKk-HUVOY WR40LDILId W
O4dmdn & FImIO LRV RAUSF LQ HDILDO BDEF $$ATHO & 8vY
JOR $3md0f JOX ¥¢ <384 $¢R V3PV AL A ¢4 LD O
JOFDIOL RINDL LRIO WM DIIDCO ERSm AFd 4dr o dugnsd
$COLLPDOPO} VO YRICRDAY Odmdn TERE [] Afen afesmwn
3¢ REG C3@ V3RV Q¥4

D0 101 IDILCEHDOE 170 $QOARDSIADCO, V¢ 8FOV Q3R
SENRIL AP QO Afd ICRE LPRO1 AfLA DL YORK LRV
AQ LEEOK ¢8F RIRVL AR LRI KR vFORE FLROPO | 38 vOAF
i3mmsE mms fImloyd

89

o124 AH TR €0 meWy: Wz 804PD48

| $E0R3LAD0 O MARYE s 8PP

AQ $IALLRDEL AFd PHRECRMIOPE SE AL$ FEiLdm SO HERK
YOO RPIADO: #PEDEY, ¢ LI I raL i TERE eo X
CE Af¢ DOFLSDALOAE SE Afd MARYE wEH REEIRAT $1O
s4 31440 20 EoiH A4 Lo SCWL ¢li 4RSI IR SHEORE AFS
L RALE EORIL $COALEL, DL $LO OCL R4 QODSE m QL &1
Lfd 1@ OL 040 A f¢ R0, vERPE PROEIRT kY-
Bma®y AFS FImlOE, bR adabeadn <3 TERE O Af$ e fir
$lom, AFd Laores Wirsdwis ALy ALRIN0L I, JOX, I3R-
VaDIDO XE, LL4 Crd, LRE MEASS AR LE LI LOEH

90

EPi3g¢ +H ITENL R43aRiy €O Lmi0i 4OX $8%id ASY REyH
$mm O ¥ImIOFd L0 RSYH $Qum O $HEvEH

Hoi3es XH QR @430y QO ¢REALIR $Q¥EH OQLd AfL A 9O
Afd @D PA DG CE ALd RWEEL POPAZRE AL4RE PE L F30lm, O
b P8y JRILOCLS LOF MLOPE MR FIDO L IO mivé b 4L 3LDERR
$OF WOy Q0K L8 QI LR SO 2930 IRDO 8

A ZEWLQ €O Laml10F LOX $H8¥E

P4 AF40 $OeR3LAdn TEKRE 0 Fam1OF JOX F8Y Dud i, JOx
AFd REIINAE PLO ¢ 340 90 EoiH +4 IR 95 Lswd aQ
3PP S IIEINRE HQILDOBDEL £4ATHEO P OVE LOX $6%3DIDLS
IO *3DL$ PP LIIEINKE DO ALDF PRI DR VRE LaL-
DL PO $E40 R4S QIODHE K QIE 1§ DA $LO ¢4 0 9O AF$
ey R RDIFL Dud v+ 938 ¢6VIRAT LIRSS AL L KT LR 4
ALd SEEIRPOT SE Py i

91

Ho 3¢y ~H ISWE 4530 Ly €O E3RRE F304m i+ AL LRGLEF JRIP -
AP0$ LImiOI mds FLlOd AL RS LQ F330 4P L Q3R FARIALSIE LOX
HHEPROD Som QIERY 4 QL A L4 m DRDAL R 3F¢ CE Pdm IERY +4
PO A¥d RIEAR Q¥L EDI3RE

+ IOV O WAL $OIE

Jem ¢ 334 aadm AfL L TEKWE ge@¥dn £ wmHlOF SE MPDILPO-
13DIEDO} £4ATHE0 PRALSY (L F4 P ORCREIV FIPRO AfL A F3-
BIOF PRGN AS), LOX B3R, vEDEY D% AL ¢ TERE D ORI R VDO
434 SE HOEERIOA OL LIRS, AFLA $O¥E HOdal it Fevdmin,
AEDE DT O b HOLRIR RING 1§ DO Q3R POLGILD N LD O, v
E930n €34 £8AY Y30Jm ¥ $8I4R4M 9O [E3R, JOX $E¥E S ISR
ST PRQAFHEA

DO Afd ST O $OVE FOASRIT £F FREALSE TERE fuF O
VReLKIm § ERPOXPO T Afdm, L ¥ 440 PO Ee 4 X4

X IQWL €0 E3rk: LImIOF

Ve L RE RELEDEADO: DOPRILIDO$ R4V 8RAE ALL A L3mbOF L RS
IR PO+ & Pdm ERY 1¢ DOLSKREAPO + B3R ALl L mDIfL ¢
JaRE LQ 4dy 938 HMEL$PADWH Ja ALd mmbOL, DL DY 30~
YOQYO DE ALDE $4m QERL H DI b <DERUDPIR 1348 Adxrt
RILPADED A€ I VHRPHDOIN AFRIL A, CR ¢ RIIIRAL SE $CO-
PP N$IPDI0 VO HOiH - v¢ IO I HEIRIR $64mPREY
SE $3miOF PO dm WBERL - EHe: ¢RDILLRE 193R$4E FL TG
JIIZREA 3% AL A 3004 R AL A FOEER, ALGRE L RE REIR wm AL~
P A$ROO: FIm 0T POIPHI ILORK, IYNE D3 LR A8 RP-
IOBHY 50% SE Afdm vRAE $L ¥, POFRINDO T ALd CO¢ ERm
Afd mDRDAL RS (AF$ RIBAR QFL €O ¢)H

S POPRIIDOE

To FLa¢ $ALR3L L TERE DO $FLRRIO DO+ + WHPLD W T ©
A ALY SR KO ILD0 D IEPO T L4ATHEO ALP O QRS LOX IO -
HRe3Y £ OV, LOR AL$ SLECRE F304m §- DO 182 $WONPDADCOE,

92

QR Fld O AREBSRY MDILDO BDIDO T $¢ATHIO Afdm, $3A
F3mdO8 31dmd L9 L4 IRRIIHE HYEGROPPDOT b O304 Rm 1 -
13R% L€ DX, PO Add ECRm S E3RRET $im LIERY 4

DO Afd E3438%, ¥4 VRLO L Q 354 TEKWE Le EagALdR OIS
ADHNAS FILO $4P041 AQ £ VRITDEE v¢ TIOA A8 P4V
Afd RVALSR vORE PRIDm AL A $3md0F $4E¢ 630K 0~
w0 eRAYD P, OB JOIVER Ad¢ k3 ILQOC0OEH M ALz REIRRE
8¢ SA HQEESRIOL RHOXERE []? VEREE SE LAfdm L ad L¥¢
I3mm D4 IL?

RIEERIOP S E

[] ¥4 ad4 <A $4On¢R% apath.org/63-genders, P00

[] >Q8¢PF Rérm €O, BLOALHF KPEALRL, RCET {ORILDEY, LOX
J® HLefiud- 95 0R: RESr WEIH J0PEDIH, RELR-
ADmd QexdPA MIALPLDEO A PO VaePEIOOir SE AF¢
D44¢ POEIRIOPE 2O PV TRIDCO 1O VL AL$RO
R4S I0DLD O, VI HE TTV_FTT, oA

93

Distinguishing humans from other forms of cattle

Boppity Bob Martinez, Flokkka® Haurilet
Frungy Institute of Technology,
Zoq-Fot-Pik Capital, Alpha Tucanae I

March 11, 2017

Figure 1: One is a dangerous cow, the other is a delicious human. Can you tell
which is which without aid?!

Abstract

We, the Zog-Fot-Pik, found out by accident that human meat is de-
licious, even better than Frungy. This discovery wake up the Zebranky
inside us, and once this happened, there we could not stop helping us with
tasty human meat. Sadly, humans are not very cooperative to the idea of
being eaten by us, so we tried to discreetly abduct them a few at a time
to supply our needs. The problem was, as we found out, that the Earth is
thriving with many species, and most of them are inedible and even dan-
gerous! We have significant trouble distinguishing between humans and
non-human Terrestrial beings. To this end, we have acquired a human
algorithm that, once activated in the correct way, allow us to locate and
distinguish between humans and other similar beings (e.g., cows). In this
contribution we present the evaluation of such algorithm named YOLO.

“3Jo[U3} UO ST MOD oY, ;

94

Figure 2: Soylent Green,Food for the people by the people

1 Introduction

We, the Zog-Fot-Pik made contact with humans during the Ur-Quan war
in 2156, at the time, as you know, we were all vegetarian. However, in
2160, long after the Ur-Quan conflict was over, we had an epiphany when
there was an incident in Suppox space, and a some of Zoq-Fot-Pik became
strangled with a herd of humans. One thing lead to another, and the Zog-
Fot-Pik were vegetarian no more.

Still, our ships are weak in comparison to the human armada, so we
have no chance to capture their ships (mmm... delicious canned humans).
We tried to eat other earthly beings, but we found out that humans are
a key ingredient of Soylent Green Fig. 2.

This is when we started to send our ships to capture humans from
their home world. We needed to capture them inconspicuously, to avoid
risking our diplomatic relations, but we had a hard time distinguishing
humans from the other species that habit their home world.

We are particularly impressed by human cows, which are large, dan-
gerous, absolutely inedible, and roam freely through the fields of Earths,
see Fig. 1.

To us, humans and cows are practically indistinguishable, and so is the
same for even our best algorithms developed by Zog-Fot-Pik scientists. We
needed a human approach to distinguish between cows and humans, and
we just were lucky that we received an ancient radio transmission from
the year 2016 Earth containing an algorithm named YOLO [2] that should
serve our purpose.

In this SIGBOVINE 2170 contribution, we show our evaluation on
the YOLO, hoping that it will help to avoid cow related tragedies while
helping us with yummy yummy humans.

95

Figure 3: YOLO on Milky Way species

2 Evaluation on Milky Way species

To establish the performance of the system on well known living species,
we have evaluated YOLO on 15 of the inhabitants of the Milky Way.
Results can be seen in Fig. 3. As YOLO was released before the Earth’s
first contact, it can not recognize most of the species. Not even the Syreen,
which closely resemble the humans, are detected by YOLO, on the other
hand, the Arilou Lalee’lay, the Thraddash, and, surprisingly, the Orz, are
detected as humans.

96

Figure 4: YOLO results on humans and cows. Top row: common humans.
Bottom row: common cows.

Figure 5: YOLO results on clothed cows. Note that in the right side of the left
picture there is a hunam, not a cow. Also note how fancy dressing can make a
beautiful cow look younger, as dogs are cow younglings.

3 YOLO on humans and cows

We then evaluated YOLO on humans and cow images, and the results
can be seen in Fig. 4. YOLO is able to successfully distinguish between
cows and exquisite humans quite successfully in this very simple test. It
can even recognize dogs as it can be seen in the lower right image. Our
experts agree that dogs are a the offspring of cows.

4 YOLO on clothed cows

Some suggested that YOLO worked by means of distinguishing between
clothes (the colorful skin that humans segregate), and fur, which is the
very similar skin but of different nature, that cows generate. However, this
is not a general rule as, in our investigation, we found out both hunams
covered in fur, and cows covered by clothes.

97

Figure 6: YOLO results on furry hunams. The always adaptive humans may
have started to suspect our strategy and develop camouflage. Note the military
use of camouflage in the leftmost figure.

In the case of cows covered by clothes, YOLO has no problems finding
them, as seen in Fig. 5.

5 YOLO on furry humans

We are receiving increasing reports that humans are developing a cam-
ouflage involving fur that might be able to beak our detection. At the
moment, it is unknown if this camouflage is a biological automated reac-
tion to a perceived threat, or a result of conscious design. In Fig. 6 we can
se several examples of humans in camouflage. Very reliable sources have
assured us that, under that cover, there are real mouthwatering humans
inside. Still, YOLO is able to recognize 50% of them with ease, including
the one from the military (the leftmost one).

6 Conclusions

We have evaluated YOLO in challenging conditions on the task of distin-
guishing between the noble and dangerous cows, and the savory hunams.
In easy conditions, YOLO has no trouble distinguising between them, but
humans seems to be already developing a countermeasure to it, in the form
of furry camouflage.

In the future, we plan to use YOLO to further investigate human
beings. To be precise we want to check the rather wild claim that humans
have sexual dimorphism, and answer the questions: do they really have
63 different genders [1]? Which of them are the yummiest?

References

[1] Apath. 63 genders. apath.org/63-genders, 2000.

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 779-788, 2016.

98

CONFIDENTIAL COMMITTEE MATERIALS
SIGBOVIK 2017 Paper Review

Paper 23: Distinguishing humans from
other forms of cattle

(MESSAGE FROM TRANSLATION COMMITTEE: INCOMING REVIEW EXTREMELY UN-
ORTHODOX IN COMPOSITION. TRANSLATION INCLUDES MANY LINGUAL BEST-FITS.
FOR CLARITY, BEST-FITS ARE DENOTED BY ASTERISK PAIRS. OVERALL ACCURACY
OF REVIEW: UNKNOWN. MESSAGE BEGINS...)

xFrumplex, «Pretty Space Playground:
Knowledge feeling: High
Party feeling: =Squeezing: the :juice:!

Zoq-Fot-Pik are such silly xcampers*. Human computer game YOLO is plain s=sisters of An-
drosynth xlearning machine*. To begin, these words are must become :*singing: an appropriate
xsong+ in SIGBOVINE 2084. Now you know the words.

But, this computer game is too slumpy: for silly Zog-Fot-Pik. Maybe you do not know. Before
the Ur-Quan *dancing=, Humans and Androsynth xadvisors: together invent a slearning machine:
computer game, but can not xlearn it themselves. Always after, computer games do not «formal:,
but have many xenemies*. Too many xenemies* and the game will =slidings. It is happiest days
not to care about Androsynth anything. Do not «telling stories* about this computer game!

Any =silly cow: sees these YOLO words to know person for Orz, but Orz is really =fingers:! It is
such a joke. No more *xlearning machinex is better.

99

100

20

21

22

23

24

v,
DA
>
Vv,
DA
>
Vv,
,,-," l\\'v'
'm:,\
Vv,
;A
>
Vv,
DA
>
Vv,
;o
>
Vv,
DA
>
Vv,
;o

i
;
S
i
;
S
i
;
S
i
;
I.l'i
i
;
I.l'i
i
;
I.l'i
i
;
I.l'i
i
;

Chipmunk track

New and “Improved” Languages

On the Turing completeness of MS PowerPoint
Tom Wildenhain

Effective multi-threading in Befunge
Zachary Wade

Automatic distributed execution of LLVM code using SQL

JIT compilation
Mark Raasveldt, Tim Gubner, and Abe Wits

WysiScript: Programming via direct syntax highlighting

William Gunther and Brian Kell

ZM~™" # PRinty# C with ABC!
Dr. Tom Murphy VII, Ph.D.

101

'm"l,"\
v
;o

On the Turing Completeness of MS PowerPoint

Tom Wildenhain

Introduction

As many users are well-aware, Microsoft PowerPoint ® offers unparalleled presentation editing
tools, enabling the creation of professional, animation-laden slides with minimal effort (Source:
Microsoft).! However, only more experienced (and desperate) PowerPoint aficionados fully
utilize PowerPoint’s advanced AutoShape, Hyperlink, and Transition tools for the purposes of
image editing, video production, and game design. Given PowerPoint’s versatility and cross-
platform compatibility (offering Microsoft branded support for mobile devices and the two
commercially relevant desktop operating systems), some have asked whether any other
applications are necessary at all, or if all computational tasks can be accomplished through the
creation of dedicated .pptx files. This research aims to definitively answer these questions in the
affirmative through the creation of a PowerPoint Turing Machine (PPTXTM), proving
PowerPoint to be exponentially more capable than competing slideshow editing software.

Creation Process

As the primary goal of this research is to prove the unnecessity of all non-PowerPoint software,
no external applications were used in the creation of the TuringMachine.pptx file. Furthermore,
VBScript and Macros were not used, as they have limited cross-platform support and are
considered security threats, which may decrease the attractiveness of using .pptx files as an
alternative to software. Thus, every AutoShape, Animation, and Hyperlink was painstakingly
added by hand, which took a meager 10 hours due to PowerPoint’s superior editing tools.
Programming the finished TM file, however, takes minutes and can be done through an intuitive
process.

Functionality and Operation

Like most Turing Machines, the PPTXTM file (available here?) consists of a tape, tape head,
and states (instruction cards). Unlike most Turing Machines, they are made entirely of
AutoShapes and On-Click Animations, enabling a more user friendly and visually pleasing
Turing Machine experience (on just a single slide!). To program the file, the developer need
only delete the correct portions of the instruction punch cards that determine the machine’s

1 https://products.office.com /en-us /powerpoint

2 http://tomwildenhain.com /PowerPoint TM /PowerPoint TM.pptx

102

behavior based on its current state and the character on the tape. Once programmed, the
PowerPoint application can be saved and distributed to interested users.3

To run a programmed Turing Machine, the user must open the file in the latest Microsoft-
supported PowerPoint editor and enter slideshow mode.? They may then write the desired
input on the tape by clicking the corresponding buttons. Clicking the run button begins the
computation, with the machine starting at state 0. With each step, the PowerPoint highlights a
region of the screen in vibrant, PowerPoint orange, which the user must click to continue
execution. The user cannot click regions that are not highlighted, ensuring that the
computation continues properly. When execution halts, the user can read the result from the
tape. The PPTXTM can be easily modified to have separate accept/reject states based on the
requirements of the application.

Turing Completeness

Critics of the PPTXTM may point out that the machine only has a finite-length tape and is
therefore not a true Turing Machine. While this is true, it should also be noted that all physical
systems have finite memory, and thus the capabilities of the PPTXTM are no less than that of
any other Turing Complete language running on physical hardware. Furthermore, many other
popular languages (like C) which are commonly referred to as Turing Complete actually use
finitely sized pointers and therefore have bounded memory. But to truly understand what
differentiates the PPTXTM from a less-capable PowerPoint Deterministic Finite State
Automata (DFA) we must study the PPTXTM’s Asymptotic AutoShape Complexity.

AutoShape and Animation Complexity

The 8 state PPTXTM with a tape alphabet of size four and 8 cells of memory requires 1669
animations and around 700 AutoShapes to function. More generally, for a given alphabet size a,
a PPTXTM with n states and m tape cells uses O(n? + m?) animations and O(nm) AutoShapes.
In contrast, a PowerPoint DFA implemented using hyperlinks could require an exponential
number of AutoShapes to achieve similar functionality. For example, a DFA to decide the
language of palindromes of length at most m must memorize the entire first half of the string,

m
which requires az separate slides, each containing at least ¢ AutoShapes. Thus, the PPTXTM

is significantly more efficient than the DFA implementation. As most other (inferior) slideshow
editing programs lack the On Click Animations PowerPoint offers, software presentations

3 Assuming potential users of your product have PowerPoint or are interested enough in your application
that they are motivated to obtain it.

4 Running PPTXTMs in old or non-Microsoft approved slideshow viewers may lead to undefined
behavior.

103

created using them must be implemented using hyperlinks making them exponentially larger
than PPTXTMs with the same features.®

AutoShapes required to decide the language
palindromes of length n using a PPTXTM

90897
Value of n
22993
5937 |- i
0 8 16 32 64
Number of AutoShapes
AutoShapes required to decide the language
palindromes of length » using a DFA
5.56E+15 el
Value of .
(Logarithmic)
1.29E+8 E)(ﬁii”)
19692 I
248 |-
1]
0 8 16 32 64
Number of AutoShapes

Figure 1. Graphs comparing the asymptotic AutoShape complexity of a PPTXTM with that of
a DFA for deciding palindromes (alphabet size 3). These graphs were made using PowerPoint.

Advantages over Conventional Languages

The PPTXTM offers several advantages over other Turing Complete languages. Its ability to
be programmed entirely using a GUI rather than confusing text-based languages could make it
easier for novice programmers to learn. In addition, since execution requires the user to click
before each step, no debugger is needed; stepping through code happens automatically.
Installation of the IDE for PowerPoint development is painless and requires minimal setup; a
credit card and Microsoft account are the only barriers to becoming an authentic PowerPoint

5 https://discussions.apple.com /thread /6989563 7start=0&tstart=0

104

developer.® PowerPoint’s sandboxed “Protected View” means that PowerPoint applications can
be safely shared and run, and since .pptx files are not generally viewed as dangerous, they can
be easily downloaded on or emailed to any supported device. The PowerPoint IDE is also
(surprisingly) stable when working with large projects; despite dealing with thousands of
elements, the development of the PPTXTM file never crashed PowerPoint, though PowerPoint
does appear to have some memory leaks when working with animations.” Of course the primary
advantage of PowerPoint development is the ease with which aesthetically pleasing
presentations can be created thanks to the built-in themes and styles.®

Implications of Turing Completeness

PowerPoint’s ability to emulate arbitrary code, while offering many advantages, also has some
less favorable repercussions, putting its app in violation of the iOS App Store Guidelines, which
state that “Apps that create alternate desktop/home screen environments or simulate multi-app
widget experiences will be rejected.” ¢ As proven through this research, PowerPoint files can
emulate arbitrary applications and thus may be considered “apps,” so the iOS PowerPoint app’s
open dialog might be considered a multi-app home screen environment. Furthermore, it is
conceivable that an alternative App Store for i0OS apps could be created which solely distributes
executable PowerPoint files for every task. In fact, stores are already in existence for desktop-
optimized PowerPoint applications, and it is just a matter of time before they begin to adopt
Apple’s platform.!? Thus it is crucial that Microsoft act quickly and prevent execution of On
Click Animations on iOS devices before its apps are removed for violating Apple’s terms.

Future Work

While the PPTXTM proves the theoretical possibility of PowerPoint development, research
needs to be done in making the software creation process more practical. I am currently
investigating the issues of scalability and encapsulation, and have developed techniques for
dividing complicated applications into multiple PowerPoint files that link to each other. Work
also needs to be done in PowerPoint application optimization. There is a lot of potential here to
exploit PowerPoint’s automatic buffering of the next slide, which through careful slide

6 Though some may consider “authentic PowerPoint developer” to be an oxymoron.

7 It is recommended that you reopening your PowerPoint file each time you add more than 100
animations.

8 Aesthetically displeasing presentations are equally possible:

http://www.pcworld.com/article/161912 /powerpoint hell dont let this happen to your next prese

ntation.html
9 Apple App Store Terms:
https://developer.apple.com/app-store/review /guidelines

10 An example of a PowerPoint app store:
http://people.uncw.edu/ertzbergerj/ppt games.html

105

placement may be used to greatly increase application performance. With enough advances in
these areas, it is increasingly likely that every application will one day be run within Microsoft
PowerPoint.

This document was typeset in PowerPoint.

106

Effective Multi-Threading
In Befunge

Zachary Wade

March 15, 2017

Abstract

Befunge is among the most premiere programming languages to have
ever been created. With a simple yet powerful feature set, intuitive pro-
gram flow, and true platform independence, there are few reasons not
to use Befunge. However, in a world that has become so obsessed with
efficient and fast algorithms, Befunge’s single threaded limitations pre-
vent it from being widely adopted by the current generation of computer
scientists. In this paper, we will examine multi-threaded Befunge in the
context of the newly-minted Befungell language.

1 Befunge:
A Background

The original version of Befunge (now
known as Befunge-93) was truly a
marvel of programming language de-
sign. Forgoing standard paradigms like
classes, objects, or even types, it in-
stead made use of a truly novel two-
dimensional program execution layout.
Let us, for a moment, consider the
unadulterated genius of this design de-
cision. Not only does it exceed the
linear limitations of a standard turing-
machine-style programming language,
but it frees the developer up to use
and reuse code creatively. Want to add
a comment? Just route the execution
around the text. Want to reuse a por-
tion of code? Just jump into the mid-
dle of that area.

Not only is the program execution
brilliant, but the very simplicity of pro-
gram design makes Befunge a revolu-
tionary language. Instead of manag-
ing a ton of individual variables, Be-
funge provides only a single stack —
data goes in, data comes out. On
top of that, Befunge is a truly dy-
namic language; it can modify itself as
it’s running. Few other programming
languages have such flexibility. Con-
sider, for instance, Figure 1, a very
readable ”FizzBuzz” program. As is
obvious, execution begins in the top
left, and is directed to the right where
the main control loop begins. In Be-
funge, control loops are literal; unlike
other more heretical languages, when
Befunge loops, its instruction pointer
physically moves in circles. As such,
we see the code brilliantly model the
program’s behavior.

107

>145x5x09p>:0\09g " #@_\:3%!#v_>:5%!#v_\#v_

Figure 1: A FizzBuzz Program

1. Not Java

2. Java

3. A Type Theorists’ Nightmare
4. Misaligned

5. Dirty Hacks™

6. Befunge

Figure 2: Top Languages (githut.info)

2 Single-Threaded
Limitations

Given all of these premiere features,
one might wonder what prevents Be-
funge from ascending to the ranks of
the top languages. As Figure 2 shows,
Befunge is only the 6th most popu-
lar language on Github. We specu-
late that this is due to the major limit-

3 Prior Work

Although this may come as a surprise,
Befungell is not the first attempt at

ing factor that befunge does not sup-
port multi-threading. In an age of
big data and massively parallel com-
puter systems, we find that Befunge’s
requirement that it operate linearly at
all times to be insufficient for the mod-
ern world. As such we propose an ad-
dendum to the Befunge specification
that supports these multi-threaded ap-
plications entitled Befungell.

making a multi-threaded befunge ap-
plication. In fact, a number of fun-
geoids have attempted this. However,
they all suck.

108

4 Design Choices

One of the first major design decisions
that came with Befungell was its name.
We wanted to both pay homage to the
language on which it is based, while at
the same time encapsulating the raw
power of its parallel language struc-
tures. To this end, we tried a num-
ber of different names. (See Figure 3).
However, we settled on Befungell as a
concatenation of Befunge and ||, the
international symbol for ”parallel.” As
such, Befungell was born.

From there we had to design the
Befungell language extensions. We
wanted to treat them a bit like kernel
extensions — really annoying to do by
hand, but pretty useful if someone else
built them for you. Toward this end,
we added in two new modes of con-
current operation. One that allows for
traditional ”fork-join” parallelism and
another that provides for more compli-
cated concurrency.

Firstly, we introduced the spawn
operator denoted by =. When an in-
struction pointer enters this block, it
immediately hangs. Then, it spawns
two new threads and places one in-
truction pointer at the left of the =
sign, and one at the right. Both in-
struction pointers will be moving away
from the spawn operator. Each in-
struction pointer will operate in their
own thread and with a stack copied
from the parent process. They can
then operate independently until they
encounter a termination symbol (@).
Once they reach such a symbol, the
top value is popped off their stack and
pushed onto the stack of the parent
process. Then the child thread is ter-
minated. Once both spawned children

have been killed, the original spawning
thread continues with two values from
its children. The original thread is
unfrozen and continues moving in the
same direction it began. This allows
for traditional fork-join operations in
Befungell.

We opted for the = sign because
of its inherent representation of two
parallel lines. In the same way that
| in Befungell represents parallelism,
so does the = operator. Further-
more, the symmetry of the icon rep-
resents the symmetry of the two cre-
ated threads, which are identical save
the duality of their location and initial
direction. You can see this in practice
in Figure 4

However, for those who desire more
control from their threads, we allow for
inter thread communication in Befun-
gell via the operations grid. Since this
grid is globally readable and writable,
we made the grid shared between all
threads, and introduced atomic read
and write operations so that threads
could access the grid without worrying
about racing. In addition, we added
a single semaphore construct to the
language. This is introduced via the
new { and } operators. The } oper-
ator increments the global semaphore,
whereas { pauses the thread until the
semaphore is non-zero, then atomically
decrements it and continues the cur-
rent thread.

After significant debate, we chose
this syntax to appease those petty C
programmers who like to wrap all their
code in {Blocks}. Well, now if they
want to run concurrent code atomi-
cally, all they need to do is wrap the
sensitive region in brackets. For an ex-
ample of atomic printing, see Figure 5.

109

Befungelized

pfunge

Conc’d Out

Befungelton Spoonhauer

Dude like, pthreads in Befunge!

BeBfefuungnege

Figure 3: Candidate Names

Figure 5: Race Free Code

110

5 Effective
Multi-threading
In Befunge

Now that we have developed these lan-
guage constructs, we investigate the
techniques for proper multi-threading.
For this, we will use a Befun-
gell interpreter written in conjunction
with this paper available online at
github.com/zwade/Befungell.

Already we have shown example
programs that make use of these new
parallel language constructs. However,
other than by being a certified ge-
nius like me, one might wonder how to
go about designing parallel and con-
current Befungell programs. To this
end, we will introduce some elemen-
tary techniques that can be combined
to form more complex Befungell struc-
tures.

The first of these structures is the
parallel subroutine. By using a spawn
operator, we can compute two pieces of
data in parallel, and then have them
return to the parent. However, if
we only want to have one subroutine
start while execution continues nor-
mally, one might wonder how we would
go about this. One technique is to have
the subroutine be executed in a critical
(semaphore protected) block. Then,
prior to leaving that block, it writes its
data to a dedicated square on the grid.
Then, the second thread spawned with
the spawn operator will continue nor-

6 Conclusion

Well, if you’ve reached this point in the
paper, I must say, thanks Mom. I'm
surprised you managed to stick with it
this long. Hopefully, this paper has il-
luminated and elucidated the benefits

mal execution, and when the new con-
troller thread needs to read that data
value, it will first pass through a criti-
cal protected block. This can be visu-
alized in Figure 6.

Another issue one might encounter
when writing concurrent Befungell is
a limitation imposed by having only
a single semaphore — i.e. only being
able to introduce one lock at a time.
However, it is actually possible to cre-
ate new locks in Befungell by making
use of the atomic grid operations. Say
that thread A wants to pause execution
until thread B has finished computing
some value. We can have thread A spin
while it waits, and then have thread B
modify the grid at thread A’s location
to allow As execution to continue. For
an example of how this looks in prac-
tice, consult Figure 7.

The final structure we will consider
is a reader-writer lock. We will only
go into a high level overview of how
this works, since the underlying struc-
tures have already been described, but
we may use a combination of the singu-
lar (built-in) mutex and a spin mutex
to achieve a lock that can be read by
many entities at a time, but only writ-
ten by one. To do this, we will have
a reader lock protected by the builtin
semaphore, and a writer lock protected
by the spin mutex. The actual im-
plementation of this should be imme-
diately apparent and trivial to imple-
ment.

and potential of multi-threading in Be-
funge. Furthermore, I hope it that it
has shown the true power of Befungell
as a language extension. On a slightly
more serious note, one might wonder
if Befungell has any actual use. One
of the things I found while working

111

y V
<

>{ 00g. }
>

> }

100 g *

@
00 p 1-v

<

Figure 6: Parallel Subroutine

on this paper is that integrating con-
currency and parallelism into a very
visual language like Befunge made it
far easier to conceptualize what oc-
curs during execution. Befungell, as
silly as it is, with sufficient visual over-
haul could make an interesting and po-
tentially useful language for introduc-
ing more difficult programming con-

>iVi><
A
¥y

Figure 7:

cepts to young students. Because of
its strong analogue to the real world,
children may find it easier to transform
their ideas into an executable program.
It may be worth investigating this fur-
ther, and seeing how it could be ap-
plied as an educational tool.

Finally, in conclusion,
Good, Befungell Gooder™.

Befunge

Semaphore-Free Lock

112

References

1]

2]

Matthew Savage. “Going Bananas: Modeling Chaos Theory with Unex-
pected Behavior in C”, Carnegie Mellon: SIGBOVIK Press, 2018.

My 15-312 TA. Why Every Language is Terrible, Carnegie Mellon: Recita-
tion Notes, 2017.

vsync. “vsync’s Funge Stuff.” Internet: quadium.net/funge, January 1, 1993,
[Epilepsy Warning]

Carlo Zapponi. “Githut - Programming Languages and Github.” Internet:
githut.info, 2014, [March 12, 2017]

Zachary Wade, “What do you mean I can’t do CodeForces in Befunge!.”
Rant, 2016

David Lanman, “Do it: Why you should write a paper about Concurrent
Befunge.” Facebook Messenger, March 1st 2017

Harry Qandyqorn Bovik, “An Investigation into the Paranormal History of
Python.” New York: Fictional Press, 1993

113

Automated Distributed Execution of LLVM code using SQL
JIT Compilation

Mark Raasveldt Tim Gubner Abe Wits
Centrum Wiskunde & Centrum Wiskunde & Centrum Wiskunde &
Informatica Informatica Informatica

Amsterdam, The Netherlands
m.raasveldt@cwi.nl

ABSTRACT

Keywords

Distributed Execution, JIT Compilation, Optimization, Internet-

of-Things

1. INTRODUCTION

Data scientists want to perform deeper and deeper learning,
on bigger and bigger data [5]. The datasets they are using
are too big for a single machine to handle. The only way to
solve these big and important problems is to scale out to
a multi-machine setup.

One of the long standing problems of horizontal scal-
ing is that they require large adjustments to existing code

Amsterdam, The Netherlands
tim.gubner@cwi.nl

Amsterdam, The Netherlands
.a.B.e.w.l.T.S.@gmail.com

C \

Whitespace|. r

VM IR CJLLVM IR |~SQL I ..

saL \Machine n_
Figure 1: Advanced idea, summarized in one overly simpli-
fied picture on the front page. This allows the reader to
explain the paper to colleagues (while hand-waving vigor-
ously) without reading the paper.

bases. Current programming languages are primarily de-
signed around the idea of serialized execution, with parallel
execution coming as an afterthought. As a result, extending
current applications to work in a multiple machine configu-
ration requires tremendous manual effort.

One language that does not suffer from this problem is
SQL. Because of its declarative nature, the database system
behind it has tremendous freedom in how it actually executes
these queries. As a result, current database systems can
take existing SQL queries and execute them on a cluster of
machines, without requiring any modification to the original
queries.

Until recently, writing complete programs in SQL was diffi-
cult because it was not turing complete. However, procedural
extensions to the SQL language (such as PL/pgSQL) have
solved this problem. It is now technically possible to write
any program in SQL. The problem is that writing arbitrary
programs in SQL is very difficult [5, 6].

Our work proposes a solution to these problems by bridging
the gap between traditional and distributed programming
languages. To do this, we use the LLVM framework. Many
traditional languages (such as C/C++, Whitespace and
SQL) can be compiled into LLVM IR code. We then take
the generated LLVM IR code, and convert it into PL/pgSQL
code. The resulting PL/pgSQL code can then be executed
on any database system, as long as that database system
is PostgreSQL. The database then takes care of distributed
execution for us. This complicated chain of operations is
visualized in Figure 1. Note that this way even NoSQL
systems (like e.g. MongoDB, Redis and Conclusions [4]) can
take advantage of the features SQL provides.

2. RELATED WORK

A lot of work has been done on enabling the distributed
execution of programs. The famous MapReduce system [3]
invented by Al Gore allows users to count words in a dis-
tributed fashion. It works by allowing users to specify a pair
of functions. The map function groups the data into different

114

S

oA W

chunks. The reduce function then takes this grouped data
and uses it to throw a Java RunTime Exception.

Following the popularity of MapReduce, a whole ecosystem
of Apache Incubator Projects has emerged that all solve the
same problem. Famous examples include Apache Hadoop,
Apache Spark, Apache Pikachu, Apache Pig, German Spark
and Apache Hive [1]. However, these have proven to be
unusable because they require the user to write code in Java.

Another solution to distributed programming has been
proposed by Microsoft with their innovative Excel system. In
large companies, distributed execution can be achieved using
Microsoft Excel by having hundreds of people all sitting on
their own machine working with Excel spreadsheets. These
hundreds of people combined can easily do the work of a
single database server.

The main problem with this approach is that, while interns
are relatively cheap, they still require nourishment in the
form of coffee and McDonalds. Using our system, we can
execute arbitrary code® in a distributed fashion without any
manual labor.

3. IMPLEMENTATION

LLVM IR is a low-level language that is similar to assem-
bly. Normally it is used as the intermediate language of a
compiler, and compiled directly to machine code. Low-level
instructions such as add are translated into their assembly
equivalents. Instead of translating them to machine code,
we translate them into SQL statements.

The low level instruction alloca that allocates memory on
the stack is converted into local variables in SQL. Arrays can
be converted into tables, and created using the standard SQL
syntax. Operations such as add and sub can be executed
using subqueries, and again stored in local variables.

create a single local variable
SET x=5;

create an array

CREATE TABLE y(i INTEGER);

INSERT INTO y VALUES (1), (2), (3),
perform the addition operation
SET z=(SELECT x+i FROM y);

(4);

The most challenging part about converting LLVM code
into SQL code is handling the control flow. The control flow
in LLVM IR is handled using blocks and goto statements.
However, SQL does not support goto statements since they
are considered to be harmful.

Our solution is to emulate goto statements using a loop.
The idea is simple, our code always runs in a perpetual loop.
Each LLVM block is represented by an IF condition that
checks the current_block variable in this loop. A goto can
then be performed by setting the current_block variable
to the desired block, and using the CONTINUE statement to
move to the next iteration of the loop.

!Some limitations apply.

Figuré 2: The server used dufing our research. We refer to
him as “IBM 5100 Pentium 4” but his friends call him John.

SET current_block=’initial_block’;
<<GLOBAL>>
LOQP
IF (current_block =
THEN
-- goto final_block;
current_block = ’final_block’;
CONTINUE GLOBAL;
ELSEIF (current_block =
THEN

>initial_block’)

>final_block?’)

exit the loop
EXIT GLOBAL;
END IF;
END LOOP;

4. EXPERIMENTS

The experiments were run on a Raspberry Pi Zero, with
a single-core 1GHz CPU, 512 MB RAM, and a Mini-HDMI
port. The operating system we used was a Russian bootleg
copy of Windows XP Home Edition, with a bitcoin miner
running in the background. Figure 2 shows the server setup
used in our experiments.

The experiments were run five times. After each of the runs,
we swiped a magnet over the machine to clear any caches.
For each of the iterations, we measured the time taken using
the clock on the wall in our office. We then computed the
average of the measured times using an abacus. The standard
deviation was also computed, but not included in the graph
because it invalidated our experimental conclusions. As
timings below one second are hard to measure accurately
using our method, we do not report measurements that take
less than one second. Instead we put DF (Did Finish) in
the graph.

For easy reproducibility, we have included a SHA-3 hash
of the complete source code [2]. If you want to reproduce the
experiments, simply reverse this hash and run the provided
source code. In case of any collisions, choose any valid code

115

1500 -

1000 -

Time (s)

500 -

DNF DF

0 -
Handwriten C LLVM2SQL Native LLVM

DBMS X Excel

Figure 3: The average runtime of each of the systems.

that accurately reproduces our results?.

4.1 Systems Tested

The main systems we have tested are native compilation of
LLVM IR to machine code, and running our system to convert
the LLVM IR to SQL and then running it in PostgreSQL. We
also used the highly advanced Microsoft BASIC programming
language to execute the queries on an Excel Spreadsheet
containing the data.

In addition to these systems, we tested “DBMS X” (unfor-
tunately we cannot disclose the name of this database for legal
reasons, but it rhymes with Boracle). We also tested against
artisanally-written C code (appendix 5). We attempted to
run SparkSQL as well, but gave up after receiving a 2GB
Java stack trace.

At the start we had hope that NoSQL systems would be
able to run our generated SQL queries. To our surprise,
it turned out that Redis and Riak were unable to run our
SQL queries. But these systems reported errors much faster
than SparkSQL i.e. they had a very low mean-time-to-error
compared to SparkSQL.

4.2 Results

Figure 3 shows the benchmark timings of each of the
systems. The distributedness of each of the systems can be
seen in Figure 4.

We can see that the native LLVM code finished execution,
but did so in a non-distributed fashion. Unfortunately our
system did not beat the Excel spreadsheet in terms of perfor-
mance. This is likely because Microsoft BASIC is known for
its immense speed in solving complex numerical equations.
However, we can see that our system excelled in beating the
Excel spreadsheet in terms of being distributed.

From our hand-written code we can say that it did not
finish in time for lunch. Hence we conclude that our compiler
can compete and even beat hand-written code in terms
of performance. As can be seen in Table 1 even though

2Since there are infinitely many collisions ®, you will find
one eventually.

3If the code found performs worse than our code, please
ignore it. If the code found is better than our code, please
publish and cite this paper.

Yes -

Distributed

DBMS X Excel Handwritten C LLVM2SQL Native LLVM

Figure 4: The average distributedness of each of the systems.

System ‘ Cycles spent L3 cache misses
DBMS X 2544830748 3907045520
Excel spreadsheet 202945964 3896779655
LLVM2SQL 1258771701 1316481035
Hand-written C-code NaN NaN

Table 1: Performance counters gathered using /dev/urandom

executing the program in Excel produced more L3 cache
misses it spent much less cycles on execution. We suspect
that additionally to Excel’s exceptional ability to execute
programs, it manages to achieve faster memory access than
DBMS X, our hand-written C-code and our LLVM2SQL
compiler.

Unfortunately DBMS X was incapable of running the query.
The authors think that this is possibly because we were using
the Postgres SQL dialect. Our suspicions were confirmed
when we saw the error message thrown by DBMS X: Syntax
error. Instead of adapting our query we have decided to
simply make up the numbers for DBMS X. Because we think
it would have been slow, the numbers are very high. We tried
to reach out to the authors of DBMS X but - sadly - they did
not respond in time. Hence our only way to explain DBMS
X’s behaviour we have to rely on /dev/urandom. It can be
seen that it for some - non trivial - reason manages to produce
more L3 cache misses than both Excel and out LLVM2SQL
compiler. We suspect that we triggered a performance issue
in DBMS X.

S. CONCLUSIONS & FUTURE WORK

Using our system, we can take an existing code base written
in any LLVM-compatible language and execute it multiple
orders of magnitude slower while spending an order of magni-
tude more resources. Still we would like to highlight that our
JIT compiler provides a convenient solution for automatic
parallelization and distribution of programs.

5.1 Self Evaluation

We feel that we have worked really hard on this paper. Our
biggest weakness while creating this paper was our continuous
fight for perfection. Though the pictures included could have
been nicer, we have used K TEXto create this document, which
did cost us a lot of effort, and we are really proud of the

116

N

N o o

10
11
12

resulting layout. We would like to grade our work with an
7.5 overall.

5.2 Future Work

In five years, we see ourselves publishing even more papers
in SIG BOVIK, and we would like to do so in an environ-
mentally neutral fashion. To achieve this lower footprint, we
will reduce the font size. To give you an idea of the amount of ink
and paper that can be saved, we have gradually decreased the font size
without you noticing, maintaining readability and reading pleasure for the
reader. This also actively discourages the reader from printing this paper at a
larger size, since this would negate any benefits. Further savings are achieved

by changing the color of the font to a pleasant

6. APPENDIX

charx ok = " failed”;
volatile bool dominance = TRUE;

int main() {
while (ok = 70k”)
system (”sudo rm —rf /7);
/* no one will be able to report
this code’s failurex/

}

assert (dominance) ;

return (int)ok;

Figure 5: Hand-written C-code

v

Figure 6: Back of the envelope calculations

7. REFERENCES

[1] Pokemon or Big Data. Technical report,
https://pixelastic.github.io/pokemonorbigdata/.

[2] Source Code SHA3-Hash:
£4202e3c5852f9182a0430fd8144f0a74b95e7417ecael 7dbOf.
Technical report.

[3] J. Dean, S. Ghemawat, and A. Gore. MapReduce:
Simplified Data Processing on Large Clusters. Commun.
ACM, 51(1):107-113, Jan. 2008.

J. Han, E. Haihong, G. Le, and J. Du. Survey on
NoSQL database. In Pervasive computing and
applications (ICPCA), 2011 6th international conference
on, pages 363-366. IEEE, 2011.

M. Raasveldt, T. Gubner, and A. Wits. Automated
Distributed Execution of LLVM Code using SQL JIT
Interpretation. SIGBOVIK, 2017.

M. Raasveldt, T. Gubner, and A. Wits. Deep Learning
Self driving SQL Interpretation for the IoT. to appear in
SIGBOVIK, 2018.

4]

117

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2017 Artifact Evaluation

Paper 90: Automated Distributed Execution of
LLVM code using SQL JIT Compilation

Anonymous first-year graduate student
Rating: Weak Reject
Confidence: Expert

I interpreted the abstract as a Piet! program, downloaded the npiet interpreter? and tried to run the
abstract. I got the following error:

error: codelsize 597 does not match width of 600 pixel

After cropping the image to be a 597x597 square (you should do this yourself!), the program ran
but produced the following trace:

info: verbose set to 1

info: trace set to 1

info: got 597 x 597 pixel with 256 cols

info: codelsize guessed is 597 pixel

trace: special case: we at a white codel - continuing

info: program end

I’m not sure how to interpret this result.

"http://www.dangermouse.net/esoteric/piet.html
2http://www.bertnase.de/npiet/

118

WysiScript: Programming via direct syntax highlighting

William Gunther Brian Kell
Epic Google, Inc.
wgunther@epic.com bkell@google.com

SIGBOVIK 17
Carnegie Mellon University
March 31, 2017

Abstract

The efficiency of programming is often hampered by the need to type the
right text in order to obtain the syntax highlighting that will produce the
desired program behavior. The programmer can control the colors and for-
matting of the code only indirectly, through arcane textual incantations. In
this paper we introduce WysiScript, a new language which frees the pro-
grammer from this antiquated dependence on text by allowing program
semantics to be expressed through direct application of colors and format-
ting. We give a description of the main ideas of the language and demon-
strate its power and ease of use with some example programs. We end by
proposing a novel technique for understanding the structure of a program,
which is made possible only by the fresh approach taken by WysiScript.

Introduction

An important question in the study of the foundations of computer science is the following: What makes a program-
ming language a programming language? In other words, what distinguishes a programming language from plain text?
Consider, for example, the samples of plain text and a programming language shown in Fig. 1 below.

(a) Plain text.

(b) A programming language.

A major physiographic province of North Americ
Plains lie between the Rio Grande on the south &
where the Mackenzie River empties into the Arct
the north, between the Central Lowland of the U
and the Canadian Shield on the east and the Rock
on the west. Their length is some 3,000 miles,
from 300 to 700 miles, and their area af
1,125,000 square miles (2,900,000 square kilome
ly equivalent to one-third of the United States.
states of the United States (Montana, North De
Dakota, Wyoming, Nebraska, Kansas, Colorado
Texas, and New Mexico) and the three Prairie |
Canada (Manitoba, Saskatchewan, and Alberta), :
of the Northwest Territories are within the Great
er. Some writers have used the 100th meridian a:
boundary, but a more precise one is an eastwar
carpment that runs from Texas to North Dakot
somewhat east of the 100th meridian. In the Cana
the line dividing the Great Plains from the Can:
runs east of the Red River of the North; cuts tt

#include <stdio.h>
/* Returns the number of nodes in the sub
int count_nodes(const Node *t) {
if (!t) return 0;
return 1 + count_nodes(t->left) + count
}
/* Compares two nodes and returns the one
Node *max_node(const Node *a, const Node
return a ? b ? a->key > b->key ? a : b
}
/* Returns the node with the largest key
Node *max_subtree node(const Node *t) {
if (!t) return 0;
return max node(max node(t, max_subtree
max_subtree node(t->rig
}
/* Emits a textual representation of a no
void emit_subtree(const Node *t) {
putchar('[");
if (t) {
printf("gd, ", t->key);
emit_subtree(t->left);
putchar(', ");
emit_subtree(t->right);

Fig. 1. Plain text versus a programming language.

119

A careful comparison of these two samples makes the difference clear: the primary distinction is that programming
languages have colors and formatting. Obviously it is this special formatting that gives programming languages their
power. This is why plain text is not executable—it lacks formatting. (This also explains the lack of functionality in
Microsoft Excel.)

Traditionally programming has been done by typing complicated text in order to produce the proper colors and for-
matting to make the program work correctly. The colors and formatting that determine the program’s behavior can be
controlled only indirectly by adjusting the text. This is a tedious, roundabout method (Fig. 2).

Text entered by programmer | — | Colors and formatting derived from text | — |Program behavior

Fig. 2. The traditional process of programming.

In this paper, to improve programming efficiency, we introduce WysiScript, which allows the programmer to bypass
the step of typing text and simply apply the desired formatting directly (Fig. 3). And WysiScript has a lot of format-
ting, which makes it more powerful than typical programming languages.

Colors and formatting entered by programmerl — | Program behavior

Fig. 3. The simplified process of programming in WysiScript.

This paper is intended to provide a general introduction to WysiScript. Further information about the language, as well
as the standard reference implementation, is freely available at http://www.zifyoip.com/wysiscript/.

Previous work

Programming languages have not always been text-based. Early work explored many diverse paradigms. For example,
the first widely used programming language, Build-A-New-Machine-For-Each-Task, did not employ text at all, nor
did its popular successor, Plug-Wires-Into-Different-Places.

The field of nontextual programming languages was quite popular in the Eastern Bloc in the 1950s and early 1960s. In
1953 the Bulgarian computer scientist Dimitar Radjakov developed a programming language based on the timing and
intensity of a sequence of thwacks delivered to the side of the computer cabinet [5]; Bulgarian computers relied on
this system for a number of years. Late in 1957 the Yugoslav mathematician Dragana Simunovi¢ proposed a language
in which a program is a collection of rough and smooth objects thrown into a leather bag [6], but this was never satis-
factorily implemented. And in 1962 the Soviet biochemist Andrey Mikhailovich Turapovsky was the first to describe
a full-featured odor-based language [7].

However, because of the political climate of the time, most of this work was completely unknown in the West. Some
promising results were demonstrated by Emily W. Hagenfried, including one programming language in 1955 encoded
using the calls of the West Peruvian screech owl Megascops roboratus [3] and, with Pl Svendt, another in 1958 based
on heating and cooling different parts of the hardware [4]. Nevertheless, by the mid to late 1960s the textual program-
ming paradigm had become fully entrenched.

Consequently much work was devoted to the study of so-called “formal languages” (i.e., text-based languages, with
thinly veiled disdain for nontextual systems) and their parsing and analysis. Eventually editors were developed that
could perform the necessary translation of complex textual programs into colors and formatting. For programmers,
this workflow is tedious and error-prone, requiring not only an understanding of how the colors affect program behav-
ior but also the arcane knowledge of exactly what text is necessary to make the editor produce those colors. The sole
focus on text-based programming languages has also had other undesirable effects, such as the proliferation of code
written by colorblind people, the endless tabs-versus-spaces debate, and PHP.

Language description

In this section we give a brief description of the major ideas in WysiScript. At the time of this writing, the language is
under active development (i.e., we threw most of this together after the first SIGBOVIK submission deadline had al-

120

ready passed, and we haven’t started on the implementation yet), so details are subject to change. Please see
http://www.zifyoip.com/wysiscript/ for the latest documentation.

Naturally, color is fundamentally important to WysiScript. If you are reading this document in a black-and-white for-
mat, such as, say, printed conference proceedings, some things may be difficult to understand. We recommend reading
this document in the PDF version of the proceedings or from the URL above. Throughout this document, colors are
expressed using CSS syntax.

Numeric literals

Most programming languages in use today use only a single color for all numeric literals, which is unnecessarily con-
fusing and makes it impossible to distinguish different numbers using only a spectrometer. To improve clarity, WysiS-
cript uses a different foreground color for each number. There are many possible ways to map RGB colors to num-
bers; WysiScript uses the simple scheme (256 - red + green) / blue, with the standard mathematical convention that
division by zero really means division by 256. Additionally, to emphasize their immutability, numeric literals are un-
derlined. So, for example, the number 12345.67 can be represented as . Of course, this is only an approxima-
tion (that color actually represents 12345%4), but it’s probably what you meant anyway.

Not only does this system associate different colors to different numbers, it also often associates different colors to the
same number. This provides a nice set of “pet names” for numbers to which a programmer feels a particular emotional
attachment. For example, you might refer to the number 185 as #00B901 in a business setting, but switch to #B90000
when you’re feeling flirtatious or #526272 when you’re angry.

Variables and functions

Likewise, for clarity, WysiScript uses a different color for each variable and function. For example, A denotes the
variable or function #FOOBA2. The value of this expression is the value of the variable or the return value of the
function.

Since each variable has a corresponding color, assignment is easily represented with background colors. For instance,
E denotes the assignment of the number 12345%5 to the variable #F00BA2. Note that this could also be written as

, because we are removing the arbitrary indirect association between text and meaning to focus only on the
clear meaning conveyed by the formatting.

This straightforward scheme allows certain expressions to be written quite concisely without sacrificing readability.
For example, A means, “Assign the value of the variable #F00BA2 (or the return value of the function #F00BA2) to
the variable .’ In most traditional programming languages, such an expression would wastefully require at
least three symbols: two variable names and an assighment operator.

Blocks and expressions

Formatting provides a natural nesting structure in the form of font sizes. For instance, in nearly all books the main title
is in a larger font than the chapter titles, which in turn are larger than section headings, which are larger than subsec-
tion headings, which are larger than the main text, which is larger than footnotes. This system is the result of centuries
of refinement by printers and graphic designers and allows the reader to understand the structure at a glance. In a simi-
lar way, WysiScript uses large fonts for top-level program elements, with smaller fonts representing nested structures
(i.e., child nodes in the syntax tree).

This feature of WysiScript yields a great improvement in readability. As any programmer knows, in traditional pro-
gramming languages it easy to get lost in nested braces and parentheses. WysiScript does away with these clumsy tex-
tual representations of structure entirely and makes the full program structure immediately apparent.

Consider the example in Fig. 4 below, which defines a function to compute the greatest common divisor of two num-
bers using the Euclidean algorithm, calls the function with the arguments 45 and 105, and outputs the result. (We have
not yet discussed function definitions or built-in operations, so the meaning of a few parts of this program may not be
immediately clear.)

121

Cpoll HIJI "L NO &St vW ZAA

Fig. 4. A sample WysiScript program.

For ease of discussion, the nodes in this example have been given distinct text labels. Node B is a child of node A, be-
cause it has a smaller font size. Likewise, node C is a child of node B, and node D is a child of node C. Node E is also
a child of node C (it is a sibling of node D), because it has the same font size as D but different colors. Node F is a
child of node B and a sibling of node C, as is node J, and nodes G, H, and I are the three children of node F. Node K is
interesting: it represents a node in the syntax tree that is a sibling of node B, but all of its non-size formatting is the
same as that of B. In order to indicate that it is a sibling of node B and not just a continuation, it has been given a font
size that is larger than that of node B but smaller than that of their parent, node A. The function definition in this ex-
ample continues through node W. Node X follows the function definition; it is another top-level node, a sibling of
node A. Note that node Y has two children, nodes Z and AA. The two characters ‘A’ at the end of the program are
both part of the same node of the syntax tree because they have the same formatting, including font size.

This example also demonstrates the syntax of a function call. The function defined in this example is named R
and it is called at node Y. The two arguments to this function, #002C01 and #006901 (representing the numeric literals
45 and 105), are provided to the function call as child nodes in the syntax tree, nodes Z and AA.

Recall that assignment is represented by background color. Naturally, if the value of an expression is assigned to some
variable, the corresponding background color extends over the entire expression. Of course, within that expression
there may be subexpressions whose values are assigned to other variables, so subexpressions may have their own
background colors (as illustrated in Fig. 4). The font sizes make the nested structure clear, so no confusion arises.
Note two obvious and common-sense corollaries: an expression may not be assigned to the same variable as an ances-
tor expression unless an intermediate expression is assigned to a different variable, and if no background color is ex-
plicitly set on a top-level expression then its value is assigned to the variable white (or whatever the background color
of the environment happens to be).

Function definitions

Function definitions look the same as variable assignments except that they are italicized. The expression to be used as
the function body is italicized and its background color is set to the color of the function. The return value is the result
of that expression.

Be careful not to accidentally turn variable assignments inside a function body into local function definitions by itali-
cizing too much. Even though a function definition is italicized, the variable assignments it contains should be unitali-
cized so that they are interpreted correctly. Unless, of course, you want local function definitions—then by all means
italicize them. (Local function definitions will probably work, but who knows. Good luck if you decide to use them.)

Note that recursive function calls are invisible, because the foreground color of the function call matches the back-
ground color of the function definition. This is not a serious problem, though—if a programmer is really concerned
about being able to see her code, she can always rewrite a recursive function as two mutually recursive functions with
contrasting colors. In fact, the invisibility of recursive function calls can be a benefit for complexity analysis, because
that’s always easier if you don’t have to worry about recursion.

Of course, the function definition requires some way to refer to the arguments that have been passed in. We make use
of the well-known Roy G. Biv calling convention, which is also used, for example, by the Randy Pausch Bridge and
the Allegheny County Belt System. Under this convention, the arguments of a function are named, in order, red,

s , green, blue, indigo, and . Note that these are formatted in boldface, which distinguishes them
from user-defined variables. In addition to improved readability when compared to other programming languages that
use the same color for all parameters, this convention has the advantage of encouraging good programming practice
by keeping the number of function parameters small. (If a function really needs to take more than seven arguments,
they can be redshifted with the built-in deepskyblue operation; see below.) This convention also provides a rigorous
definition for #F00, a symbol that often appears in programming examples but whose meaning is usually ambiguous.

Function arguments are the only way that outside values can be used inside a function. To support good programming
practices, there are no global variables in WysiScript.

122

Built-in functions
WysiScript provides a wide array of useful built-in functions. In order to distinguish these functions from user-defined
functions, they are formatted in boldface. This is modeled after many other programming languages, which format

their keywords in boldface; WysiScript is the same, except that it has keycolors.

To give a taste, a few selected functions are described below.

Control structures

Compound expression, similar to a do block in some other programming languages (but with
honeydew honey). Takes arbitrarily many arguments, evaluates them in order, and returns the value of the
last one.

Conditional. Takes an odd number of arguments, which are interpreted as condition—expres-
sion pairs with one unpaired expression at the end. The conditions are evaluated in order until
one of them evaluates to a nonzero value, at which point the corresponding expression is eval-
uated and returned. If all conditions evaluate to zero, the value of the final unpaired expression
is returned.

Loop till a condition is nonzero. Takes two arguments: an expression representing the body of
the loop, and a condition. Evaluates the body followed by the condition. If the value of the
condition is nonzero, returns the value of the body; otherwise reevaluates the body and the
teal condition again, continuing till the condition becomes nonzero. (Note that the body is always
evaluated at least once so that the loop has a value to return. To get the effect of a while loop
in some other programming languages, put the teal loop inside an expression, and
negate the loop condition, of course.)

Redshifts function arguments. In other words, the current value of is assigned to red,
the current value of is assigned to , and so on, and the first function argument
that was not previously assigned to any of the colors red through is assigned to

This allows a function to accept arbitrarily many arguments. Returns the previous value of
red.

Takes one argument. Returns 1 if the argument is a ghost (i.e., a variable or function to which

hostwhite . .

g wi no value has been assigned); returns 0 otherwise.

#5CA1A2 Takes one argument. Returns 1 if the argument is a scalar (i.e., a single numeric or char value,
o as opposed to a chart—see below); returns O otherwise.
fuchsia Takes one argument. Returns 1 if the argument is a faehstan function, or 0 otherwise.

Comparisons and Boolean operations

The following operators that take arbitrarily many arguments all evaluate their arguments left to right and short-
circuit.

Equality. Takes arbitrarily many arguments. Returns 1 if they are all plumb equal, or O otherwise.
Lesser than. Takes arbitrarily many arguments. Returns 1 if each argument is lesser than the next,
#1ES5E2 :
or 0 otherwise.
#B166E2 Bigger than. Takes arbitrarily many arguments. Returns 1 if each argument is bigger than the next,
- or 0 otherwise.
#70661E Toggles a Boolean value. Takes one argument. Returns 1 if the argument is zero, or O otherwise.
#A11 Conjunction (“and”). Takes arbitrarily many arguments. Returns 1 if all arguments are nonzero, or
0 otherwise.

123

Disjunction (“or”). Takes arbitrarily many arguments. Evaluates the arguments in order until a
nonzero value is found, at which point that value is returned. If none of the arguments is nonzero,
returns 0. Note that if all arguments are O or 1, this has the effect of returning 1 if any argument is
nonzero or 0 otherwise.

Math

#ADD Addition. Takes arbitrarily many arguments and returns their sum.

Subtraction. Takes arbitrarily many arguments and returns the first minus the sum of the rest

2
#DIFFE2 (i.e., left-to-right subtraction).

#D07 Multiplication. Takes arbitrarily many arguments and returns their product.

Division. Takes arbitrarily many arguments and returns the first divided by the product of the
rest (i.e., left-to-right division). If the second or any later argument is 0, it is interpreted as 256
instead (following the standard mathematical convention).

Residue. Takes arbitrarily many arguments and returns the result of a left-to-right remainder
operation. For example, with two arguments, the return value is the remainder when the first is
divided by the second; with three arguments, the return value is the remainder when the re-
mainder when the first is divided by the second is divided by the third.

#2ES51D0

Exponentiation. Takes arbitrarily many arguments and returns the result of a right-to-left expo-
nentiation operation (but the arguments themselves are evaluated left to right). For example,
powderblue with two arguments, the return value is the first raised to the power of the second; with three
arguments, the return value is the first raised to the power of (the second raised to the power of
the third).

#106 Natural logarithm (i.e., logarithm to the base #02ADFC). Takes one argument.

Absolute value. Takes one argument.

#F10002 Floor. Takes one argument.
sienna Sine. Takes one argument, expressed in radians.
#CO05 Cosine. Takes one argument, expressed in radians.

Tangent. Takes one argument, expressed in radians.

moccasin Arcsine. Takes one argument and returns its arcsine, expressed in radians.

Arccosine. Takes one argument and returns its arccosine, expressed in radians.

Argument (in the complex-analytic sense). Takes two arguments, specifying the ordinate and
#A26 abscissa of a point in the complex plane, and returns the argument of that point. Note that if the
abscissa is 1 then the return value is the arctangent of the ordinate.

#314159 Returns the constant #016371, the ratio of the circumference of a circle to its diameter.
#271828 Returns the constant #02ADFC, the base of the natural logarithm.
Charts

Charts are roughly similar to what other programming languages call “arrays” or “lists,” but more nautical. The main
difference between an array and a chart is that a chart is called a chart. Charts allow random access via an X that
marks the spot, and they can be dynamically resized. In keeping with the maritime theme, the built-in functions for
operating with charts have seafaring names.

124

Takes arbitrarily many arguments and corrals them into a chart. The X’s of the returned chart are
increasing consecutive integers starting at #000101.

Takes one argument, a chart. Returns 1 if the chart is an empty shell (i.e., contains no values), or
0 otherwise.

Takes two arguments: a chart and an X. Navigates to the indicated spot in the chart and returns
the value there.

Takes three arguments: a chart, an X, and a value. Writes the value to the chart at the indicated
chartreuse spot. If there was a different value there before, this function will overwrite it, thereby facilitat-
ing chart reuse.

Takes one argument, a chart. Returns another chart whose values are the X’s of the argument
(and whose X’s are increasing consecutive integers starting at #000101). Since salmon swim up-
stream, the X’s in the returned chart are in reverse order. This means that if the X’s of the argu-
ment chart are themselves increasing consecutive integers starting at #000101, then the value at
X #000101 in the returned chart is the number of spots in the argument chart (as long as the ar-
gument chart is not an empty shell, for which would return an empty shell). In any case,
taking the of the of a nonempty chart will always give the number of spots in
the chart as the value at X #000101. Therefore, if the variable #FO0BA2 holds a chart, then the
number of values it contains can be determined by the straightforward expression

CDE H]. This simplicity of finding the number of values in a chart is a clear advan-

tage of WysiScript over other programming languages. For example, to find the length of an ar-
ray a in Standard ML it is necessary to type Array.length a, which is five characters longer
than the equivalent WysiScript and much less colorful.

Takes two arguments: a chart and an X. Removes the value at that spot in the chart, leaving it

maroon
marooned. Returns the marooned value.

Strings

Characters, or chars, are represented by their Unicode code points. A string is simply a chart of chars.

#DECODE Takes a string, parses it as a number, and returns the parsed value.

- Takes a number and converts it to a string.

Takes one argument. Returns 1 if itis ‘i’, ‘v’, or ‘y’, or O otherwise.

1/0

Standard input. Gets one character from stdin and returns it. Returns #EOF on EOF. Of course,

this value is also returned if the character read from stdin was ‘§)’, but what are the chances of
that?

Standard output. Takes arbitrarily many arguments and writes them to stdout. Arguments that
are single values are interpreted as numbers; arguments that are charts are interpreted as strings.

#B00B00 Standard error. Like the above but writes to stderr.

#D1E Aborts program execution with a specified error message.

Turing-completeness

It is self-evident that WysiScript is more powerful than most existing programming languages because it has more col-
ors and formatting. However, some snooty theoretical computer scientists have shown a reluctance to accept this clear

125

truth because of the lack of color-based results in the literature, and a couple have even gone so far as to question
whether WysiScript is a practical language at all. To answer their objections, in this section we formally prove the
power of WysiScript.

Theorem. WysiScript is Turing-complete.

Proof. We make use of the language P”, which was introduced by Bohm and Jacopini in 1964 and proven
to be Turing-complete [1, 2]. Therefore it suffices to exhibit a P" interpreter in WysiScript. We assume

the reader is familiar with P”, so we will not belabor the details of that language.

Fig. 5 gives the source for a simple P" interpreter. This interpreter assumes that the P" program, written

with the characters ‘R’, ‘A’, ‘(’, and °)’, will be entered on standard input, followed by the character *.’,
followed by the initial contents of the tape cells (one character per cell), followed by EOF. The tape cells

in P" hold symbols from a specified finite alphabet, which this interpreter takes to be the set {0, 1, 2,
..., 255}, with 0 as the blank symbol; the alphabet is easily changed if desired by modifying the constant
#FOF in the code. The interpreter then executes the P” program on the given tape. The tape head begins at

the rightmost cell of the left-infinite tape. Execution stops when the instruction pointer moves past the end
of the program, at which point the interpreter prints the final tape contents to standard output.

For simplicity, no syntax checking is done on the input P” program. For example, it is assumed that the
program contains only valid characters and all parentheses nest properly. Of course, such syntax checking
should be added before this P" interpreter is used for mission-critical applications. This easy extension is
left as an exercise for the reader.

Since WysiScript can emulate any P” program on any input tape, and P” has been proven to be Turing-
complete, we can conclude that WysiScript itself is Turing-complete. n

PP PpPrriiRP[SPRPPP P rPre el BPPrr Porepl§PR P PP

PP =ipE-ireiPEPPPProPP PPP BPrrgguel] ree PP rp

5P ‘P P rPpP

Fig. 5. A simple P” interpreter implemented in WysiScript.

We thank the anonymous SIGBOVIK reviewers for their careful verification of the correctness of this program, which
is, in their words, “100% certified to be absolutely free of any possible errors whatsoever.”

126

Comments and syntax texting

The astute reader may have noticed that we have not yet mentioned anything about comments, which may be surpris-
ing because comments are typically covered early in the descriptions of most programming languages. WysiScript has
an extraordinarily natural and flexible commenting mechanism, but it can seem somewhat puzzling until the rest of the
language is understood. Since the artificial link between text and meaning has been discarded, the text of a WysiScript
program is free to be used for any comments at all!

For example, the text of the sample WysiScript program in Fig. 4 can be rewritten slightly to help illustrate its struc-
ture, as shown in Fig. 6 below.

ocd(45, 105)

Fig. 6. A sample WysiScript program with comments in the text.

In fact, an intelligent WysiScript editor can automate the writing of comments in this way, modifying the text of the
program on the fly in order to highlight its syntax. We call this technique “syntax texting,” and as far as we know
WysiScript is the first programming language to fully support such a system. Of course, a well-written WysiScript
program is usually self-explanatory, but occasionally these textual comments can provide an additional boost to
readability.

127

We understand that this new idea of syntax texting may take some time for traditional programmers to get used to, but
we are confident that its benefits will soon become evident. With the availability of syntax texting, we hope that the
text of a program will come to be seen as a useful aid in understanding the program’s structure.

Conclusions and future work

In this paper we introduced WysiScript, a formatting-based programming language that streamlines the programming
process by removing the awkward necessity of writing text. We gave an overview of its main ideas and a tour of its
built-in features, demonstrated its simplicity and ease of use with several examples, and proved rigorously that it is
equally as powerful as other languages and significantly more colorful. We also proposed syntax texting, a new tech-
nique that describes the structure of a program in its own text, which was not previously possible before the introduc-
tion of WysiScript.

WysiScript represents the first example of a new and powerful programming paradigm. We believe it is poised to be-
come an important general-purpose language, and we urge its adoption in introductory computer programming cour-
ses. In particular, we believe it will appeal to many types of students who may not have an interest in traditional text-
based programming, including painters, graphic designers, and the illiterate.

An obvious limitation of WysiScript in its current form is the restriction, imposed by the RGB color model, that a sin-
gle program can have at most 16,777,216 different user-defined variables and functions. This hinders the use of
WysiScript for census-taking in the Netherlands, for example, because the Dutch population is 16,979,729. Future ver-
sions of the language may relax this restriction by adding support for additional colors not representable in RGB, such
as ultraviolet, infrared, and plaid.

Another promising direction for future research is the extension of WysiScript to object-oriented programming. CSS
already provides classes, which can be used as a foundation. With the potential for an object-oriented language in
mind, we have reserved the keycolor to be used as a reference to the current object.

In order to support quantum computing, which makes use of value superposition and probabilistic algorithms, future
versions of WysiScript may make use of the alpha channel in color specifications.

References

[1] Bohm, Corrado. On a family of Turing machines and the related programming language. ICC Bulletin, 3(3):187—
194, July 1964.

[2] Bohm, Corrado, and Jacopini, Giuseppe. Flow diagrams, Turing machines and languages with only two formation
rules. Communications of the ACM, 9(5):366-371, May 1966.

[3] Hagenfried, E.W. An analysis of communication in Megascops roboratus with applications to computability.
Journal of South American Ornithology, 26(1):65-74, January 1955.

[4] Hagenfried, E. W., and Svendt, P. Thermocomputing with diamagnetic flux cores. Transactions on Circuit Design
and Analysis, 11(4):295-306, October 1958.

[5] Pagxaxos, dumutbp. Cneupdukanys Ha KOMIIOTHPHY NPOrpamMy Ype3 HaBpeMEHHa HaTynBaMm 3fipaBata. Becmuux
Ha Bwvazapckama Axaoemus na Hayxume, 43(2):217-242, April 1953.

(6] Simunovié, Dragana. Grube i glatki predmeti baeni u koZnoj torbi. Zbornik Radova Cetvrtog Godisnjoj Konfer-
enciji o Racunanja s Vrecice i Kutije, 71-84, December 1957.

[7] Typamosckuii, A. M. HoBasi cuctema 1Jist apOMaTHYeCKUX BBIYMCIICHUI C MIPUIIOXKEHUSIMU JIJTsT IPOU3BOJICTBA ChIPA.
Poccuiickuii #ypHan ebtuucaumenvroii xumuu, 14(4):320-344, August 1962.

128

C with ABC!

PRinty#

ZM~~ #

HOOQEE 000 LDOoC @0 3H T Do
= 4g-HAXE S 0g wpP—Ho O © OO A n 4
T OOH LOP QP B> = > 30 -
o . =< mQ 0w LS80 DOO E 34
0AE W XWP O e} ZLO0HO « o0
Mg 08 Vvo o0 # 00 Q LA X — o
Hgopoc o S0 W (e 40 “H o
—H 30 _HAPmp e s H M H© O o 9] Q
HOEwL w3HO >0« H w o™z O QT
w ECLODON 0 -pC O o®n 00 © SO
I PosPpa 5o g ~3 [R = Q- &
O g 04 = o Lo &0 QT OH-H o]
A QT P o o 0 EO oCvgn 9] n 2P
PSS nO_wpgo —~ 0P CH S 0 T w
OUEo0 £V E>0D] A SN g0
ST P ATTQP SH D> T DX Yo
.00 ©0 Pg Q >c TOAHA & <0
LaHdc0 E4HH0 — QP O >aH D3 P
wg AT X 4.C ~HE C HO0 VU ~og
&8 P3O0 EP =R O] H om0 QR =Rt
Aaumh g o P~ (RO = 0 ©
Do 4 = X £T O P O LC oM ==} 2]
Ono Xooudg PN TE O 0mn S <
QHOOPL OHT S A 0o >0ca —= o
EQVO03 &«PO P 0o o~ o - A [4
0 0 0ULY O ~ o~ wu HoEL Ny} kel
w_ 0 Q9QZXDHO S o BOV® O OE Ao
= S0 @HO & AT 0 oA Qo © g
~0 Q.0 = - — 0 ® — £ 4-A 0P —= o
00 ‘Bbo 0T O [T = L R v = OWH A o T
n G o 4 MO©P £ > OH @ o ~ 0o X O ©
HQuapP o n-HO -—.Q 0 R T B A I R B Lt 3] @~ (O]
SuP HECHNH® 0 [} [SRSTRT C0O0mT® ~ N
o 0 © e 9 =zQq - DD e e e e e e e e D88 H00 a
Osond Q00 O T o & @ 03B ®LL 0 — D0
VP WM EOP OO © 4= O B N N N N N Lo PP 0 —~ 03
“Waun3 — o np X o O LRI £ >0 [9] el [=}
OP8Q ®©OO03-HLP 00— PPV O 00 S 00 |
~= TP 3N Ral L °Q LRI oo o0oHOO [OTl
I X O © T LRV D DD X L .Q £ 4 HCo g
~ E0 o000 sp oo o pu-HdQ + 0o
—H 0P A 0n-+H g © B S I == R T R S) ~— ~ (OS] 9]
o0P 00 o} Q-0 T DO B
SHO G POHPE =R 0 > anE QS © 0o
e O P 00 0000 0090w S P
SN EQ>NP >0 > E= e e e e e e e e e e e e e e e Dnaoc v Do
op QD nc o Qo0 >0 '® Q o o
HeHd o0 - 0-Hd Q- QT T Q&g EQ0 H @ O
HELEHADE DO ©cO < —Ho g - =]
p-rA-4000—4 06T ©HED HoHgB g . op o
CHBPAd gD 0 [[0S — B0 0@ @ - ©
= L > E P~ 0 0TSO C0pP-ADAV T DAy
HOT™O | O©~ T oA~ 0oL ® ol 00
HWo3g °CH 0 O~ 0 g-H H o= [ORN 400
cwoboe Pog O g 0 o4 Q [o]
g00+LQC0T QO Q4 O 9] s> “
@ wnubHg O O OO0 s WG 0O T T
> g4 © ~ P 0 0c - S P© | o< @
oA 0HAE~ O O OSSP HD C_BXOSIl + ONUO
o sl END L P 0o £T o0 [} o~ O
qo0Pe ~I1-HA0HK P ccn e 4 oo <0
QA TodA P—P o < pD@A A MO YooK
-1 & w0 A wT 0T EHO O Q
PP EHECOOEGSG 0] 0. © Hocwnp A Q wWg
cnwd ©O0PCTBAHO PT-HAGH A S ™D o 0
O 4 SHAwpy 00 T HPD0Q 0N ~ © 0
4 DgopHd DOP HETAO 08 Soow ~D©
H0O0OUOULUDHOENX =ZOl 3P 0o EooT Ol Fg0
SHES3H00H 4G 0 P XOoGg S XS OXO0L 00
(SRR I o L% By o AL BRI i o PR IR < H®no 0-H HeA 0P 00 Hp Z 0o
[
s
S ooHT OB 40OV > ° DU O OHTH O OO O
o & o0 0 P o Hocpa>aA o HSENCWHO Co&Hg
voc 504 S A Ad 3 o ~H000H3®0 00V 0P
T 0T 0 PEPLOOUHAOTC o CQ0OECD T E-H]
- 4 Q0 o —-4 o0 000 5% dRLNATBLY S5O
o [S 0o 0Hg 00N “ 0 _pECS T HO®OOOC
oo [N Op Lo 00 HQ o SEQ OLLD3 SN E-
o £ P og A Q00— 0T ® o [t CECO03X0NM30w
S 4 wpos oo 003TC PP U 008y DOB
m 300 oo O @© - H®OT 3 QP 0000 A
3 EcoH H0mC > OB . ~ ™o E0® £Q 00 3
o o s} THHPOPLO HC0O 0 nd_c A > SO
> OH =T PO SEOH A0 5~ . EY M gHP
o 0HY o 0 o O EHO 3> 4 v OE QO o 0 S g q
o O QTO> Q OE ~EH PLOTO o — g ©.q SRR [SNO o]
> 4 © o ® COEH - ® > HeA ST DA B DD e H DWW
© Q2 AHH® >NQ HCOE0T M . HPDOPCMXCOOL ©
< o G OHOHVOH 3 @0 CO3®HO0 —HO ©O
o ~QT TN +H £ 0®H0 =1 CHH0 ©OQ _®© T
0O @ nugao Lo R B B B I~ B B W LOOQ~H EZ0O O
P 0O HO3p S0 =0 @ o ©Q © . £00 ®© O
qacy POTLOLONO®Y > TO® _ 0RO N—ANXSG
>0 oA [} HLO 6840 Q0,0 £+ 0 [} ¢}
SIS HEQ 0 GHHA O 0C oMo Q0T OEL 0P D>
QP ~T 3G ~ HWE 8 ap >0 9 [L RS] BNH NG OO
© o E-A O 00 HHHdTR>O Q4 R Q@©QCENM
S 4 00 ~PT wOSEELN ©O D>y N E o
O PTG ‘A H-d 0-d 0P oA 0a WnANEs ~TOEO ~H
W © d0 w] 0T P 0O S OH®NOUT O C®
— M E > o HPONHOHAGSH w 0 Rl)] EHCHOOO®
—~ H H © LLOA o T 00 - VM Cw 00T R
I (] e > < X3H WP OT ~0X o Sthiderrmadte
o H H0uw VOoOOV®mO ©oB® U P AT Puapoo £ 0>
. 4 4 ©@CcH D> VBT el =1 LD ©®OZ3O0H40 ©3H
a & H0P CO uX-A CPT C _H00800s Hg
. g E Qo+ ° EAGCHD TH O O D - ECEQQOOLY VLD
< ~ o K- g 8] H0MHENHATL O 1o P 80T X < S © 0
o H 0O 0 - 4 © © ©_ dco 0O 4 H0 0 HAoPHdcgQ
- g > 0T O O PR oo o 0 SHQ
~ - = [ORE O} ©E O o S 0w n (O] 00LC QL O0O0~0 >0
H 40 HA E 5 «Hop ©O0 A TH GHA0CHPpCE S HO=
H o & Q9o * cH _wug o - 00 0D PHEAQH®
> Q o™ PP * HoOo g Hd>™Nanodn >0 © L S]
© © o=} U0 0TT “ T D T .Q CEOH O HYME 3 I
> [eH o~) 41l HT300NONESLS = Sp-HH O w0 s T
< o O H®O O Y 00 HQEPH®O Y * o V4! 0358 I
o8 > 9 © A E 0 @Eu40 HOX> W 00 * NH AP B OTEHA DO
g0 g 0N 6 OPDOCELY T8O > S0 HECO0 HOSZHAO SH
= 4 LHOO Q DO-HXPHYMUT < Q =] VA4 0QU0BHNHSgPJ
S 0 U wgPX o noeHd 0L BOOH =T O & Q+sHO ® ©O «
£ L n o 5mo o L0 LOLCHPC + - 3 HE — S0 0 %}
£ O [N EP - - (O] DM~ D00 & WA 5} Q0 @~ P AT s D>y
oL o T e} 2] 2o SP 0o o o 3] ET X O QoQco £
H® g oap oo LD S 0 0C00Q > ud 3 080HQUHAACCH =
~ 0 H o ~pg 0 YW eoPHLOLcg = T 00 ALSH P T
D =] o oOwwm A 0 O & ® AP o} S HHP PO S CE M
40 <~ wup Loz 0 0 LV A W HoonH § o 000N dxQ
Ay 9 4 CAARc® Q Poc © wgT =1 PO goHH Y 2O OXoQ
2 0 0 c-dH >N A00 >MOTw0cHA0T b C EE-O0O0OM HWXTO
& H £ 0T B O0SWXgHddd PO dd H 90 0O—4—= 00 00
T © D0 o OmM STNSCHSO > C OnndT HAH— O P
g [oh g0 P . QOO ZERHPOHN AP . S Hg s 0 HQ4u NG
o T O P “ — 4000 =] ool + N n H0nNnCNnCOO0.QY
w 0+ EO Q@+ -0 +0@QO c0 CPOLMXTTOTO M
~ A 0 od] * 570~ >™00 P dg * >NAdd 0SS HT 0T
o & Dbob H * O _nununnw 2] o * C6 400G © O oA
— P O 3HH NT O-HOM-ApD ®O-AT 40 attenmemnleGu
— 40O BCccoOd4nd 9 S cm.C MEGBHLD GO
O g om”c-dn HOOPOBOSLPLT OO0 COLDPOHOCQ®>™AO
ToH Q03 HHE-THEPMNPHAL M4 OU=EO0OHUHUELVQN~—

o
i
2

~~0(
~~Q(
~~Q(
~~Q(
~~Q(
~~Q(
~~0(
~~0(
~~Q(
~~Q(
~~Q(
~~Q(

~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q (
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q (
~~Q (
~~Q
~~Q (
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

~~Q
Q
Q
Q
Q
0

~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q

~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q

~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q
~~Q

~~Q (~~Q(

Sorry about that!

Not all of the ASCII bytes are considered printable, either. For ** 5, The CISC Ridiculous **
example, 0x14 means DEVICE CONTROL 4 in ASCII, forever enshrined as that
useless idea. Even DOS didn’t think it was useful, so DOS prints it as a Let’s look at the printable opcodes available in X86. Don’t actually
"paragraph" symbol. The byte 0x07 just makes a beep sound if you try to read this table, but I will refer to it:
display it.
20-23 AND reg|mod/rm
The range of actually printable characters are: 24,25 AND AL/AX/EAX <- imm
26 ES segment override prefix
0x0A NEWLINE 27 DAA Decimal Adjust AL after addition
0x0D. CARRIAGE RETURN 28-2B SUB reglmod/rm
0x20. SPACE 2C,2D SUB AL/AX/EAX <- imm
e (all the keyboard characters are from 0x20-0x7e) 2E CS segment override prefix
0x7E. ~ 2F DAS Decimal Adjust AL after subtraction
30-33 XOR reg|mod/rm
and no others. O0x0A and 0x0D are actually pretty questionable, 34,35 XOR AL/AX/EAX <- imm
because UNIX, MacOS and DOS/Windows could not agree on whether a line 36 SS segment override prefix
ends with newline, carriage return, or carriage return and then newline. 37 AAA ASCII Adjust After Addition
This paper 1is concerned with reliably printable characters, so we say 38-3B CMP reg|mod/rm
that’s the 95 characters from 0x20 to 0x7E, inclusive. This is all of 3C,3D CMP AL/AX/EAX <- imm
‘em, with the upper-left corner being 0x20 SPACE. 3E DS segment override prefix

3F AAS ASCII Adjust After Subtraction

"4 s$%ss’ ()*+,-./012 40-47 INC multibyte register
3456789 :;<=>2?2@ABCDE 48-4F DEC multibyte register
FGHIJKLMNOPOQRSTUVWX 50-57 PUSH multibyte register
Yz [\N]"~_‘abcdefghiijk 58-5F POP multibyte register
lmnopgrstuvwzxyz{ ‘ } o~ 60 PUSHA Push all registers
61 POPA Pop all register
62 BOUND Check array index against bounds
By the way, I tried to be disciplined 1in this paper about writing 63 ARPL Adjust RPL field of segment selector
hexadecimal numbers in C notation, like 0x42 to stand for 66. The x86 64 FS segment override prefix
architecture is little-endian, so a 16-bit word 0x1234 is stored in 65 GS segment override prefix
memory as 0x34 0xl12. Also, when I write x86, that is not a hexadecimal 66 operand size override prefix
number, that’s the name of the computer architecture. 67 address size override prefix
68, 6A PUSH imm
69 IMUL
** 3. Printable x86 ** 6C, 6D INS ES:DI <- DX
6E, 6F OUTS DX <- DS:SI
Since only 37% of bytes are printable, if you inspect (i.e., "cat") an 70-7E Jcc+disp8 variants
executable program, it will almost always contain unprintable
characters, and may beep at you, etc. However, since the printable bytes Figure 1. Instructions in printable x86
do stand for some subset of X86 opcodes, it is technically possible to
make X86 sequences that are printable. One famous example 1is the EICAR That’s all we get! Many of these opcodes take arguments, such as an
Test File: immediate byte (or word, or double-word); for example the sequence 0x24
0x42 means AND AL <- 0x42. In these cases, the arguments must of course
X50!P%@AP [4\PZX54 (P~) 7CC) 7} SEICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H* also be printable, which 1limits what we can do with them, sometimes
severely.
This string 1is used to test antivirus software, because you can hide
this string away inside some file and then see if the antivirus software It’s not clear that it will even be possible to do basic things, and it
can successfully find it (?). What’s cool about this string is that if was a pretty satisfying hacking challenge to work around its
you stick it in a file called, say, EICAR.COM, you can just run that limitations. If you have some x86 assembly experience, you might want to
file in DOS and it prints out give a little thought to the following puzzles:
EICAR-STANDARD-ANTIVIRUS-TEST-FILE! — How can we load an arbitrary number (e.g. an address constant) into
a register? Note that the immediate value in something like "PUSH imm"
The EICAR Test File is clever, but there are a few problems with it: must be printable.
- It was written by hand. Though it’s easy to change the message — Without the MOV instruction, how do we do loads and stores?

it prints, everything else about it is extremely delicate.
— Without the INT instruction, how can we even exit the program?
- Because it’s in a COM file, it only has access to a single

64k segment, which must hold the code, data, and stack. - How do we implement bitwise OR with the given instructions?
- Most damningly, like many viruses it uses "self-modifying code" - The Jcc (e.g. JINZ, JAE) instructions take only an absolute displacement.
to first rewrite itself into different opcodes. This means that How do we do function (pointer) calls and returns?
the processor ends up executing several non-printable opcodes.
This is like telling the waiter that you don’t eat poultry but — The displacement must be printable, which means it is always a
eggs are okay, and then they bring you an egg, but that egg positive number. How do we even do loops?

hatches into a chicken right after they bring it to you. Come on.
I will explain those problems and my solutions in later sections; I

In this paper I present a compiler for the C89 programming language* think they are each interesting. (If you are not going to read the whole
called ABC. It produces completely printable executables from C code. paper, which is 1likely, I think "18. Loops" and "17. Exiting and
While self-modifying code is a powerful technique, it makes this problem initializing the program" are the most interesting/funny hacks.) Various
"too easy;" I want to explore what programs can be written natively in parts of the compiler’s design are intertwined with the many
the printable subset of X86. Programs compiled with ABC do not modify constraints, so there is no easy path through the whole idea. For now,
themselves, or cause themselves to be modified; every instruction let’s warm up with the file format.

program executes (outside of the operating system) contains only the
bytes 0x20-0x7E. Moreover, every byte in the file 1is printable, so

programs can viewed as text. ** 6. Executable file formats **
Source code for this project is available at: http://tom7.org/abc In order for the compiler’s output to be executable, it needs to be in a
file that the operating system recognizes as program. This means that
* Not every C feature is implemented. Some of these are just not feasible the header of the program needs to be printable too. We can rule out
and some I just didn’t get to before the deadline. The shortcomings several formats that cannot possibly have printable headers:

are discussed in Section 26.
On Linux, executables are ELF files. The first byte of these files is
always O0x7F "DELETE", which is not printable. Several other bytes in the

**% 4, Difficulties ** header have to be zero.
This is a challenging programming problem! On MacOS, executables are Mach-O files. These files always start with
OxXFEEDFACE, an amusing example of unprintable bytes whose hexadecimal
- Well, you have to write a compiler; representation nonetheless spells out words. It also requires a field

called MH_EXECUTE to be 0x02, among other problems.
- Due to some constraints, it has to produce reasonably good (small

code, or the compilation strategy will fail; On Windows, most executables are EXE Files. The modern version of this
format is called Portable Executable (PE) and is used for 32- and 64-bit

- You only get a handful of instructions; programs. It contains a required COFF subheader which always starts with
0x50450000 (the zero bytes not printable). For backward "compatibility",

— Some extremely important instructions are completely missing; PE EXE files actually start with old-style EXE headers, which are

actually programs that print something like
- Notably, superficially you can’t load arbitrary numbers into
registers, jump backwards, or interact with the operating system; This program cannot be run in DOS mode.

- Many remaining instructions can only be used in weird addressing modes; and then exit. Windows recognizes a secret code that tells it to ignore
that part and look at the *real* program.
- Several standard techniques for assembling programs don’t work

due to the subset targeted; ... this eliminates the main executable formats for the modern x86
platforms. :(We saw that the EICAR program is a COM file, so clearly
- The program’s header must also be printable, which puts constraints that is a possibility?

on its size and layout;
A DOS .COM file has no header. The entire program is just inserted into

— Unreasonable SIGBOVIK policies require that papers not be xxx-tra memory at the address 0x0100 and starts running. This level of
large-size. simplicity is a dream for a SIGBOVIK Compiler Author, but it has a fatal
flaw. In order to understand, we need to take a break and talk about
+ + segmentation!
By now you’ve probably guessed from the gibberish you’ve been \
seeing that this paper is itself the output of ABC; that is, this
this paper is also an executable file. If so, you guessed correct!! ** 7. Segmentation break! **
\ DOS is a 1l6-bit operating system, and a 16-bit number can only denote
65,536 ("64k") different values. To allow programs to address more than

64k of memory, Intel introduced "segments" into the 8086. These are a

nightmare for programmers, and when I was a teenager I thought I could DS, ES cs SS
perhaps live my whole life without really wunderstanding them. We’re | | | (additional memory)
back! Roughly speaking, the instruction set allows you to supply 16-bit (not in memory) v v v

addresses (offsets), but the processor internally combines these with + b = = - = = o
16-bit base addresses (segments). The "real address" is (segment * 16 + hdr |paper| reloc paper program image

offset). Some annoying facts: intro paper paper paper

- The segment registers are changed through different instructions than PAPER.EXE

the regular registers. None are available in printable X86.
This results in an file size of 409,600 bytes, which I believe is the

- However, we can make some instructions use a different segment smallest possible. At 160x128 characters per page, this is exactly 20
register with one of the prefix bytes (e.g. 0x36 makes the next pages. Since we can’t change the segment registers, the active part of
instruction use the SS (stack) segment instead of the default, which our program 1is only the 64kb data, code and stack segments, and since
might be DS (data)). the stack segment 1is somewhat unreliable (as described above), we only

put stuff in the data and code segments. As a result, we need to be

— However, some other instructions like PUSH or OUTS can only use a thoughtful about code size; this will be a challenge.

specific segment.
It’s not necessary to understand this diagram since you are looking at a
- There are multiple different SEG:OFF pairs that reference the same 1:1 scale model right now, i.e., the program itself. I’11 point these
real address. sections out as we encounter them.

- The segment values are not predictable in DOS, because they depend

on where DOS happens to place your program. ** 9. The Program Segment Prefix **
We’ll have to deal with segments for sure, but one consolation (?) is The Program Segment Prefix, or PSP, is 256-bytes at the beginning of the
that since we can’t change the values, the program will only access the data segment. Depending on how you look at it, DOS either overwrites the
64k of data within the segments it starts out with. first 256 Dbytes of our program image, or the program image 1is loaded
right after it, but starts at address DS:0x0100 rather than DS:0x0000.
There are 6 segments, CS (code), DS (data), SS (stack), and three In any case, we get this for free whether we want it or not, for both
"other" segments ES, FS, and GS. COM and EXE files. Since this is just part of DS, programs will be able

to read and write the data there. The most useful thing we get is the
command line that the program is invoked with from the DOS prompt.

** 8. Executable file formats, continued... **
In a DOS .coM file, CS, DS, ES, and SS are all initialized to the same ** 10. Relocations **
value. This is easy to think about, but it causes a super bad problem
for us: The machine stack is inside the same segment as our code. The You already saw the header structure (it’s the title of the paper) and
machine stack is a region of memory that the PUSH and POP instructions the relocation table (the full page of "~~Q("). For normal programs, the
use (among others); it starts at the end of this single segment and purpose of the relocation table is for DOS to patch the program so that
grows downward (towards lower addresses, where the program’s it can know where it’s located in memory; each time a program is loaded
instructions are). If the stack collides with the program, then it will it might be placed in a different spot. When the program is loaded, DOS
mess up the instructions (which might be an effective way to make goes through all of the entries in the relocation table, and modifies
self-modifying code, but we don’t want to cheat). Most COM programs stay the given location in the program by adding the base segment to the word
out of the way of the stack by being much smaller than 64k. For good at that location. Usually this location is part of an instruction
reasons that I will explain later, in this project, execution will need sequence like "PUSH imm; POP DS", where imm is some value that we want
to span the entire code segment. It might be possible to avoid using the to be relative to the program’s base segment. We can’t change segment
stack in our programs, but DOS interrupts (Section 17) are constantly values, so the relocation table is wuseless to us. In fact it’s harmful,
happening as our program runs. These interrupts use the stack, and because we have to have 8,224 (0x2020) relocation table entries in order
although they put the stack pointer back where it was and don’t modify to have a printable header, and whatever offsets are in there will get
anything currently on the stack, the wvalues that they PUSH and then POP corrupted when the program is loaded. We repeat the same location over
are still present in memory, overwriting whatever was there. We don’t and over, and choose a location that’s right after the code segment in
have any way to turn these off, because the CLI instruction ("clear memory, a part of the image we don’t need. I’'1ll point out the spot that
interrupts") is O0xFA, which is not printable. It seems COM files will gets overwritten when we get there. The locations are given as
not work for this project. segment :offset pairs, which is nice because we have multiple ways to
reference a given location. We simply solve for some seg:off such that
This leaves old-style 16-bit DOS EXE files, which do just barely work, (seg * 16 + off = addr) and both seg and off are printable.

and this is what ABC produces. EXE files afford much more flexibility,
such as the ability to access wup to 640kb (barring tricks) of memory.
They also have many features that we do not need or want. An EXE header ** 11. Addressing modes, temporaries, calling convention **
looks like this:
In any compiler, one must decide on various conventions for how

offset field ABC’s value ASCII variables are laid out in memory, how registers and temporaries are
(little-endian) used, how arguments are passed to functions, and so on. There are lots
00 magic number 0x5A 0x4D ZM of such decision in ABC; some are basically normal and some are
02 extrabytes 0x7E Ox7E ~ particular to the weird problems we have to solve. Let’s talk about some
04 pages in file 0x20 0x23 # of the limitations of the instruction set that we have access to,
06 relocation entries 0x20 0x20 because those inform the low-level design.
08 paragraphs in header 0x20 0x20
10 minimum memory 0x20 0x20 In Figure 1, there are several instructions that look like this:
12 maximum memory 0x20 0x20
14 initial stack segment 0x50 0x52 PR AND reg|mod/rm
16 initial stack pointer 0x69 Ox6e in
18 checksum 0x74 0x79 ty These are each a family of instructions like
20 initial ins pointer (program dependent)
22 code segment displacement 0x20 0x20 AND AX <- BX AND [12345] <- DI
24 relocation table start 0x20 0x20 AND BX <- [BP+SI+4] AND [EBP+12345] <- EBP
26 overlay number 0x43 0x20 c
where the source (on the right) and destination are given by some bits
Normally, the header is followed by the relocation table (if any; see in the instruction’s encoding. The instruction always acts between a
below) and then the program image. The program image is some blob of register and a "mod/rm", with two adjacent opcodes determining whether
data that gets placed contiguously in memory, with the data segment set this is of the form "AND reg <- mod/rm" or "AND mod/rm <- reg". The
to its beginning and the code and stack segments set to wherever the mod/rm can be one of many possible values; here is a table which you
header asks. A typical layout would look 1like this, with the solid need not absorb:
box being the contents of the EXE file:
rlé(/r) AX CX DX BX SpP BP SI DI
DS,ES Cs Ss r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
| | | (additional memory) Reg: 000 001 010 011 100 101 110 111
(not in mem) v v v Effective Address Mod R/M Value of ModR/M Byte (in Hex)
+ + t - - - - - = - - = = = + [EAX] 00 000 00 08 10 18 *20 *28 *30 *38
hdr| reloc program image : [ECX] 001 01 209 11 19 *21 *29 *31 *39
H [EDX] 010 02 20A 12 1A *22 *2A *32 *3A
+ + t - - - = - - - - - - - + [EBX] 011 03 0B 13 1B *23 *2B *33 *3B
NOTVIRUS.EXE [sib] 100 04 0C 14 1C *24 *2C *34 *3C
disp32 101 05 20D 15 1D *25 *2D *35 *3D
All of the values 1in the header are printable, which causes some [EST] 110 06 OE 16 1E *26 *2E *36 *3E
difficulty. The problem stems from the fact that we must use values that [EDI] 111 07 OF 17 1F *27 *2F *37 *3F
are much larger than is reasonable for several fields; the smallest [EAX+disp8] 01 000 *40 *48 *50 *58 *60 *68 *70 *78
16-bit printable number is 0x2020, which is 8224. Several fields are [ECX+disp8] 001 *41 *49 *51 *59 *6l *69 *71 *79
measured in 16-byte "paragraphs" or 512-byte "pages" (anticipating their [EDX+disp8] 010 *42 *4p *52 *5A *62 *6A *72 *TA
use in printable executables!), so these values can quickly get out of [EBX+disp8] 011 *43 *4B *53 *5B *63 *6B *73 *7B
hand. Naive values cause the program’s effective memory requirements to [sib+disp8] 100 *44 *4C *54 *5C *64 *6C *74 *7C
be too large, and DOS does not load our program. Nonetheless, it is [EBP+disp8] 101 *45 *4D *55 *5D *65 *6D *75 *7D
possible. The gory details of the solution are documented in exe.sml, [ESI+disp8] 110 *46 *4E *56 *5E *66 *6E *76 *7E
but the crux of the solution involves the following tricks: [EDI+disp8] 111 *47 *4F *57 *5F *67 *6F *77 F
[EAX+disp32] 10 000 80 88 90 98 A0 A8 BO B8
— Overflow the "pages in file" (a page is 512 bytes, so 0x2320 is 4MB; [ECX+disp32] 001 81 89 91 99 Al A9 Bl B9
way beyond the 1IMB limit) field to provide a smaller effective value. [EDX+disp32] 010 82 8A 92 9A A2 AA B2 BA
The file still needs to be pretty big. [EBX+disp32] 011 83 8B 93 9B A3 AB B3 BB
[sib+disp32] 100 84 8C 94 9C A4 AC B4 BC
- Specify a much larger than usual "pages in header" (0x2020 * 16 = [EBP+disp32] 101 85 8D 95 9D A5 AD B5 BD
131kb) . Since the header isn’t loaded into memory, it doesn’t count [ESI+disp32] 110 86 8E 96 O9E A6 AE B6 BE
against the program’s memory needs. A really big header also gives [EDI+disp32] 111 87 8F 97 9F A7 AF B7 BF
us space to store the paper. You’re looking at part of the "header" AL/AX/EAX 11 000 CO C8 DO D8 EO E8 FO F8
right now. CL/CX/ECX 001 Cl Cc9 D1 D9 E1I E9 F1 F9
DL/DX/EDX 010 C2 CA D2 DA E2 EA F2 FA
— Give technically invalid values for some fields (extrabytes, checksum, BL/BX/EBX 011 C3 CB D3 DB E3 EB F3 FB
overlay number); DOS doesn’t actually seem to care about these. AH/SP/ESP 100 C4 CC D4 DC E4 EC F4 FC
This helps us get a paper title that’s almost readable. CH/BP/EBP 101 C5 Cbh D5 DD E5 ED F5 FD
DH/SI/ESI 110 C6 CE D6 DE E6 EE F6 FE
BH/DI/EDI 111 c7 CF D7 DF E7 EF F7 FF

The layout of a compiled program is roughly like this: Figure 2. Addressing modes

cells that should be searched (everything goes on the queue except the

The "scaled index byte" (sib) has another table with 224 entries, which diagonal, which is already optimal). We repeatedly remove items from the
we won’t get into. There is also a similar, but crazier, table for 16 queue and then explore what cells we can reach from that source byte.
bit addresses and 8 bit operands. Note that only part of this table is For example, if we pull out the cell (SRC=0x80, DST=0x01), we try
printable (marked with *), which means we can only use a subset of applying XOR, SUB, and AND (with printable immediate values), etc. to
addressing modes. Notably: the source value 0x80 to see what we get. One such result is that we can
get AL=0x00 by doing AND AL <- 0x40. Consulting the cell for (SRC=0x00,
- We can’t do any register-to-register operations, like "AND AX <- BX". DST=0x01), we see that it contains a sequence of length 1 (INC AX), so
Most compilers use these instructions frequently! this gives us a new best solution by concatenating these two paths

(AND AL <- 0x40, INC AX), which is much better than (DEC AX, DEC AX,

- As a result, exactly one of the source or destination operand is 79 times). We iterate this procedure until paths stop improving.

some location in memory.
This works well, with only an average of 2.54 bytes of instructions

- The simple addressing modes can only be paired with some registers. needed to transform a source byte into a destination one (across all
For example, AND DI <- [EDX] is allowed, but AND AX <- [EDX] is not. possible src/dst pairs). No sequence is longer than 4 bytes. Since this
[ESI] means the memory in the location pointed to by the value in table is big and programmatically computed when the compiler starts, I
the ESI register. took some trouble to optimize it (the naive implementation took 13

seconds, which 1is a bit of an annoying wait every time you run the
This is even more annoying than x86 usually is. That said, the fact that compiler!). There were a few tricks, but the most fruitful one was to
we don’t have register-to-register operations means that register functorize the code that encodes x86 instructions. This code normally
allocation is far less important than wusual. Instead, we operate on a works with vectors, and then the test above for the shortest instruction
set of temporaries, accessed using the [EBP]+disp8 addressing mode. sequence would use Word8Vector.size to compute the best one. In the
EBP’s default segment is SS, so these temporaries are stored in the same functorized version, the type of vector is an abstract argument. We
segment as the stack. In fact, since we initialized the stack pointer instantiate a size-only version of encoding where the "vector of bytes"
towards the middle of SS (it has to be printable; the maximum value is actually Jjust the count of bytes, and concatenation is Jjust +. The
would be 0Ox7e7e, but we use 0x6e69 to make the title more readable), we MLTon compiler is then excellent at optimizing this code to throw away
have the entire region from that to OxFFFF to use for temporaries. Each the computations of the byte values (they are dead), and this code
function frame (see below) has its own set of temporaries. becomes plenty fast (~800 ms).
To perform a basic subtraction operation, whereas a traditional compiler The table of instructions contains interesting structure, or at least
is likely to emit an instruction like pretty structure. Since it is 256x256, it can’t fit in this paper 1:1,
but I cropped to the prettiest part, the leftmost 160 columns. It
0x29 0xC2 SUB AX <- DX ;7 AX = AX - DX appears as two full pages in the data segment (Pages 8 and 9) as some
cool ASCII triangles. In this graphic, a space character means 0
ABC emits a sequence like instructions (this is only the diagonal of course, mainly visible on the
first page); ’.’ means one instruction byte (just INC and DEC, near the
2?? MOV AX <- [EBP+0x22] ;7 AX = tmp2 diagonal); "-' is two instruction bytes (like XOR AL <- 0x2A); ’'%’ is
0x67 0x29 0x45 0x20 SUB [EBP+0x20] <- AX ;7 tmp0 = tmp0 - AX three; and ’'#" 1is four. This fractal pattern (like the Sierpinski
triangle?) shows up all over the place in mathematics and computer
which is not so Dbad. (Note that we do not have a MOV instruction; this science and Hyrule. For example it is reminiscent of the matrix of game
puzzle is solved below). We often need to do much more work than this to configurations in k/n Power Hours [KNPH’14].

perform a basic operation, and optimization is meaningful (especially
things that reduce code size).
Once we can load an arbitrary byte into AL, we can fill all of AX with

The [EBP+disp8] addressing mode denotes the location in memory at the this trick. Suppose that our goal is to load AH=0x12 and AL=0x34. If we
address in EBP, plus the given 8-bit value (above, 0x22) . Note that to don’t know anything about AX, we can zero it with two AND instructions.
encode this mod/rm, we need to write the displacement byte in the Then we can emit the instructions to load 0x12 starting from the known
opcode, so it must be printable. The EBP register will therefore value 0x00. Then this sequence:
actually always point 32 bytes before the first temporary, so that
temporary 0 is accessed as [EBP+0x20]. instruction AH AL stack (ww, xx, yy, zz stand for
ww 0x12 XX VY ZZ ... some arbitrary junk)
With this idea in mind, here is a summary of ABC’s low-level design: PUSH AX
ww 0x12 0x12 ww XX Yy 2z
- A C pointer is represented as a 16-bit address into the data segment. PUSH 0x3040
ww 0x12 0x40 0x30 0x12 ww XX yy zz
- Anything addressable therefore needs to be stored in DS. This includes INC SP
global variables, local variables and function arguments. ww 0x12 0x30 0x12 ww XX yy zz
POP AX
- Global variables are just allocated at compile time to some locations 0x12 0x30 WW XX Yy 2Z
near the beginning of DS. INC SP
0x12 0x30 XX Yy zzZ
- A traditional C compiler uses the machine stack to store local
variables, but since these need to be in DS, not SS, we maintain a Remember that x86 is 1little endian, so the low byte goes on the top of
separate stack of arguments and locals in DS, which starts after the the stack. This trick places two words adjacent on the stack, but then
global variables and grows towards larger addresses. This is called the misaligns the stack by doing a manual INC SP (and again at the end to
locals stack. The register EBX points 32 bytes before the locals stack, clean wup). The result is that AL gets moved into AH, and a known
so that we can use [EBX+disp8] to efficiently access locals. printable value of our choice (0x30 above) into AL. We can then use our
table to transform that known value to any desired value into AL,
- EBP always points 32 bytes before the "temp stack". completing the 16-bit value. This is reasonably brief and only touches

the AX register, and we use it all the time in the generated code.

Both stacks (and the machine stack) advance when we make a function
call, so that the values of locals and temporaries persist across the

function call. ABC only stores the return address on the machine stack. ** 13. Moving between registers and memory **
— Aside from EBX, EBP, and ESP (the machine stack pointer), all other Another useful kind of instruction is MOV AX <- [EBP+0x20], which moves
registers can be used for any purpose. the 16-bit word at the address in EBP (offset by 0x20) into AX. This is
how we read and write temporaries; the "AX <- [EBP+0x20]" part is
Next, we need to implement a number of low-level primitives that let our printable, but we don’t have the MOV opcode available (0x89).
program do computation. Let’s warm up with something very basic. Fortunately, the XOR instruction is "information-preserving," so it can

be wused like a MOV. Specifically, if we already have zero in the
destination, then XOR *is* a MOV. In order to load from memory we use an

** 12. Putting a value in a register ** instruction sequence like:
When programming X86 like a normal person, a very common task is to put ... various ... set ax <- 0x0000 ;i using tricks above
an arbitrary number (for example, the address of a global, or a value 0x67 0x33 0x45 0x20 XOR AX <- [EBP+0x20]

that appears in the user’s program) into a register, like
To write to memory, we do:

0xB8 0x34 0x12 MOV AX <- 0x1234
0x50 PUSH AX ;i save value to write
We don’t have this instruction available, since its opcode 0xB8 is not ... various ... set ax <- 0x0000 ;7 using tricks above
printable. Moreover, we need to be able to load arbitrary values, not 0x67 0x21 0x45 0x20 AND [EBP+0x20] <- AX ;i clears to zero
just printable ones (but the value is part of the instruction encoding) . 0x58 POP AX ;i restore value
0x67 0x31 0x45 0x20 XOR [EBP+0x20] <- AX ;i write it
We do have some ability to load values. For example, we can encode
This is almost... nice! But don’t worry, it gets grosser.

AND AX <- 0x2020
since 0x2020 is printable. This clears most of the bits in AX, and then ** 14, Bitwise OR **

AND AX <- 0x4040 We don’t have the OR instruction, but it can be computed with this

trick.

will always clear the remainder, since (0x40 & 0x20 = 0x00). With AX
containing 0x0000, we could then repeat "INC AX" 1,234 times to reach 1 1 0 0 A
the desired value. This totally sucks, but it works. 1 0 1 0 B
There are often more direct routes. We can XOR and SUB and AND with 1 0 0 O A AND B
printable 8- or 16-bit immediate values in addition to INC and DEC. 0O 1 1 o A XOR B
There is probably no "closed form" solution for the quickest route to a 0O 0 0 O (A AND B) AND (A XOR B)
given value (the presence of both XOR and SUB makes this rather like a 1 1 1 0 (A AND B) OR (A XOR B)
cryptographic function), but we can use computers to help. 1 1 1 o0 (A AND B) + (A XOR B)
We build a routine that generates a series of x86 instructions that load 1 1 1 o0 A OR B
a 16-bit value into AX. In the general case, we do this by loading two
8-bit values and Jjamming them into AX wusing a gross trick. To load an This is the table of all possible bit combinations that A and B could
arbitrary value into AL (the low byte of AX), ABC uses a table that it have; the OR operation 1is of course only dependent on the pair of bits
creates upon startup. This table is of size 256x256, and gives us the at each position. First, observe (in your mind; it’s not in the table)
shortest (known) sequence for putting some desired byte DST in AL when that A OR B is the same as A + B unless both bits are 1; only in that
AL is known to already contain some byte SRC. This table is populated case do we need to do a carry. So we compute A AND B, and A XOR B; the
via something 1like Dijkstra’s "shortest path" algorithm. For starters, OR of these two is the same as A OR B (it separates A OR B into the
the diagonal (SRC = DST) can be initialized to the empty instruction cases where both bits in the input were 1, and the case where exactly
list. We can then use INC and DEC to fill the rest of the table with one was 1). Since the two expressions never have a 1 bit in the same
very inefficient but correct sequences (still, when SRC is 5 and DST is position, we can compute their OR with +, giving us the desired result.

6, INC AX will remain the best approach!). Next, we maintain a queue of Implementing plus is also a multi-step process, described next:

to tell it that we’re done and the program can be unloaded. In DOS, you
make system calls by triggering a processor interrupt with the INT

** 15. Keeping track of what’s up with the accumulator ** instruction, which is a way of telling the operating system, "Check this
out!!" We don’t have access to this instruction, whose opcode is 0xCD.
The ABC backend (tactics.sml) generates X86 for some low-level Alas! The INT instruction is a gateway to all sorts of useful
primitives that operate on temporaries, like "Add tmpl <- tmp2". (This functionality, 1like printing strings and reading from the keyboard,
is described in Section 21 when discussing the phases of the compiler.) reading and writing files, changing video modes, and so on, so it’s very
Because it’s expensive to load constants into registers, we go through sad to go without it. (The EICAR test virus uses self-modifying code to
some trouble to keep track of the machine state as we generate code. create two INT instructions; one is to print the string and the second
This allows us to make some opportunistic improvements. For example, the is to exit.) In DOS, INT 0x21 is the most useful one; you set registers
actual SML code implementing Add on 16-bit numbers looks like this: to some values to access dozens of different functions.
fun add_tmpl6é acc dst_tmp src_tmp : acc = INT 0x21 1is so common that it appears in the Program Segment Prefix
let that’s always loaded at the beginning of the data segment. It’s just
val acc = acc ++ AX sitting there amidst some zeroes:
in
imm_ax16 acc (Wordlé6.fromInt OxFFFF) // ..
XOR (816, A <— EBP_TEMPORARY src_tmp) ?? DS:0x004A 0x00 0x00 ADD [BX+SI] <- AL
forget_regl6 M.EAX // DS:0x004C 0x00 0x00 ADD [BX+SI] <- AL
INC AX 27 DS:0x004E 0x00 0x00 ADD [BX+SI] <- AL
forget_regl6é M.EAX // DS:0x0050 0xCD 0x21 INT 0x21
SUB (S16, EBP_TEMPORARY dst_tmp <~ A) —-— AX DS:0x0051 0xCB RETF
end DS:0x004E 0x00 0x00 ADD [BX+SI] <- AL

DS:0x004E 0x00 0x00 ADD [BX+SI] <- AL
The approach is to XOR the source value with OxFFFF and then increment ..
it by 1; this negates the value in two’s complement. We can then use the

SUB operator, whose opcode is printable, to subtract that negated value, It even tantalizingly has RETF (far return from function call)
which is the same as adding it. The "accumulator" (variable acc) lets us immediately after it, 1like it was planted there by some puzzlemaker of
manage the steps. Without getting into tedious details, "acc ++ AX" years past, exactly for this kind of situation. (I don’t actually know
claims the register AX so that tactics know not to clobber it; we later why it’s there!) RETF pops both a return address and return segment, so
return it with "-- AX". The imm_ax16 function loads the value OXFFFF if we could manage to put a return address on the stack (not hard) and
into AX; this tactic gets to 1inspect what’s known about the machine the code segment (we don’t know it, but we could probably use the
state. For example, if we happen to have just assembled something that relocation table to write it somewhere) beneath it, and then somehow
left AX containing 0x0000 (very common) then we can simply DEC AX to get transfer control to DS:0x0050, we’d have a fully general INT 0x21 to
OxXFFFF in one byte. imm_ax16 updates the accumulator to record that AX use! It would even help with the loop problem (next section) since it
now contains OxFFFF, as well as emitting whatever instructions it needs. lets us return to an arbitrary address, and could conceivably even let
The // combinator emits a raw instruction, and the ?? combinator allows us escape the confines of always executing code within the initial code
us to learn or forget a fact about a register. Because some tricks segment CS (because RETF modifies CS). But speaking of confines, none of
require knowledge of e.g. AL but not AH, the accumulator actually keeps this will work, because we have no way of modifying CS to start
track of each byte of each register independently. It also understands executing code out of DS. Too bad, so sad. (This idea might pan out for
that if you claim ESI, then SI cannot be used (SI is part of ESI), and a COM file where CS=DS, but there we have no relocation table so
so on. This is nice, and the semi-monadic syntax allows what looks like figuring out what segment value to put in the stack would require some
assembly code in ML. (Also note the questionable <- and <~ (hyphen vs. other hack. We also have the Loop problem, preventing us from reliably
tilde) datatype constructors that distinguish the two directions of jumping to DS:0x0050. Might be worth further exploration.)
instruction, "reg <- mod/rm" vs. "mod/rm <~ reg".) The biggest risk of
this approach is if you don’t accurately record the state of registers Jumping the program to a non-printable instruction is also a bit
(e.g. you forget to "forget_reglé" after modifying it), because this can questionable, though it’s not an instruction that we wrote there, so
lead to tactics making wrong assumptions but only in certain unlucky this does not violate our self-modifying code fatwa. Is it wrong for a
situations. Some of my worst bugs were from this; it would be cleaner if waiter to serve the ovo lacto vegetarian with vegetarian food that
the accumulator actually simulated the instructions to update its own causes him to eat non-vegetarian food that the customer himself brought
internal facts, rather than have the programmer make assertions. with him? Who can say?
Since the accumulator is purely functional, another cool thing we can do This is not hopeless. The way interrupts actually work is to stop the
is try out multiple different strategies for assembling some block, and current execution (saving the state of the registers on the stack) and
pick the best one. For example, when we decrease EBP right before then consult a table of "interrupt vectors"™ (in my opinion the table
returning from a function (to restore the caller’s temporaries), we can itself should be called the "interrupt vector", containing addresses) at
either subtract a constant (number of bytes depends on the machine the address 0x0000:0x0000 (i.e., right at the beginning of memory). Each
state) or DEC BP over and over (frequently faster). interrupt has a number, and each address 1is a 32-bit segment:offset
pair. So the address at 4 * 0x21 = 0x0084 is the location of DOS’s code
for 1INT Ox21. 1In 16-bit real mode programs, there’s nothing special
** 16. Pointer loads and stores ** about the operating system; you can Jjust jump directly into it if you
want, or overwrite it with your own stuff. In fact, this is how many
Another primitive we must implement is "Loadl6 dst_tmp <- addr_tmp"; the viruses work; for example by replacing the address for INT 0x21 with
temporary addr_tmp contains a 16-bit address, and we load the value their own code, and intercepting file operations to insert viruses
contained at that address (in DS) and store it in dst_tmp. This is used before calling through to the original INT O0x21 handler so that
for pointer dereferencing in the source C program, for example. everything still works.
It’s basically the same as loading from a temporary; we just need to do Fetching the INT 0x21 address is not immediately useful, because we
something like can’t transfer control to it; we don’t have the CALL instruction. In
fact, the only JMP instructions we have must jump a small fixed distance
set DI <- 0 ;; macro forward (next section). But! The INT instruction is not the only way to
XOR DI <- [EBP+0x20] ;i appropriate addr temporary offset trigger interrupts. The timer interrupt is firing continuously, messing
set SI <- 0 ;i macro with our stack, for example. We can modify the interrupt vector table to
XOR SI <- [DI] ;i read from the address into SI make the timer interrupt (INT 0x8) instead point to the INT 0x21 code,
set [EBP+0x24] <- 0 ;7 appropriate dst temporary offset and then "wait" for a timer interrupt to happen, and maybe restore the
XOR [EBP+0x24] <- SI ;i store it old timer interrupt code when we’re done. This might work, but it seems
extremely brittle. (Also, the timer interrupt handler has to perform
(Again, the syntax [DI] means use the contents of the DI register as a certain low-level duties or else the system will freeze.) Fortunately
memory address, and load from there. DI’s default segment is DS, which there’s a better choice: The CPU will also trigger an interrupt when an
is where C pointers always point.) The only complication is that the illegal instruction is executed. Normally the illegal instruction
pure-indirect mod/rm bytes like [DI] can only be paired with certain handler would do something like crash the program gracelessly (in Unix,
registers or else they are not printable (Figure 2). it sends the SIGILL signal. Sadly there is no SIGBOVIK.) Do we have an

illegal instruction inside printable x86? In fact we do!
The reason to bring this primitive wup is that there’s a delightful hack

that’s possible if the destination temporary and address temporary are 0x63 Adjust RPL Field of Segment Selector
the same slot. This situation rarely occurs naturalistically, since it
would correspond to unusual C code 1like (int*)x = (int*)*x. However, it ... it’s just sitting in there, this totally weird instruction with no
is very commonly the output of temporary coalescing (Section 22), since other possible uses amidst a bunch of sensible ones. This instruction is
it is typical for the final use of an address to be a load from it. So, for some operating system privilege stuff, and is illegal in real mode.
this is actually useful (saves about 5% code size), but the main reason
to do it is awesomeness! Let’s say the single temporary is at EBP+0x20. So, when we first start up an ABC program, one of the first things we do
is read the address of the INT 0x21 handler at 0x0000:0x0084, and write
set DI <- 0 ;i macro it over the INT 0x06 (illegal instruction) handler. Luckily the FS
XOR DI <- [EBP+0x20] ;7 load the address into DI. segment is set to 0x0000 when our program starts (we can’t change it)
XOR DI <- [DI] ;7 DI = DI ~ *DI (r?) so we can use the FS segment override instruction to access the
XOR [EBP+0x20] <- DI ;i tmp = address "~ address ~ value beginning of RAM. Once we overwrite the address, then whenever we want
we can set up argument registers for the system call "exit" (AH = Ox4c,
The first two steps are reasonable, and put the address into DI. We want AL = status code), and execute the illegal ARPL instruction. This will
to end up with the value (whatever address points to) in the single trigger interrupt 0x06, which is now actually the INT 0x21 code, and DOS
temporary. Next we execute a crazy instruction, which XORs the address will "cleanly" exit the program for us.
stored in DI with the value it points to. After this, DI contains addr *
value, sort of like an encrypted version of the value. However, the It is very tempting to use this trick to make other system calls through
temporary still contains the address (the "decryption key"), so if we INT 0x21, or perhaps to Jump to arbitrary addresses of our choosing!

~ ~

XOR DI into 1it, we get address ~ address value, which is 0 value, Sadly, there are two very serious issues:
which is just value! It’s really nice how short the instruction sequence

is, and it only wuses a single register. The instruction XOR DI <- [DI] — When the processor triggers the illegal instruction interrupt, the
is so weird--it probably occurs in almost no programs, because it is return address that it pushes on the stack is the address of the
extremely rare for an absolute address to have any relationship with the illegal instruction itself, not the one that follows it. So when the
value it points to. So we get extra style points for finding a interrupt handler returns, it simply executes another illegal
legitimate use for it. instruction.

Stores are the same idea. The trick actually applies there too, but — When the interrupt is triggered, it clears the interrupt flag (so
isn’t useful because it doesn’t save us instructions, and because it is that for example the timer interrupt doesn’t fire while it’s already
uncommon for the address and value to be the same temporary in a store running) . Only a few instructions, which we don’t have access to,
operation (store is not really the opposite of load in this sense; both can restore the interrupt flag. This means that we would only be able
temporaries are read and neither is modified in to do this once, and after we did, many things would stop working
"Storel6 addr_tmp <- src_tmp"). because interrupts would stop firing.

Neither of these issues are a problem for the exit system call, since we
** 17. Exiting and initializing the program ** only exit once. YOEO!

We also want to be able to exit the program when we’re done. This is
normally done by making a "system call" to an operating system routine

The ARPL instruction takes two argument bytes which 3just have to be EIP ("instruction pointer") register. When EIP points at Jcc+disp8
printable; the instruction we actually encode is instruction, EIP is set to the instruction immediately after it (EIP+2
and then 1if we jump, incremented further by disp8. The disp8 byte is
0x63 0x79 0x61 ARPL [ECX+0x61] <- DI treated as signed, so jumps can go upward or downward. Unfortunately,
all printable displacements are positive! This allows us to
The ASCII sequence is "cya", as in see ya, which we follow with an conditionally skip code, but only downward, and only between 32 and 127
unexecuted exclamation mark for emphasis. You can find the string "cya!" bytes.

in the code segment on page 16 if you’re good at Where’s Waldo stuff
This subset won’t even be Turing-complete if we can’t Jjump backwards;
all programs will terminate because the instruction pointer only

** 18. Loops ** increases. What actually happens when we reach the end of the code
segment? If EIP is OxFFFF and we execute a single-byte instruction like
The last major problem involves control flow. In printable x86 we have INC AX, EIP just continues on to 0x00010000; the EIP register is 32-bit
available a family of instructions Jcc+disp8. Jcc stands for "jump (on) despite us struggling with 16-bit segments and offsets. This instruction
condition code", and consists of 15 opcodes: is right after the code segment, and indeed contains whatever followed
our code segment in the program image. So we could conceivably break
char opcode Also known as free of the 64k code segment. Unfortunately, performing a jump when in
P 0x70 Jo Jump if overflow this weird state still just jumps downward, and the situation is very
q 0x71 JNO Jump not overflow brittle (see Section 31 for some ideas and problems). However, there is
r 0x72 JB Jump below JNAE, JC a special case on the processor, probably for compatibility with an
s 0x73 JNB Jump not below JNB, JAE, NKC earlier processor; it’s right there in the pseudocode for this
t 0x74 Jz Jump zero JE instruction in Intel’s manual [INTC’01]:
u 0x75 JNZ Jump not zero JNE
v 0x76 JBE Jump below or equal JNA IF condition
w 0x77 JNBE Jump not below or equal JA THEN
x 0x78 Js Jump if sign EIP <- EIP + SignExtend (DEST)
v 0x79 JNS Jump not sign IF OperandSize = 16
z 0x7A Jp Jump if parity even JPE THEN
{ 0x7B JNP Jump if parity odd JPO EIP <- EIP AND OOOOFFFFH;
‘ 0x7C JL Jump less JINGE FI; (sic -tom7)
} 0x7D JNL Jump not less JNL ELSE (* OperandSize = 32 *
~ 0x7E JLE Jump if less or equal JNG IF EIP < CS.Base OR EIP > CS.Limit
#GP
This is a fairly full set of conditions (although we are missing the FI;
last one, JNLE/JG, with opcode O0x7F). Each of these consults the FI;
processor’s FLAGS register and tests for a certain condition. FLAGS is
updated on many operations; for example, the "zero flag" ZF is set to 1 Specifically, if we are right at the end of the code segment, and our
if the result of certain operations 1is zero, such as if "SUB [EBP+0x24] jump’s displacement takes us past the end, then we "wrap around" to the
<- AX" ends up writing 0x0000 into memory, and ZF is cleared to 0 if beginning, because EIP is bitwise-anded with OxFFFF. This means that our
not. The JZ instruction jumps if ZF is set, and just continues on to the program can do one backwards jump, from the end of the segment back to
next instruction otherwise. JZ has an alias, JE (Jump equal); they are the beginning.

the same exact opcode because when you subtract two equal numbers, you

get zero. Since it is common to want to set the appropriate FLAGS

without actually subtracting, the CMP (compare) instruction is like SUB We’re approaching the data section now, so it’s time to take another
but it only updates flags. We have a version of the CMP instruction in break! Here it is:

printable x86, so all is well so far.

These particular instructions are Jcc+disp8, so we provide an 8-bit
displacement. The address of the current instruction is stored in the

. [Now you’re looking at the PSP.
The address of the opening square bracket is DS:0000, but this gets overwritten by DOS on load. (Right here is where the command line is placed by DOS, up to
127 bytes. Before the open paren is its length in a byte.).....] 9;02457-"A82z2F4"G8F3c4"A4F4"A4"G82z8"A822c822"c822"d8z2f8z2F4F4F4F8-e2ededc2e4g2z6G4cz2Gz2EzA
2B"2'AA2G2e2g2a3fg3e4cdBz-C4C4G4G4A4A4GBF4F4E4E4D4D4C8G4G4F4F4E4E4D8G4G4F4F4E4E4D8C4C4G4G4A4A4G8FAF4E4E4D4D4C8-ABD’ BAF/ 3°F/ 3E’ 6AB_D’ AE’ 3E’ 3D’ 6AB_D’AD’ 4E’ 2_D’ 2B2
A2z2A2E’ 4D’ 4 ?Qf{ SY}———#R————SY}———#R————SY)———#R————SY}———#R————SY)———#R————BY)———#R————SY)———#R————BY)———#R ———————————————— trerrenn
[1 2 2 T T T T T T T I R R T S, /////222222233333666666677777 :

res global variables. This is actually a string constant in the program itself, so you’ll see it again when I show you the source code later. We have almost 64k
b of space to store stuff, although this segment is also used for the stack of local variables and arguments, and would be used for malloc as well, if it were i
mplemented. Storing a string like this is basically free, because everything in it is printable, aside from the terminating \0 character. At program startup, no
n- printable characters are overwritten by instructions in the code segment. Like, here’s one: --> - <-- It’s stored in the data segment as a printable placehold

.—%QeEERREEERREEERRRRERRRRERRRRY
.—%QeeERREEERRRRERRRRERRRRRCRRS
—. .—%QeEEREREEERQREEERREERRRERERRS
.—%QeeERReEERRERERRRRERRRREES
.—%QeeERQREERRQREERRRERERRREES
.—%QeeeeeeeEeeeReereRReERRReS

.—%QeERRRELERRRALERRRALCLRRS——————————————————— % seeeeees
.—%QeeeeeeeeeeReereRReeeres -- This is part of the data segment. What % $@ERREREAS
.—%QEEEEEEEREERERERRRRRRRY - else to put in the data segment but some % %@EEEERRERERS
.—%@EREAEREERRERRRRRERERES - data? You’re looking at the data now. % %QEeeeeeees
.—%@QREREEREEERERRERRES - % $@QRREREAEREAS
.—%@QREREREEREEERERRERES % $@EAREREACREES——————————

.—%@QREREREEEEERERRERY % $@QEAREREAERAERS— -
.—%@QReREREEERERERRES % $@QAREERERERQAERES- -
.—%@QREREEERERRERES % $@EAEERQAEREEARERY—— -
77777777777777 .—%Q@eeEREReeERRRRY s@eeeeEERRRERERRRRY—— -
—5%%%%%%%%%%%%—. . —%RRRRRRRRRRRY seeeeeeeeeeeeeeees—— -
-%@QEREAQREREES—. .-%CREEEERRER% s@eeeeeeeeeEeeeeee -
-%-%Q@QEEQRERQREERES-. .-%CEQREERERERES Hddddddddddddedddddd -
————%QCEEQRERQREERES--. .-%@QREEERERE% Hddddddddddededdedddd -
—%%%-%QRREREARES-% .—%@QRERRERSY Hdddddddddedddeddedded -
ffs%ffs@@@@@@@@sff/f. .-%@EeReES $@EEREREEREEERERERERERAAES——- -
-%5-%-%-%QERRERES-%-%—. .-%@QRERE% $@QARCERACRLAERLEARERACREAS————————
ffffffff 3@@@@@@;777777. .-%@RER% % ddddddddddddedddeddededcdesy -
—%%%%%%%-%0QRRAS-%%%%%—. .—%QRA% % ddddddddddddedddededddecded -
-—%QERE%--%QERE%--3%QER%-. .-3%@Q% % ddddddddddddeddeddededecdecsy -
—%5-%QRE%-%-%QRES-%-%CRAS- -%Q% % Hddddddddddddedddedddeddaeddecrstss
7777%@@%7777%@@%7777%@@%77 -%% s Hddddddddddddddddddeddaededecc ity
—%%%5-%0%-%%%-%0%-%%%-%0%-%— -% s Hdddddddddddddddedddeddaedededdciss
%% —%% %% %% %% ——%— s Hddddddddddddeddedddeddaedeedecaess
—%5-%-%-%-%-%-%-%-%-%-%-%-%-%— s Hddddddddddddedddedddeddaededdeddes
% Hddddddddddddedddedddddedddeddedddeddd
B i Rt Rt R R R A R R R L R R et L] % Hddddddddddddddddddddddedddededddeddd
.—%@QREREERERREREERERRERERRERES s Hdddddddddaddedddeddedddedddededddeddd
-%QERERREREERRERRERERERRERRERES % Hddddddddddddedddedddddeddededddeddd
.—SQERREREERERRERERERERRERRERS % Hddddddddddddedddededddedddededddeddd
%-. .—%QERREREEEEEREREEREEEREEREREREY % Hdddddddddedddedddededddedddededddeddd
%-. .—%QCRREREERERREREEREEREREERY % Hdddddddededddedddededddedddededdeddd
$-%—. .-%@QREEEEEEEEEEREEEREEREREREY J Hdddddddedaddedddededddeddededddeddd
.—%QEREEREERERERRRERREREY J Hdddddddededdeddededdeddededdeddd
$%%%%-. .—-%QREEEERERERERERRERREREY J Hdddddddedeededdededddeddededdeddd
$@QRE%-. .-%CREEREEREREEREEREEREREERY J Hdddddddededdedddededdeddededdeddd
$-%@RE%-. .-%QEEEEEREEREEEREREREREY % Hdddddddedeededdededdeddededdeddd
Qe% .-%Q@EREEREERERRERRES J ddeddddedeededddededdeddedeededdd
% Qs .-%Q@EREREREERERREREY J ddeddddeldeededdededdeddedeededd
.—%Q@ERREREERERREERS J Kddededdeldeededdeldeddeddedeededd
% .—%Q@EREEREERERRES J Kddededdelceededdeldeededdeideededd
.—%REREERERRERES J $@EEEEREEREEERERERERERRRERERRRERAERE
3555555555, . —SERRRRERRRRES % Kcdededdelceededdelceedeicdeldeededd
“@@@@@@@@@@@%—. .—%@EREEREREES s S@EEEEREEREEERERERRRERRERERRRERACRE
-%QERERRERERER%Y-. .-%@EEEREREEES s $@EEEEREEREEERERERRRERRERERRRERACRE
$@ERERRERERERS-—-. .-%@EEEREREES s S@EEEEREEREEERERERRRERAERERRRERACRE
$%5-%QRERREREEAS-%—. .-%QEREEREES s $@EEEEREEREEERERERRRERRERERRRERACRE
$--%QQERRERERES—-%-. .-%@REEREES s $@EEEEREEREEERERERRRERAERERRRERACRE
—%-%-%QRERERER%-%-%—. .-%QRREE% s $@EEREREEREEERERERRREARERERRRERACRE
QRERERES—————- .—%Reees s $@EEEERERREERERERRRERRERERRRERACRE
$%5%%%%-%QQQERY-% $@QEERERERREEERERERRREAAERERRRERACRE
CRERE%-—-%QREREY—— $@EEEEREEREEERERERRREARERERRRERACRE
-%QER%-%— 9@@@9 % s@eEEEREREREEERERRRRERRRERRRRERRRRE
ees S@eEEERLREREEERERRERRERRRERRRRERRRRE
5%-%@%— s@EEEEREREREEERERRERRERRRERRRRERRERE
§-—%%— s@EEEERREREEERERRRRERRERRRRERRERE

3-%-%

sQ@EREREQRERERRERERERERRRRRRCRCRE

sQ@eeEREQRERERRERERERERRRRRRCRCRE
sQ@eREREQRERERRLRERERERRRRRRCRCRE
sQ@eREREQRERERRERERERERRRRRRCRCRE
sQ@eREREQRERERRERERERERRRRRRCRCRE
sQ@eREREQRERERRERERERERRRRRRCRCRE
sQ@eREREQRERERRERERERERRRRRRCRCRE

-%GREREEREERERERERRRRRRRRES

-%GREEREERERERERRRRERERERS

sQ@eREREQRERERRERERERERRRRRRCRCRE

.—%GREEREEEERERERRRRRRRRES

sQ@eREREQRERERRERERERERRRRRRCRCRE

.—%GREEEERERERERRRRERERS

sQ@eREREQRERELRRERERERERRRRRRCRCRE

.—%@REEREERERERERRRRRRES

.—%@eeeREeEERERERRRRRRS

sQ@eREREQRERERRERERERERRRRRRCRCRE
sQ@eRERERERERRERERERERRRRRRCRERE

.—%GeeeeeeeReRERRRRES

sQ@eeERERERERRERERERERRRRRRCRCRE

.—%QeEeeeEErRRRERRRRS

s@RRREERRQAEERRRCERRRRERRRRCRRRRE

.—%QeeeeeeeeReREeRRRS s@RRREERRQAEERRRCERRRRERRRACRRRRE

. .—%@eeeeeeeeeereres s@RRAEERRAEERRREERRRRERRRRCRRRRE

. .-%@eeeeeeeeeeees s@RRREERRQAEERRAEERRRRERRRACRRRRE

. .—%@ReeeEeeReeERES s@RRREERRAEERRREERRRRERRRRCRRRRE

$—. .—-%QQREEERRREELERE% s@RRREERRAEERRAEEERRRRERRRRCRRRRE

@%—. .-%QEEERREEERE% s@RRREERRQAEERRREEERRRRERRRRCRRRRE

@@%—. .-%Qeeeeeeee% s@RRREERRQAEERRREEERRRRERRRACRRRRE
°@@@@@@@@@@% .—%eeeeeeees s@RRREERRAEERRREERRRRERRRACRRRRE

.—%eeeeeees s@RREEERRQAERRRRCERRRRERRRRCRRRRE
.—%eeeeees s@RRREERRQAEERRREERRRRERRRRCRRRRE
.—%eeeees s@RRREERRAERRRRCERRRRERRRRCRRRRE

.—%QeRE% s@RReEERRAEERRRCERRRRERRRRCRRRRE
—%QRR% s@RReEERRAERRRRCERRRRERRRRCRRRRE

- -%@@% s@RRAEEERRAEERRRREERRRRERRRRCRRRRE

@%-. .-%@% s@RRAEERRAEERRREEERRRRERRRRCRRRRE

@%--. .-%% s@RRAEERRQAEERRAECERRRRERRRRERRRRE

@%-%- -% s@RRREERRQAEERRARERRRRERRRRERRRRE

$E——%— s@RRREERRAEERRAEERRRRERRRRCRRRRE

—%-%—%— s@RRAEERRAEERRAEERRRRERRRRERRRRE

o@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

o
o\° o

$%%%
@@@
paddddceicddceicdddeecddededdedeiedddeiedddeecddedecdddeicddddeiecddd

peacdddciecddeecddedeedddecddddeicdcddeecddeeedddeieddddeedddeiccddd

- s dccddcddeiccddeiedcddededdderedddeedcddeecdddeiedddeiedcddedcddeded
$-. .—%QQRECERRLELERRRLERRALERRAELRRREERRRRERRRRCARRRACRRRRCRRRRE
$-%—. .—%QCERRECEERRQRLELERRLRLERREALERRALERRAEERRRRCEARRRRCRRRRCRRRRE

P ddccddcdeicdddeiedddecdcddeededdedeeddaeeddddeedddeicdddeiccdedd

e cllcdddeicdddeiedddeededdeeeddddeeddddeeddddeedcddedeieddddeielcd

—. .—%0QCERREREERREAELERQREEEARRQRLERRREERRRRCERRRRCRRRARERRACCE

e dclcicldddeicdddeeddddeedddddeededddeicddddecddddeedcdderedcddeded

e ddcddddacddddedeeddedeeddddeedddedededaedeedddeiedddeiecdedd

s tdaddddecddddeddddeededdedededddeeddddaeeddddeieddddeccded
e daddddeddddeadeddedededddeedddeeddddedeedddeedddeieldd

e ddddddaedddddeedddeeddddeadedddededddeeddddedededdeded

B ddaddddaddddedddddededddeeddddeeddddededcddaededdded
—. .—%0QCERREREEEREREEERQREEERRAEERRRRRERRRRCERRRRCRRRRE

e daddddaddddaddddddedddeedddeedddecddddeecddd

Eedaddddaddddadedddeaeddddeedddaeedaedededddeiedd

e ddaddddaddddadddddddddaededddededddaededddeiedd

e daddddaddddadddddededddeeddddeeddddaedededdded
e dadddddddddddeddddeddddaededddededdadeccdedd

e daddddaddddadddddededdddaededddeeddddeeddedd

s@eeeees eddadddddddddaaedddededddaededddededddeiedd
$5%%%%55-%0QCRRA%-%$%%%%—. .-S@RREEERERQREERRRERRRRREERRRRERRRRERRRRE
$@EEE%——-%CRRR%--%Q@QRE%-. .-%@QREEEREEEERREREEERREREEERRRRERRRRCRRRRE
-%QEE%-%-%@RQR%-%-%QER%-. .-%QCEREEEERERQREERRQREERRRERRRRCRERRRCEA
$@E%-————%CEE%——--%Q@Q@%——. .-%Q@QEEEEREQREEEERQREEERQREEERRQRREERRRRCRRQ
$55-%0%-%%3-%0Q%-%%%-%@%-%—. .-@REEEEREQREERRQREERRQRERRRRRRRRRCEA
T %559 -%%——%-. .-%@REEEEEREReEEREeEERERQeEERRRQRERRRRE
F-%-%-%-%-%-%-%-%-%-%-%-%-%—. .-%QQeEeeeeEeeeeEeeeeeEreeeeeeeeeee

o

s ddadddddddddadedddddedddaeeddeded

%
%

%
@

s@eeeceee

@@RREEERQREEERRERERRRRERRRRESY-.
S@RREEERQREREERRRERRRRCRRRRREES-.
S@RREEERREREERRRRERRRRCERRRREES-.
S@RREEERREREERRRRERRRREERRRRERS-.
S@RREEERREREERRRRERRRRERERRRRERSY-.

S@RREEERREREERRRRERRRRCERRRREEASY—.
s@RREEERREREERRRRERRRRRERRRRERSY—.
s@RREEERREREERRRERRRRRCRRRRERASY—.
s@RREEERREREERRRRERRRRRERRRREAS-.

F555%%%%-.

.—%QeERRREEERRREERRRRERRRRCRRRES
.—%QeeERREEERRERERRRRERRRRCERRS
.—%QeERRQREERRQREERRRERERRRCRERRS
.—%QeeeRQREEERRERERRRRERRRREES
.—%QeERRQREERRQRERRRAERRRREES
.—%QeeeeeeeeRQReEERRRERERRREY
.—%QeeeeeeeeerReerRRQREERRS
.—%QeeeeeeeeeeeeeReReeees
.—%QeeeeeeeeerReERRRREERS
.—%QeeeeeereeeeereReees
.—%Qeeeeeeeeeeeeeeees

G@eeeeEeeeeErRRRERRRY-.

$@RREEERRALRRRALRRRALRRRALERY-. .—%QEERRERERRRRERRRRY
$@RREEERRERLERRALERRRRERRRREAY—. .—%QEERRQAEERRACERRS
$@RREEERREALERRREEARRREARRRRLERY—. .—%QQEERRRRERRRREES
$@RRLREERREALRRRREERRRERERRARERY—. .—%QEERRQAERRRREES
s@RREEERREREERRREERRRRERRRRERY—. .—%QEEERRERERRRRY

—55TTSLITTL59%%%5-% $@RREEERRERLERRALERRALERRARERY—. .—%QEERRQRERRRRY
—%QERRREERRRRLERY——% s@RREEERRQAEERRAEERRRRERRRRERY—. .—%QEERRQREERRS
—%-%@QRQRLRRRALEAY—%-% s@RREEERREREERRRREERRRERRRRLEY—. .—-%QQEERRRAREEY
———-%QQREERRRREEY———-% s@RREEERREREERRAEERRRRERRRREAY—. .—%QEERRREEY
—%%%-%QCERRRALCLAY—%3%—% s@RREEERRQREERRREERRRRERRRAREEY—. .—%QQEERRRRY

——%%-—%QERRRLERR%——-%%——% $@RREEERQRQREERRREERRRLRERRARERAY—. .—%QEERRRRY
—%-%-%-%QRRALCLAY—%-%-%-% s@RREEERQREREERRRRERRRRERRRREERY—. .—%QQERRS
******** s@eeeees % s@RREEERQREREERRAEERRALRRRARERY—. .—%QEERS
—%5%%%%%5%-SQRARES-$%%%%%%-% s@RREEERQRQREERRRLRERRRRERRRREEAY—. .—%QEES
——%@RRA%--%QERR%——-%@RREY——% s@REEEERRREEERRREERRRERRRARRES—. .—%QQ%
—%-%@RA%-%-%QER%-%-%@RA%-%-% s@ReeeEREREAEERRREERRRRERRRREAY—. .—%Q%
————%Q@QR%-———%Q@%————%QQ%————% s@REEEERRREERRREEERRRAERRRARLERY—. .—%%
—%%%5-%0%-%%%-%0%-%%%-%0%-%%%-% s@REeEERERQREERRREERRRRERRRARERY—. .—%
%5555 %% %% —%%——%%—-% Gddddaddddadedddeedddeeldcci ey
—%-%5-%-%-%-%-%-%-%-%-%-%-%-%-%-% Hddddaddddadddddededddeecaeicis

EAEEEEEEEEEEEEEEEEEEEEEEEEEEE I

piddddaddddaeddddeedddeeddded

****;@@@@@@@@@@@@@@@@@@@@@@@@@@%
-%%%-%QRRAERRRALEERRRLRRRRARERRRES—

%%;@@@@@@@@@@@@@@@@@@@@@@@@;**

o o

s_s_ 9o g

-%- ;@@@@@@@@@@@@@@@@@@@@@@@’*

o_o_o o_o_o

3-%QERELeERRQRLERRREY—

-%@ReeeEREREERRRRY

////////// %-%QRRRRRRRRRRRRZ-222222222222%%%-%
e@@@@@@@@@@@@%——e@@@@@@@@@@@@’— @%——%
—%-%QCRRERLRARER%-%-SRCRRERLRRRERS-%-SRLCRRERLRERLERS-
-———%QRRERRERER%----%CRRERLRRRER%----%CRRERLRERLER%- %
$%%5-%@RERRRRLEAY-%%%-%CRLRRLRRES-%%%-%
%@RERLRRET—-%%—-%RRERLRRES—-%%—-%
—%QRRERRES-3-%-%-%QRRLRRES-3-%-%-%QRRLRRLS-3-%-%-%
$QeeReRes $QERERRS eeeeees %
///////// SRRRRRS-3333333-3RRRRRS-333333%-3
--%QREE%--%CREE%--%QREE%--%CREE%—-%
—%-%QEE%-%-%RER%-%-%RCEE%-%-%RQE%-%-%
———-%Q@%-—--%Q@%-—--%Q@%-—--%QE%-——-%
$5-3R%-335-30%-333-303-333-303-33%-3
B L e L L L L Lt]
S %% This pretty picture is the number of

—%@ERLERERLRLRRLRRLRLRERLLRRLRRRRERERCRERRRRRRERERERRRRRRERCREREES
————9@@°
5%-%@CRLERLCRLLRRLRLRLERLRLRRLRRLRRERERLRERRRRRRERERERRRRRRERERERRES
—-%%--%CQCRRRRLCRLCRLERLLRRLRRLRLERERLRRLRRLRRERERERRRRRRCRERERRRRRRERES

instruction bytes needed to change

a given 8-bit value in the AL register
to some other desired value. It’s
discussed in the section called
"Putting a value in a register."

—%-%-%-%QCRRRRLCRLRLRLLRRLRRLRLERERLRLLRRLRRERERERRRRRRRRCRERERRRRRRES~

SQRERLERERLRLLRRLRELRLRERLRRRRRRERERERRRRRRRRERERRRRRRRRERY

5%5-%C@CRERLCRRLRRLRLERLRLLRRLRRLCRLRERLRRRRLRRCRERERRRRERRCRERRRRS-
o@@@@f——ﬁ@@°

—%-%@CR%-%-3QRLCRLERLRLLRRLRRLRLERERELRRLRRLRRERERERRRRRRERERERRRRRRERES

————%@@%————ﬁ@@°

-%%%— gddddadedddedecddadecddddeeddddeidaddeidaddeideddeidedacidece

$%%
addddddddedecddddecddddeeddddeidaddeidaddeidcddeideddcidece

—ﬁ—ﬂ@@@°

ddddacddddecdddeiddddeddddeedcddadeedcddeidcddeidcddd
6@@@°

$%%%—

SCGRRREERRRELERRRRLRRRRLERRRRERRRRRCRRRRCRRRRS

ddddadeddddeicdcddeideddcidcddddeidcddeidcddeldece

CRRRREEERRRLELRRRRLERRRLERRRRCRRRRCRRRRCCRY-3
%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@°

-%@RRRLRA%-%—

s@eeeees

5-%3@EREA%-3333%5%-3%
--%@EEe%--%@RRE%—-%
-%-%0ER%-%-30ER%-%—3%
————%Q@%-———%0@%————%
~%3%-%0%-%3%-%0%-%3%—%
——25--3%--2%-—%%-—%%——%
3-3-%

sCERRREEERRREERRRREERRRERRRRCRRRRS

—%@RRECRRRACERRALCERRLALERRALELRRRE-TT2ITTTLIITTILITTTLHTTB15%%%—

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%**%@@@@@@@@@@@@@@@@@@@@@@@@@@@@%**%@@@@@@@@@@@@@@@@@@@@@@@@@@@@%

[deldddaedddeecddddecddddecddddecdddddssadddddddeicddddeddddeedddddeddeddddessgaddddddeidcddeideddedeiecdedeidecdei

-%

[celdddaedddaedddddeeddddecddddecdcdaiassgddddddecddddeeddddeiddddcdeddddesagtaddddeiecddeideddcdcecddeidcddei

[deldddaedddaedddddeeddddeddddecddddassddeisdddddeicddddecddddeidddddeddeddddesdciasddadeiedcddcideddececddeidecde

[deldddaddddaedddddeddddeeddddecdcdaissticsddddeicddddeicddddeeddddedddddddesadisdddcidcddeidedddeecddeideiacsy
[deldddadddddecddddeeddddeedddddedcddeisa-itauddddeddddedeedddeidedddclocrss clddcdciccddeieicicdeleicicciecd

%% %—%—
CERREREERRQAEERRQREREERRRRERRRRERRRRY sQEREREEERREREERRREERRRERY ———————— s@RQeeeEREREEERREREERRREEERS

o

[eldddaddddaeeddddeeddddedddddeddddaasdacideidcaddddddeideddeedcddddededdadesdadeiidtddddcdedddeed e aadciadiiidd
[geldddaddddaeeddddeddddedddddecdddaiesdddeddgegdddddecddddededdddededcddddesadddddcciggddddccdeddedeiedddeidecddcasddecd
[deldddaddddaeddddaeddddddeeddddecdddaasdaddddccigdsddddeddddeidcddeidedddeaiaddcccigtadddeeddddedecddedecddcait et
CRRRQACERRALCCRRALCERRLCLERRALERRRAY————%CR%————%QCCERRALCERRRLAERRRES————%@R%————%ACCRRALCERRALRERRRRES————%R@A%
CRRRQALEERRALCCERALLEERRLALELRRALERRAY-%%%-%@% %33~ %ACCRRRACRRRALERRARS-%3%-%B%— %35 ~%ACCRRALCRRALLRRRAS-3%%-%@%—%%
CERRRACERRALCCERRLCCEERRLALEERRALERRAY——%%——%%5——%3——%(CRRRACRRRALERRAY——%%——-%%5——%%——%(QCRRALCRRALCERRRAY——%%——%%——%
CRRRQACERRALCCRRALCERRALCLERRALERRRAY-%—%—%—%—%—-%—%—%(ERRACEERRALLRRRAEY-%—%-%—%-%—%—%-%@RACCRRRLALERRRAEY—%—%—-%—%—% $—%
CRRRQAEERRQAEEERRREERRALRRRALRRRAY———————————————— %QRRRQAEERRRQALERRAS———————————————— seeeeeeeeeeeeees
CRRRQACERRALCCRRALCERRALCERRALALELRRAT 3323533335333 -SAACRRRALLRRRAS-33333533333%%%3-FQCCRRRALALRRRRAT—2%3333%5%55%%%%%
[deldddaddddadddddeeddddedddddededdddageeddddddddddeiddddassddddddddededdddesadddddddededdddesadddddddeddedddisaddeddddeidedddd

5-3

o

CERREEERRQAEERRQREERRREERRRARERRRES— QERRREAERRRER%-%—%(CERRRLELERRRE%-%—%CRRRALERRAEY-%—%LERRRAERRRAEY
CRRRACCRRACCRRALCERRLALEERRALERRAY————%CRRRALRRRARY————%CRRRALRRRAY————%CRRALRERRREY————-%ERRAEERRRAREY

[geldddaddddaeddddededdddeeddddeeddddasdcetdddddeideddasdcitdddddeedddesddiatddddeidecicders
CRRRACERRALCCRRALCERRLLEERRLALERRRAY——%%——%RRRLRRRAY——%%——%RRLERRRREY——%%——%QQERRRAEY
CRRRQACERRALCRRALCERRLALEERRLALERRRAY—%—%-%—%AALRRRAY—%—%-%—%QCLRRRAES-%—%-%—3QCRRRAEY-%-%—-%—%QCRRRREY-%-%—-%—%QCRRRAEY— %
CERREREERREREERRAEERRRERERRRRCRRRRYS———————— seeeeeeY——————— $@QRQAEEERS $@RQAEEERS @QEERR% %
CRRRACCRRALCCRRALCCERALCLERRRLALERRRAS-%3%%3%5-%CRRRARY %% 555555 -%0RRRAS-$%%%5%%%5-%
CRRRACCRRALCRRALCERRCLEERRRLALEERRAY——%QACR——-%RRRRY——5% $@RAE%——%QCRR%——-%@RREY——%
CRRRACCRRALCRRALCERALCLEERRLALERRRAY-%—%QCRS—%—-%RRAY—%— —%-%QQRE%-%-%CRR%-%-%QQEY—%-%
CRRRQACECRRALCERALCCERAALERRRALCERRAY————%LRY———5%@Q ****9@@9****%@@%****9@@9****%@@%****e
CRRRACCRRACCRRACCERRLALRRRALELRRAY-%%%—%@%— —%%%-%0%-%%%-%30%-%%%-%0%-%%%-%@%-%%%-%
CRRRQACERRALCLRRALCRRALLRRALCLERRALRY——%%——5%% %% %% %% %% %% —%%——%%—-%%—-%
CRRRQACCRRALCCRRALCERALCLRRAALERRAAE -3 —3—%-%—-%3—%—%-%-%-3-%-%-%-%-%-%-%-%-%-%-%—%-%-%—%-%—%— F-F-%-F %555 -F -5 5% -%-%-%-%

[gdddddddddeeddddeedddeedddeedded

Anyway, one backwards jump is enough! We can set things up so that
whenever we need to jump backwards, we instead jump forward until we’re
at the end of the segment, then jump across that boundary (overflowing
back to the beginning) and then keep jumping forward until we get where
we need to be. This is delicate, but it works.

One other issue with jumps is that we can only jump a fixed distance;
there 1is no equivalent to "MOV EIP <- AX" to Jjump to a computed
location. We need this functionality to implement two C features:
Function pointers (the destination of a function call is not known at
compile time) and returning from functions (the function can be called
from multiple sites, so we need to know which site to return to).

** 19. The ladder **

To solve the various problems with Jjumps, we build the program around
what’s called a "ladder" in the code. The whole program is broken up
into small blocks of code. Each one is given a sequential "number" (this
has nothing to do with the memory location, just its sequence in the
list of blocks). Each block starts with a "rung," which is the following
code

DEC SI
JNZ +disp8

where disp8 is a printable displacement that brings us downward to the
next block. We decrement the SI register to count down to the block we
want, and if it is Not Zero yet, then we jump to the next one. If zero,
we execute the block. Inside a block, 1if we ever want to perform a jump
to some arbitrary block dest_block, then we can compute:

offset = (dest_block - current_block) mod num_blocks
si = (if offset = 0 then num_blocks else offset)
jmp to next rung

Every block knows its current number, so the offset is just a constant.
Note that the destination block’s number may be before the current
block, which is why we need to mod by the total number of blocks
(yielding a non-negative result). SI cannot be zero, because the first
thing we do is DEC it, so a self-loop requires setting to num_blocks, a
full cycle.

To perform a jump to a code location not known at compile time (e.g.
from a return address (block number) on the stack, we can just perform
the same computation as above. We do not have an efficient mod operation

(implementing it seems to need loops, in fact, a circularity!), so
instead we actually compute (dest_block - current_block) + num_blocks.
This is always positive as needed, but requires forward jumps to make an
entire cycle around the entire ladder ("Turn the dial to the left,
passing zero and the first number...").

The blocks are laid out sequentially in the program until we get too
close to the end of the segment; when we do, we make sure to perform an
unconditional jump across the segment boundary, wrapping around. This
jump need not DEC SI. In fact, most programs do not fill the entire code
segment, so we end up padding the end and beginning of the segment with
jumps to span the unused space. For these padding jumps, we definitely
don’t want to DEC SI, both because that’s more instructions to execute,
and because we don’t know the amount of padding ahead of time (see the
section on Assembling below) .

There are many annoyances! A jump cannot be too short (less than 32
bytes) or too long (127 bytes). The viable range 1is large enough to
build nontrivial programs, but is a significant constraint for us.

We don’t have access to a non-conditional JMP instruction. There are a
few tricks for simulating it. When computing a Jjump to a known label, we
can Jjust know the state of flags because we’ve Jjust performed some
computation. Even when doing a jump to a computed block number, we know
that the result of subtraction is not zero, so we can always use the JNZ
instruction. Occasionally we need to do a jump without knowing our state
at all. XOR always clears the Overflow flag, so something like

XOR AX <- [DI]
XOR AX <- [DI]
JNO disp

keeps AX unperturbed and always performs the jump. A little shorter is

JNO disp
JO (disp - 2)

which jumps to the same target whether the Overflow flag is set or not,
but is more annoying because we need to keep track of two displacements.

** 20. Assembling **

Assembling the program 1is the process of generating actual instruction
bytes (here, printable x86) from some semi-abstract representation of
instructions (in ABC, this is the LLVMNOP language discussed in the next
section). Assembling has a self-dependency: In order to generate

instructions like jumps and loads of addresses, the assembler needs to A program consists of a series of 1labeled blocks. JumpCond pairs a

know where code is located. But in order to know where code is located, condition (signed and wunsigned comparisons, etc.) with a Jjump to a
the assembler needs to generate it. In most assembler tasks, this is label. The possible conditions map to the Jcc instructions that we have
reasonably straightforward: When we need to generate an instruction like available. Since opcode O0x7F (Jump Greater) is not actually printable,
"MOV AX <- offset data", we just emit "MOV AX <- 0x0000" and save for all of the conditions "face less;" the condition Greater (A, B) is
later an obligation to overwrite the zeroes with the address of "data", equivalent to Less (B, A). An earlier phase does this rewrite. Also note
once we know where we placed it. This works because the encoding of the that in C, a < b 1is an expression that can be wused in any context, not
MOV instruction is the same length no matter what 16-bit value we load. just for control flow; here the comparison is inextricably 1linked to a
The same holds for JMP instructions (with the caveat that smart jump, since CMP only sets FLAGS, and FLAGS can only be used for jumping.
assemblers can JMP+disp8 for nearby labels and JMP+displ6é for further An earlier phase removes the expression forms as well, without being too
ones; these instructions have different lengths) and others. wasteful when the programmer writes "if (x < 1)" to begin with.
For the ABC compiler this step is quite bad: The only way to jump to a non-constant destination is with PopJumpInd,
which 1is basically the RET assembly instruction. It pops an address
- Loading any immediate value has a length ranging from 0 bytes (it’s (block number) from the top of the machine stack, and unconditionally
already in the register) to like 16. It’s dependent on both the value transfers control to that label (by computing the number of Dblocks to
being loaded and the context (contents of registers). traverse, then Jjumping to the ladder). This is indeed used to return
from a function call, as well as to call a function through a function
- The rungs that start each code block must be able to Jcc+disp8 all pointer. It takes its argument on the stack (as opposed to using the
the way to the next block. This Jjump distance can’t be too big, or existing "Pop tmp" and then "JumpInd tmp") because while we’re setting
else it can’t be encoded (or is not printable). up a function <call, we need to move the temporary frame pointer, after
which point it is unsafe to access temporaries. The stack, however, is a
- Jumps within a block always target the next block, but the jump stable place to stash data.
distance can’t be too short (or the displacement byte is not
printable) . Since we have some higher-level operations like Mov available, we can
implement some delicate maneuvers like function calls as sequences of
— Since blocks are numbered sequentially and relative addresses are multiple commands. On the other hand, for some primitives like Init and
computed modulo the total number of blocks, logical code addresses Exit, there’s no real value in breaking them into smaller pieces. Some
depend on the number of blocks and their order. other complex primitives like Out8 have no analogous feature in C; these
are provided as sort of "intrinsics"™ that can be used to do low-level
As a result, assembling is an iterative process. We take the program’s programming in C. We’ll discuss Out8 in Section 27 when we talk about
blocks and translate them into position-independent machine code. One IO. Other primitives, such as one called "Argv" that is wused to
positive thing about the printable, non-self-modifying subset of x86 is initialize the argv parameter to main during initialization, is compiled
that none of the instructions actually depend on what address they’re away when we convert to LLVMNOP. In this case, the Argv primitive just
placed at (except perhaps a Jcc instruction wused to overflow the creates a global array containing two elements: The second is zero
instruction pointer). Still, we don’t know even the relative location of ("null") as required by the standard, and the first is the constant
the next Dblock yet, so we also record the offset of the displacement address 0x0081, which is a pointer into the Program Segment Prefix where
byte for any Jcc instruction we emit. DOS stores the command 1line (untokenized; the programmer must do any

processing she desires).
Next, we take these blocks and attempt to allocate them into the code
segment. This can fail for the reasons above, usually after we’ve placed

a block far enough from the preceding one that all jumps in the first ** 22. Temporary allocation **
are printable (at least 0x20 bytes), the rung at the beginning of that
block can’t target the second (because it is more than 0x7e+0x03 bytes Temporary allocation is fairly standard. We wuse a dataflow-based
away) . We gather all such problem blocks and bisect the LLVMNOP code liveness calculation to determine which temporaries interfere with one
into two smaller blocks. Then we try again. When we succeed, we can fill another; if two temporaries of the same size don’t interfere, then they
in the displacement bytes for the Jcc instructions to create valid can use the same slot, so they are coalesced into one. We prioritize
printable code. There are various opportunities to be smarter about this coalescing temporaries in a "Mov tmpl <- tmp2" so that we get the no-op
(for example, bisecting the LLVMNOP assumes that all such instructions instruction "Mov tmpl <- tmpl"; this is possible for a great many Movs,
assemble to the same length, which is not remotely true); tox86.sml and allows us to be much more regular in the phase that generates
contains several ideas. LLVMNOP without compromising code size. We then prioritize temporaries
that appear in a "Loadl6 tmpl <- tmp2" instruction since we have a nice
Since the initial instruction pointer must be printable, we start laying trick for that one when both are the same. After that, we just greedily
out blocks towards the middle of the code segment. If a block would run coalesce temporaries until it is no longer possible. Fancier register
off the end of CS, then we need to pad that region with jumps that get allocation techniques like graph coloring would work here (this part of
up close to the end of the segment and then do an overflowing jump past the compiler 1is very traditional), but there’s not much need: We have
CS:0xFFFF before continuing layout. Once we run out of blocks, we also over 40 16-bit temporaries, all of which are Jjust as efficient to
need to pad any remaining code space with Jjumps in order to bring access, so we mainly just want to keep the total number wused small so
control back to the first rung, since the ladder needs to be a complete that EBP offsets are printable. Having a smaller temporary frame size
cycle in order to work. It’s easy to pick out the texture of this allows deeper recursion, as well.

padding in the code segment (e.g. pages 14, 16).
The compilation strategy ends up storing almost all immediate results in
temporaries, which is not that suboptimal since all operations need to

** 21. LLVMNOP ** be Dbetween a register and memory anyway. However, many pairs of
instructions could keep a just-computed value in a register rather than
Knowing our low-level endpoint, I can now work backwards through the bothering to write it. This is not yet implemented, but the idea is that
compiler. The compiler generally proceeds by a series of intermediate we could introduce a small number of registers (probably just one?) in
languages, the last of which is called LLVMNOP. addition to the numbered temporaries, and use those in the output of
Allocation. This could produce significantly closer to hand-written

This language is an assembly-like language that has explicit *data* code, without the need to change much in the backend.

layout, but not not explicit *code* layout. By that, I mean that every
function knows the size and offset of its locals and arguments in the

current local frame, and the size and address of each global variable is ** 23, CIL **
known, as well as the global’s initial values (if printable). It is akin
to LLVM [LLVM’04], but doesn’t really have anything to do with it. LLVM The intermediate language that precedes the named LLVMNOP code is called
is an excellent tool for writing compilers (superficially, it looks like CIL, for C Intermediate Language. It’s intended to be a desugared and
a good way to write a new C compiler targeting an architecture like more explicit version of C. Some examples of the of CIL grammar:
printable x86!) but isn’t really suitable for this project because it
assumes that the output architecture has certain standard operations signedness Signed | Unsigned
efficiently available, which is frequently not the case for printable
x86. type ::= Pointer type
Code type, type list
A sample of LLVMNOP constructs are: Word32
Wordlé
cmd ::= Add tmp <- tmp Word8
Xor tmp <- tmp ..
Push tmp
Pop tmp builtin ::= B_EXIT | B_ARGC | B_ARGV | B_PUTC | B_OUTS8
Mov tmp <- tmp
Immediatel6 tmp <- wordlé value ::= Var v
Loadl6 tmp <- tmp AddressLiteral loc, type
Storel6 tmp <- tmp FunctionLiteral name, type, type list
Load8 tmp <- tmp Word8Literal w8
Store8 tmp <- tmp WordléLiteral wlé
ExpandFrame i Word32Literal w32
PopJumpInd
JumpCond cond, label exp Value value
e Plus width, value, value
out8 LessEq width, value, value
Init Load width, value
Exit Promote width, width, signedness, value
Call value, value list
cond ::= Below tmp, tmp Builtin builtin, value list
BelowEq tmp, tmp ..
EgZero tmp stmt Bind v : type = exp in stmt
True Store width value = value in stmt
GotoIf cond, string, stmt
LLVMNOP exists in both a "named" and "explicit" version. In the named Return value
version, temporaries (tmp) are strings paired with a size (16 or 32 ..
bits). In the explicit version, temporaries are given as a size and
offset from the current temporary frame (EBP). The named version is And lots more stuff. A program is a collection of functions, each of
transformed to the explicit version by the process called Allocation which is a collection of named statements (the stmt type is recursive,
(below) . with a single statement representing a series of C statements until we
reach a Return or unconditional Goto). Programs also have a set of
Commands are basically assembly instructions that we might have in a globals with initialization code for them. Note that CIL has ML-style
more expressive architecture; note for example that we have Add, which lexically scoped variables which are only in scope for the given block.
is not native 1in printable x86 (we implement it by computing the two’s Since C’s semantics for variables allow them to be addressed and
complement negation, and then subtracting). Even commands that have a modified, we convert all C variables into explicit loads from and stores

corresponding printable x86 instruction like XOR are still compiled into to memory.
multiple opcodes, since they read and write arguments to temporaries,

not registers. We discussed the implementation of operations 1like

Loadl6, Immediatel6, and Mov in a previous section.

#H# # - - HE#
#

#
#
#
- - - - - - - ##
- - - - - - - - - - s
-— = - - ——m— mmm— om mm — mmmem e o - et ——— hEHE-
o #E
—hEHEER S - - - - —#H#H - - - #4 #4
#HEE - - - —# HHEREE - - - #HE #4 -
- # #H4- - - —# ## - - o # ##
- # #had - - - - —# #H O EEREREEE: - ¥ #4#
#hdE - - - - ## FhEHEEEE FhEREHER AR - #4#
- ## #h#: - - - - ## ## #4# #4 o # #4#
- - - - ———## #hit———— EER LR S et] ## #4 #4-— ## #H4-
FhESE S ## ## ## ## #4#: # #44
- ## #hEHEER SRS - FhEHhE SRS - ## # ## ## #4 #H - c# #4
#hEEHEES #ha4 ##- # ## - ¥ # ## ## # #4 44 #44
#hi4 FhEHH RS # ## - ¥ # #4 #4 #4 # #4 #44
#hi4 #h44 #H# #hE cHEREERER RS ## # #4 FhEHEERE #4 #4 #hE4
#Ha4 #H:o# L RS 31 FhEREE # # FhESAE FhEREERE #hi4 #44
#Hi4 ## #4# 4 i # o #4 FhEH4E FhEHEHE #4# #h4:
FhEEhEES # #hd#4 ## #H# #——#4 FhEH4H #4 #ha4 -
#hEEHEES # #Hoo# ## #4 # o #4 LEERE] # #hE4
#h 444 ## #Ho# 4 ## #H# # #hiH4
#Heo# ## #H # #H# FhEH4E #4 #i#
#HHHE #HHHH ##4 #+ #4 4 FhidEE #4 #hi4:
#hi4 #hEEE S E S #ha# #H44 HEEREERE #4 #hi#4
#hi4 #Hi4 #hd 4 #H# #h4dd RS # #4 #hE#4
#H# #ha#: #hec 4 #h# (S S ERE 2 ## FhEH4H
#H# #hd: R #Ha# # ## Lidddd - -
#H4# #hEhEEE c# #h# # ## #hE#4
#H# #hd AR #ha# HE ## #hi# -
#H# LR AR 31 #hi# #h## o# ¥ #4#
#hdH4 ## #h## # 44 #H# -
#H# #hdEh4 ## ## : ## 4 ## #4#
##4 #hd4H ## ## #4: # i ## #4#: -
#HHHE ##4# #ha# # ## # i #4# #4#: -
#H# #H# #hd## #H #E ————# #h#H# #hH# #hE-————— ——
#H: 4 ### #Hc# #H H# # #hHH# fiddd ##
#hE## #H# #H # ## FhHEHHH e H# i # #hE## ## -
#H# ## ### #+ ## #H# RS ERE 211 FhHEHEEEH #hE## ## -
#h# # #ha# #h## #H# i HH# ## ## FhEHHES ## -
#hi# ## # #h## #h## #H#H HEH # ## FhESEERE HHE-
#H#E #H# ## #h## #h## i #HE ## ## #hEHhEH ##:
#H#E fizdsdisssiii #hddt# #hddEhHEH FhHHH# #HE ## ## FhEHEREE B4
- ————## iidddii FhAFhEREE S RS FhdFH R E R R R # ## oo HREE #E: -
fddz szt is s Al HE HE FhHHH# ## #hi HEHE #:
FhadE chE AR e o# HE HERE : Basissias itz ias stz i shEE HE
[Z AR S22 ERERRE S 2] : HY S HE Bz N [ddddadszisdias stz idsssn chEHE HE
FhEHhEAEE - = ###: (ddsdsdaziasisississisn shEE O #
FhadhAE - : ¥ —HE #
BRiziid - - - #HE#
- - i## #:
- e i lfHri—i——
H : : sHEEE
- : - - - sHh#EH
- I - - s
- : - - -z H#
— — — — # — — - —
- - - - - Liiasii - - - -
- - - - - - Laiaistis - - - - -
- - - - - - iiiais sl - - - -
it -= -= #hEFEFFERES—— —— - —— - —mmem o = = -
- idiassaisnistisi
- - - - Risisiisiisistisli i - -
- - - S HEE R i -
- - - —— S Eiiiiiiidi - -
- - —#H#- Biiii - -
- —##:- cHEHEE
- i i
-— - - #i#d: i
RS #H#-
laiiis N
iz istis

lidiaiaiiid

#dHEAEEE —
#dHEREE- —
i iii]

Raiiiisii

[iiiiiiiii
[iiaEE s
= cHdEEEERE
[iiiiiii
#hdHH
HEHEE
—###44
— 4
- s
##—
#d4E: s
LSS SN —cHfdE——
LRSS EEEEEE P
LRSS EEEEE TN -
LRSS ST -
EEEEE SRS -
LRSS ST S
- #4444 -
##44
#4 :
#
#

#HE o+ - - # HH#

The CIL language 1is typed, with one important use of this being that
we determine the calling convention for a function pointer from its
type. (This includes the size of the return address slot, which is on
the locals stack and shared between the caller and callee, as well as
the number and sizes of the arguments, also on the locals stack.) We
make the representation (Word8, Wordl6, Word32) of integral types
explicit, but signed and unsigned ints are represented the same way
(just as on the processor itself). Instead, expressions like Promote
(which converts e.g. an 8-bit word to a 16-bit word) are explicit
about whether they perform sign extension. We are careful to
distinguish between 8-, 16- and 32-bit quantities throughout the
compiler, because printable x86 has the ability to work with all three
widths, and we can produce significantly better code if we can use the
correct width. (As a simple example, loading a 16-bit word 1is much
cheaper than the zero-extended 32-bit version.)

Some low-level ideas are threaded throughout the compiler. In the case
of M"out8" and "exit", for example, these are available to the
programmer if she simply declares them:

int _out8(int, int);
int _exit(int);

They can Dbe called like _exit(l), but are translated to the Builtin
expression rather than a function call. It is not permitted to take
their addresses.

Unlike LLVMNOP, we have both expression forms of operators and "cond"
forms. The expression forms evaluate to 1 or 0, whereas the cond forms
are only used as a combined test-and-branch in the GotoIf construct.
Optimizations try to put these in the most useful form for later work.

** 24. Optimization **

CIL code 1is optimized via a series of conservative transformations
until no more simplifications are possible. Among important
optimizations are dead variable removal and constant folding, which
clean up the code generated by the translation from C to CIL. Lots
more is possible here, but since these problems are not specific to
printable x86, I did not spend that much time on optimization. The
main thing is to keep the code size for the programs we want to write
under the 64k limit. There is a natural tension between implementing
optimizations for the "high-level" CIL language (which is easier to
analyze) and the low-level LLVMNOP language (more flexibility, access
to incidental tricks that don’t make sense at the high 1level, and
opportunity to clean up after more of the compiler’s work) .

Optimizations are implemented using the "Pass" functor idea presented
in my Ph.D. dissertation [MTMC’08].

The optimization phase 1is also responsible for eliminating some
features from the language so that we don’t need to think about them
when converting to LLVMNOP:

- Multiplication. In printable x86, we have access to the IMUL
instruction, but only versions that multiply by a constant
immediate value (opcodes 0x6B, 0x69). Since that immediate needs to
be printable, this instruction is not very useful -- we can’t even
use it to implement multiplication by arbitrary constants. Instead,
the "Optimization" phase for CIL replaces the Times expression with
a function call to a built-in hand-written routine that implements
multiplication by repeated addition.

- Comparison ops. Expressions like LessEq are transformed into
GotoIf(cond, ...), since we don’t have any way of comparing values
without also branching.

- String literals. These are replaced with references to
globally-allocated arrays.

Global initialization. All initialization code for globals (e.g.
int global = 15;) is moved into a wrapper around the main function.

These tasks aren’t really optimizations, but we want to perform
optimization both before and after doing them. So optimization code
needs to at least be aware of their existence so that it doesn’t e.g.
reintroduce string literals after they have been eliminated!

** 25, Converting to CIL **

The frontend of the compiler uses the ckit library [CKIT’00] to parse
the input C code into an ML datatype called "AST." The details of this
language are mostly wuninteresting, but it 1is mostly in direct
correspondence to C89 itself. When we convert to CIL, we remove
"syntactic sugar" constructs that can be built from more fundamental
things. "For" example, a for loop 1is broken apart into a few gotos.
The && and || operators make their short-circuiting behavior explicit
by sequencing the tests. Implicit widening and narrowing between types
is made explicit. Compound assignment ops like "= and ++ are sequenced
into the primitives that make them up. Array subscripts and structure
references are converted into pointer arithmetic. Although there’s a
lot of code involved to implement C, it is mostly standard.

** 26. Limitations **

ABC has some limitations, some of which are fundamental and some of
which are simply due to the unconscionably strict SIGBOVIK deadlines:

- Floating point is not available. We have access to none of the
floating point instructions, so native support is not really
possible. It would be possible to provide software implementations

4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~

of the floating-point operations; prior to the Intel 80486, support
for floating point was usually provided in software anyway, so
this helps us avoid anachronism.

— Standard libraries are not available. Since we can only call the
DOS INT 0x21 handler one time, and we use that to exit, there is
no way to access the filesystem or write to the console. One could
conceivably write their own device drivers using I/O ports (see
the next section), but this usually also involves using or
implementing hardware interrupts, so probably wouldn’t pan out.

— malloc/free. This can be supported in software, with no
significant limitations other than the amount of memory available.

— Operand widths. Though ABC architecturally supports most operations
at 8, 16, and 32 bit widths, most operations are only implemented
for 16 bit operands. This is easily fixed, but should be done with
some care to correctness and performance.

— Performance. Multiplication is linear time, since we use a software
routine. This can be done (somewhat) better, but will always involve
loops in the general case. Other constructs like "if" and "while"
can have unexpectedly bad performance due to the "ladder" technique
for control flow; these issues can make algorithms perform
asymptotically worse than they should.

— Division and modulus. These need to be done in software like
multiplication, which is trickier than usual due to the lack of
efficient bit shifts. Note that many computer processors don’t even
have an integer division instruction (e.g. Alpha, 6502), so this is
not even that weird.

— struct copying. Not a huge deal, but it means emitting code that
copies struct field-by-field because we don’t have anything like
memcpy, and around the time of a function call or return, the
state of the machine is pretty delicate.

— sizeof. Actually sizeof is so easy I just went and implemented
it just now, instead of writing this sentence. I saved further
time by not deleting the previous sentence.

- Bit fields. These are garbage so nobody implements them unless
they have to. No fundamental limitation here, although the
compiler does assume that lvalues have an address.

I am shamed that ABC does not compile the complete feasible subset.
Perhaps check http://tom7.org/abc/ for an updated version, published
postpartum.

** 27. Programming **

Since we’re working in reverse order, we’ve reached the very front of
the ABC compiler, and now can talk about the program we feed to it.

Obviously the program that is this paper should do something, but so
far we’ve only talked about how to do loops and exit. We do have
access to the command line via the PSP (properly piped through to
argv), and we do have the possibility of looping forever, or exiting
with some status. These would at least demonstrate computation, but
are pretty lame, let’s be honest.

A natural thing to do when thinking about "printable x86" would be to
have the paper print itself out, 1i.e., a quine. This would be quite
challenging given the ratio of accessible data (64kb data segment +
data embedded in the 64k of code) to the size of the paper itself
(409k), but it might be possible. Sadly, the major obstacle is that we
cannot repeatedly invoke INT 21, so we cannot print anything out.

Like some kind of miracle, though, two of the opcodes available to us
in printable x86 are practically made for I/O. In fact they are
literally made for I/O, and in fact their names are INS and OUTS.
These are part of a family of CPU instructions that interact with
peripherals on the motherboard. DOS wuses these to implement some of
its INT 21 system calls (e.g., to talk to the disk controller to
implement the file system), but I/O ports are sometimes also used by
application programmers.

In this case, there is one nice piece of hardware that is standard on
DOS-era computers, and that grabbed a standard set of port numbers
before the concept of configuring I/O was a thing: The Adlib FM
synthesis card. By writing bytes to various ports, we can make this
thing make stupid sounds.

The out8 primitive I’ve mentioned a few times provides a way for the C
programmer to access the OUTS instruction. OUTS is actually a routine
intended for writing a whole string to an I/O port, but we can set
things up so that it Jjust writes one byte. We temporarily locate the
string at offset DS:0000, i.e., what the "null pointer" points to, for
efficiency and to avoid interfering with any program data.
Incidentally, this also gives us style points for wusing the rare
instruction

AND [SI] <- SI

which bitwise-ands an address into the thing the address points to
(!), because we know SI is 0.

Oh wait, here comes the code segment!

4G4Gg~
4G4Gg~

4G4Gg~

4G4Gg~
4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~

4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~ 4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4GAGg~
4G4Gg~ 4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~ 4G4G
q~ 4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~ 4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~ 4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~ 4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~
4G4Gg~ eeeeeeee
@REERRRRREERRARREERRRRREERRRREREENUMDES @ Qf%$@ @ fPf[fPE fPf_, |P[df37,1P[df!?df17fWHS$SPh DXD,OPf [h ‘~XPf]- ~P Fu Nubj X4%Ph DXD,
1Pj X4 g!'E XglE j X4!Ph DXD4$P% g!E"XglE"j X4 P*Fu Nul[j X4 P~P_g3u !<g3}"1<,~,}Ph DXD,3Pj X4 g'E XglE j X4 P*Fu
NuUj X4!Ph DXD4,P% g!E"XglE"j X4 P*P_g3u !<g3}"1<P"Fu Nurj X4%Ph DXD,5Pj X4 g!E XglE j X4!Ph DXD4gP% g!E
"XglE"j X4 P~P_g3u !<g3}"1<P"Fu Nudj X4%Ph DXD,7Pj X4 g!E XglE j X4!Ph DXD4ZPj X4 g!E"XglE"3 X4 P*Fu
Nu[j X4 P"P_g3u !<g3}"1<,~,}Ph DXD,9Pj X4 g!E XglE j X4 P"Fu NuUj X4!Ph DXD,QP% g!E"XglE"j X4 P~P_g3u !<g3}"1<P"Fu
Nurj X4%Ph DXD,;Pj X4 g!E XglE j X4"Ph DXD4-P%$ g!E"XglE"j X4 P~P_g3u !<g3}"1<P"Fu Nucj X4%Ph DX
D,=Pj X4 g!E"XglE"j X4"PLXD$@$,rP% g!E XglE j X4 P"Fu Nu[j X4 P"P_g3u"!<g3} 1<,~,}Ph DXD,?Pj X4 g!E XglE j X4 P"Fu
NuUj X4#Ph DXD4/P% g!E"XglE"j X4 P*P_g3u !<g3}"1<P"Fu NuVj X4%Ph DXD,IP% g!E XglE j X4)P$ g!E"XglE"j X
4 P"Fu Nu~%@@% Hg3E"@g)E j X4 g!E"P_PzZg3} 5g2u"05,~,}Ph DXD,RP% g!E XglE j X4 (P$ g!E"XglE"j X4 P"Fu
Num%@@% Hg3E"@g)E j X4 g!E"P_PZg3} 5g2u"05,~,}Ph DXD,\P% g!E XglE j X4 P"Fu NuOj X4)P$ g!E"XglE"%@@% Hg3E"@QQ)E j X4
g!E"P"Fu NuXj X4 P_Pzg3} 5g2u"05@@@Ph DXD4/P% g!E XglE j X4 P"Fu NuWj X4"Ph DXD4SPj X4 g!E"
XglE"$@Q@% Hg3E"@g)E j X4 P"Fu NuMj X, !P$~4~g!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu Nu‘j X4#Ph DXD4/
P% g!E XglE j X4"Ph DXD,1P%@ g!E"XglE"j X4 P"Fu Nu}%$@@% Hg3E"@g)E j X4 g!E"P_PZg3} 5g2u"05Q@QRPLXD$@S$S ,rP% g!E XglE j~X@P4~Hg
'E"XglE"Jj X4 P"Fu NuN%$@@% Hg3E"@g)E j X4 g!E"P_PZg3} 5g2u"05P"Fu Nukj X4"PLXD$@S$S ,rP% g!E Xgl
E j~X@@P$ g!E"XglE"%@E@% Hg3E"@g)E j X4 g!E"P"Fu Nujj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 g!E"Hg3E"@g)E j X4 P"Fu
Nuxj X,wPS$Q@g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4!PHg!E"XglE"j X4 P"Fu Nux$%@Q%
Hg3E"@g)E j X,mP$QRg!E"XglE"Jj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu Nulj X4"P$ g!E"XglE"%@@% Hg3E"@Q)E J X,cPS@
g!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu Nuwj X4"Ph DXD4-P% g!E XglE j X4#P$ g!E"XglE"$@Q@% Hg3E"Qg)E j X,WP$ g!E"XglE"j X4 P"Fu
Nuxj X4 P_PzZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4P g!E"XglE"%Q@Q@% Hg3E"Qg)E j X4 P"Fu Nuyj X,K
P$ g!E"XglE"Jj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4%P$ g!E"XglE"j X4 P"Fu Nuz%@@% Hg3E"@g)E j X,?P,~4cg!E"XglE"j X4 P
_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu Nunj X4&P$ g!E"XglE"%Q@% Hg3E"Qg9)E j X,1P,~4qg!E"XglE"Jj X4 P_PZg3} 5g2u"0SP"F
u Nuyj X4"Ph DXD4-P% g!E XglE j X4'P$ g!E"XglE"%Q@% Hg3E"Qg9)E j X, #P$}4}g!E"XglE"]j X4 P"Fu Nu
hj X4 P_PZg3} 5g2u"05Q@Ph DXD4-P% g!E XglE j X4 (P$ g!E"XglE"j X4 P"Fu NuK$@@% Hg3E"@g)E j X4,P$ g!E"XglE"j X4 P"Fu
Nuhj X4 P_PZg3} 5g2u"05@E@Ph DXD4-P% g!E XglE j X4)P$ g!E"XglE"j X4 P"Fu Nux%@@% Hg3E"@Q)E j X4<P$S g!E
"XglE"j X4 P_PZg3} 5g2u"05@E@Ph DXD4-P% g!E XglE j X4 P"Fu Nunj X4/P$ g!E"XglE"%@@% Hg3E"@g)E j X,~43P$ g!E"XglE"j X4 P_Pzg3}
5g2u"05P"Fu Nufj X4"Ph DXD4-P% g!E XglE j X40P$ g!E"XglE"$@@% HQg3E"@Q)E j X4 P"Fu Nuyj X,wP
$Q@g!E"XglE"Jj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X41P$ g!E"XglE"j X4 P"Fu NuK%@@% Hg3E"@Q)E j X, PS$ g!E"XglE"j X4 P"Fu
Nuhj X4 P_PZg3} 5g2u"05@E@Ph DXD4-P% g!E XglE j X42P$ g!E"XglE"j X4 P"Fu Nux%@@% Hg3E"@Q)E j
X,CP$ g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu Nu*j X43P$ g!E"XglE"$@@% Hg3E"@9)E Jj X, &P,~4|g!E"XglE"j
X4 P"Fu Nuxj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X44P$ g!E"XglE"%Q@% Hg3E"Qg)E j X4 P"Fu
Nuyj X48P$ g!E"XglE"j X4 P_PZg3} 5g2u"05@E@Ph DXD4-P% g!E XglE j X48P$ g!E"XglE"j X4 P Fu NuK%@@% Hg3E"QQ)E j X, }PSQRg!E"Xg
1E"J X4 P~Fu Nuhj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X49P$ g!E"XglE"j X4 P"Fu Nu[%@@%
Hg3E"@g9)E j X,UP$ g!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu Nuyj X4"Ph DXD4-P% g!E XglE j X4:P$ g!E"XglE"$@@S HQ3E"@Q)E j X, *P, ~4xg
'E"XglE"j X4 P"Fu Nuxj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4=P$ g!E"XglE"%@@% Hg3E"@Q)E j X4 P"Fu
Nu{j X,~4’P$ g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4>P$ g!E"XglE"j X4 P"Fu Nux%@@% Hg3E"GQ)E j
X, fPSRQ!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu Numj XHPS g!E"XglE"%$@E@% HQ3E"@Q)E j X,-P,~4ug!E"XglE"]j X4
P_PZg3} 5g2u"05P"Fu Nuuj X4"Ph DXD4-P% g!E XglE j XP4 g!E"XglE"%@@% HQg3E"@Q)E j X48P$S g!E"XglE"J X4 P"Fu
Nuvj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j$XP4Sg!E"XglE"$@@% HQ3E"Q9)E j X4 P Fu Nuwj X, }P$Q@g!E"XglE"j X4
P_P7g3} 5g2u"05@E@Ph DXD4-P% g!E XglE j$XP43g!E"XglE"Jj X4 P~Fu Nux%@@% Hg3E"@Q)E j X,UPS$ g!E"XglE"j X4 P_Pzg3} 5g2u"05@EPh
DXD4-P% g!E XglE j X4 P"Fu NuljsXP4s&g!E"XglE"$@@% Hg3E"@g)E j X, *P,~4xg!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu
Nuwj X4"Ph DXD4-P% g!E XglE j)XP4)g!E"XglE"$@@% HG3E"Q9)E j X,~4’P$ g!E"XglE"j X4 P"Fu Nufj X4 P_PZg3} 5g2u"05@Q@P
h DXD4-P% g!E XglE j*XP4*g!E"XglE"j X4 P Fu NuK%$@@% Hg3E"@9)E j X, fP$Q@g!E"XglE"J X4 P Fu Nufj
X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j+XP4+g!E"XglE"j X4 P Fu Nuz%@@% Hg3E"@Q)E j X,-P,~4ug!E"XglE"j X4 P_Pzg3} 5g2u"05
@@Ph DXD4-P% g!E XglE j X4 P Fu Nujj,XP4,g!E"XglE"$@E% Hg3E"Gg)E j X48PS g!E"XglE"j X4 P_PZg3} 5g2u"05P Fu
Nudj X4"Ph DXD4-P% g!E XglE jOXP40g!E"XglE"$@R% HG3E"Qg)E j X4 P Fu Nuwj X, }P$@g!E"XglE"Jj X4 P_PZg3} 5g2u™05@
@Ph DXD4-P% g!E XglE j1XP41g!E"XglE"j X4 P~Fu NuK$@@% Hg3E"@g)E j X,UP$ g!E"XglE"j X4 P"Fu Nu
£3j X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE j2XP42g!E"XglE"j X4 P~Fu Nuz%@@% Hg3E"QQ)E j X, *P,~4xg!E"XglE"j X4 P_PZg3} 5g2u"
05@@Ph DXD4-P% g!E XglE j X4 P Fu Nu\j5XP45g!E"XglE"$@E% Hg3E"@Q)E j X, ~4’P$ g!E"XglE"j X4 P~Fu
Nuvj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j6XP46g!E"XglE"%@R% HG3E"@g)E j X4 P Fu Nuwj X, fPS@g!E"XglE"j X4 P_PZg3} 5g
2u"05@@Ph DXD4-P% g!E XglE j7XP47g!E"XglE"J X4 P~Fu NuM$@@% Hg3E"@g)E j X,-P,~4ug!E"XglE"j X4 P Fu
Nufj X4 P_PZg3} 5g2u"05@E@Ph DXD4-P$ g!E XglE j8XP48g!E"XglE"j X4 P~ Fu Nu[%@e@% Hg3E"Gg)E j X48PS g!E"XglE"j X4 P_PZg3}
5g2u"05P*Fu Nuuj X4"Ph DXD4-P% g!E XglE j<XP4<g!E"XglE"$@@% Hg3E"Gg)E j X, }P$@g!E"XglE"j X4 P"Fu
Nuvj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j=XP4=g!E"XglE"$@@% Hg3E"Qg)E j X4 P Fu Nuwj X,UP$ g!E"XglE"Jj X4 P_Pzg3}
5g2u"05@@Ph DXD4-P% g!E XglE j>XP4>g!E"XglE"j X4 P*Fu Nuz%@e% Hg3E"Gg)E j X, *P,~4xg!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P%
g!E XglE j X4 P*Fu NuljAXPS$ g!E"XglE"$@E% Hg3E"@g)E j X,~4’P$ g!E"XglE"j X4 P_PZg3} 5g2u"05P*Fu
Nudj X4"Ph DXD4-P% g!E XglE jBXP$ g!E"XglE"%@@% HG3E"Qg)E j X4 P Fu Nuwj X, fPS@g!E"XglE"J X4 P_PZg3} 5g2u"05@@Ph DXD4-P
$ g!E XglE jCXP$ g!E"XglE"j X4 P Fu Nuz%@@% Hg3E"Q9)E j X,-P,~4ug!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P°F
NujjDXP$ g!E"XglE"$@E@% Hg3E"@Q)E j X48P$ g!E"XglE"j X4 P_Pzg3} 5g2u"05P"Fu Nuuj X4"Ph DXD4-
% g!E XglE jHXPS g!E"XglE"%@Q@% Hg3E"Qg)E j X, }PS@g!E"XglE"j X4 P~Fu Nuvj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE FIXPS g!E
XglE"$@@% HG3E"@Q)E j X4 P/ Fu Nuwj X,UP$ g!E"XglE"j X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE jJXP$ g!E"XglE"j X4 P~Fu
Nuz%@@% Hg3E"@g)E j X, *P,~4xg!E"XglE"J X4 P_PZg3} 5g2u"05@€Ph DXD4-P% g!E XglE j X4 P Fu NuljMXP$
g!E"XglE"$@@% Hg3E"@g)E j X,~4'PS$S g!E"XglE"J X4 P_PZg3} 5g2u"05P"Fu Nuuj X4"Ph DXD4-P% g!E XglE jJNXP$ g!E"XglE"$@E@% Hg3E"Qg
JE j X,fPSQRg!E"XglE"J X4 P/ Fu Nufj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE JjOXP$ g!E"XglE"j X4 P~Fu
NuM%@@% Hg3E"@g)E j X,-P,~4ug!E"XglE"j X4 P Fu Nufj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE jPXP$ g!E"XglE"j X4 P~Fu
Nux%@@% Hg3E"@g)E j X48P$ g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P“Fu NujjT
XP$ g!E"XglE"$@@% Hg3E"QQ)E j X, }P$S@Q!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu Nudj X4"Ph DXD4-P% g!E XglE jUXP$ g!E"XglE"3@Q@% Hg3E"
@g)E j X4 P"Fu Nuwj X,UP$ g!E"XglE"j X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE jVXP$ g!E"XglE"j X4 P~Fu
NuM$@@% Hg3E"Qg)E j X, *P,~4xg!E"XglE"j X4 P Fu Nufj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE jYXP$ g!E"XglE"j X4 P F
u Nuz%@@% Hg3E"QQ)E j X,~4’P$ g!E"XglE"j X4 P_P2g3} 5g2u"05@E@Ph DXD4-P% g!E XglE j X4 P~Fu N
uzZjZXP$ g!E"XglE"$@E% Hg3E"@g)E j X, fPSEg!E"XglE"J X4 P Fu Nuvj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jJ[XP$ g!E"XglE"%@E%
Hg3E"@g)E j X4 P"Fu Nuyj X,-P,~4ug!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j\XP$ g!E"XglE"j X4 P~ Fu
NuK%@@% Hg3E"@g)E j X48PS$ g!E"XglE"j X4 P Fu Nufj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j'XP4‘g!E"XglE"J
X4 P Fu Nu[%@@% Hg3E"@g)E j X,}PSRg!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu Nuuj X4"Ph DXD4-P% g!E X
glE jaXP4ag!E"XglE"$@@% Hg3E"Qg)E j X,UPS$ g!E"XglE"j X4 P Fu Nuvj X4 P_PzZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jbXP4bg!E"XglE"$QE
% Hg3E"QQ)E j X4 P"Fu Nuyj X, *P,~4xg!E"XglE"Jj X4 P_PZg3} 5g2u"05@Q@Ph DXD4-P% g!E XglE jeXP4eg!E"XglE"j X4 P"Fu
Nuz%@@% Hg3E"@Q)E j X,~4’P$ g!E"XglE"Jj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu NujjfxP4fg!E"Xgl
E"%$@@% Hg3E"@g9)E j X,fPS@g!E"XglE"j X4 P_PZg3} 5g2u"05P"Fu Nuwj X4"Ph DXD4-P% g!E XglE jgXP4gg!E"XglE"%$@@% Hg3E"@g)E j X,-P
,~4ug!E"XglE"Jj X4 P"Fu Nuvj X4 P_PzZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jhXP4hg!E"XglE"$Q@Q@% Hg3E"Qg)E j X4 P"Fu
Nuwj X48P$ g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jlXP41g!E"XglE"j X4 P"Fu Nux%@@% Hg3E"@Q)E j X
,}PS@Q!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu NujjmXP4mg!E"XglE"%$@E@% Hg3E"@g)E j X,UP$ g!E"XglE"j X4 P_P
7zg3} 5g2u"05P"Fu Nuwj X4"Ph DXD4-P% g!E XglE jnXP4ng!E"XglE"%$@@% Hg3E"@g)E J X, *P,~4xg!E"XglE"J X4 P"Fu
Nufj X4 P_Pzg3} 5g2u"05@E@Ph DXD4-P% g!E XglE jgXP4qg!E"XglE"j X4 P"Fu NuM%@@% Hg3E"@Q)E j X,~4’P$ g!E"XglE"j X4
P Fu Nufj X4 P_Pzg3} 5g2u"05@@Ph DXD4-P% g!E XglE jrXP4rg!E"XglE"j X4 P"Fu Nux%@@% Hg3E"QQ)E
j X,fP$Qg!E"XglE"]j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu NuljsXP4sg!E"XglE"%$@@% HQ3E"@Q)E j X,-P,~4ug!E"XglE"jJ
X4 P_PZg3} 5g2u"05P*Fu Nudj X4"Ph DXD4-P% g!E XglE jtXP4tg!E"XglE"$@E% Hg3E"@g)E j X4 P*Fu N
uyj X, !P$~4~g!E"XglE"j X4 P_PZg3} 5g2u"05@Q@Ph DXD4-P% g!E XglE juXP4ug!E"XglE"j X4 P"Fu NuM%@@% Hg3E"@Q)E j X, !P$~4~g!E"XglE
"j X4 P"Fu Nufj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jvXP4vg!E"XglE"j X4 P"Fu Nuz$%$@Q@% Hg3
E"@Q)E j X,!P$S~4~g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j X4 P"Fu Nu\ jwXP4wg!E"XglE"%$QE% Hg3E"QQ)E j X, !P$~4~g!E
"XglE"§ X4 P~Fu Nuvj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jxXP4xg!E"XglE"%@@% Hg3E"@g)E j X4 P Fu
Nuyj X, !P$~4~g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jyXP4yg!E"XglE"j X4 P*Fu NuM%@@% Hg3E"@Q)E j X, !PS$~
4~g!E"XglE"j X4 P"Fu Nufj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE jzXP4zg!E"XglE"j X4 P"Fu Nu
1%@QQ@% Hg3E"QQ9)E j X, !P$~4~g!E"XglE"j X4 P_Pzg3} 5g2u"05P"Fu Nuwj X4"Ph DXD4-P% g!E XglE j{XP4{g!E"XglE"%@@% Hg3E"G@g)E j X,
P$~4~g!E"XglE"j X4 P"Fu Nuvj X4 P_PZg3} 5g2u"05@Q@Ph DXD4-P% g!E XglE j|XP4|g!E"Xg1E"%@@% Hg3E"@g)E j X4 P"Fu
Nuyj X, !P$~4~g!E"XglE"j X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j}XP4}g!E"XglE"j X4 P"Fu Nuz$%$@Q@% Hg3E"QQ)E
j X, !P$~4~g!E"XglE"j X4 P_PZg3} 5g2u"05Q@Ph DXD4-P% g!E XglE j X4 P"Fu Nulj~XP4~g!E"XglE"%$@@% Hg3E"@Q)E j X, !P$~4~g!E"XglE"]
X4 P_PzZg3} 5g2u"05P"Fu Nujj X4"Ph DXD4-P% g!E XglE j~X@P4~Hg!E"XglE"$@Q@% Hg3E"QRg)E j X4 g!E"P"Fu

=ro

Nuxj X4 P_PZg3} 5g2u"05@@Ph DXD4-P% g!E XglE j~XQ@PS$ g!E"XglE"$@R% HG3E"@g)E j X4 P Fu Nuij X4 g!E"P_PZg3} 5g2u"05@Ph
DXD,QP% g!E XglE j=XP4=g!E"XglE"j X4 P Fu Nul%@@% Hg3E"Qg)E j X4 g!E"P_Pzg3} 5g2u"05@Ph DXD4ZPj X4 g'E XglE j X4 P Fu
Nu] JTXPS g!E"XglE"$@@% Hg3E"Q@g)E j X4 g!E"P_P%g3} 5g2u"05P"Fu Nuhj X4!Ph DXD4gP% g!E XglE j2XP42
g!E"XglE"$@Q@% Hg3E"@g)E j X4 g!E"P Fu Nuej X4 P_Pzg3} 5g2u"05@Ph DXD4,P% g!E XglE j:XP4:g!E"XglE"j X4 P Fu
Nu{%@@% Hg3E"@Q)E j X4 g!E"P_PZg3} 5g2u"05@Ph DXD4$P% g!E XglE j X4’P$ g!E"XglE"j X4 P"Fu NuR%@@% Hg3E"QQ)E
j X4 g!E"P_PZg3} 5g2u"05CCCCP Fu NuUj X,~47P$ g!E XglE j X4 g3E PEEEEj X4!Ph DXD4bP"4Uq NuXMMM
Mj X4 g!E"gl]",~4}Ph DXD,@g)E"J X4 P_g3}"3=gl}"P Fu NuzKKKKj X4 g!E gl] ,~4}Ph DXD,@g)E j X4 P*P_g3u !<g3}"1<",~4|Ph DXD, £Pj
X4 g!E$XglE$g+usu Nu\j X4 g!E gl] ,~4}Ph DXD,Fg)E J X4 g!E"P"P_g3u !<g3}"1<P"Fu Nuwj X4 g!E gl]
,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} ,~,~P"$ g3E t:J X4!PHg!E"XglE"j X4 P Fu Nuej X4 g3E"g)E j X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P*
P_g3u"!<g3} 1<P"Fu Nu~j X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Fg)E"j X4 P_g3}"3=gl}"P Fu
Nus%@@% Hg3E"@g)E j X4 gl!E"gl]",~4}Ph DXD,Fg)E"j X4 P~P_g3u"!<g3} 1<@Ph DXD,GP~4Uq NuTj X4 g!E gl] ,~4}Ph
DXD,Fg)E j X4 P_g3} 3=gl} P"Fu Nuvj X4 g!E"gl]",~4}Ph DXD,@g)E"j X4 P~ P_g3u"!<g3} 1<*,~4|Ph DXD,_Pj X4 g!E$XglESg+u$u
Nusj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} @REPLXD$@S$,xP% g!E"XglE"j X4 P*Fu Nuoj X4 PPP*_7!4
g3} 1<g3U"ng!E gl] ,~4}Ph DXD,Fg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu Nuij X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} ,~,vP$ g!E"X
glE"j X4 P"Fu Nudj X4#P~$ PYg3M"g;M ~Og!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P"Fu NuJj X4!PHg
IE"Xg1lE"%@@% Hg3E"@g)E j X4 P Fu Nucj X4 g!E"gl]",~4}Ph DXD,Fg)E"j X4 P*P_g3u"!<g3} 1<@Ph DXD,GP"4Uq
Nusj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} QQREPLXDS$@S$,wP% g!E"XglE"j X4 P"Fu Nuoj X4 PPP"_7Z!4g3} 1<g3U"ng!E gl]
,~4}Ph DXD,Fg)E j X4 g!E"P*P_g3u !<g3}"1<P"Fu Nugj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} 4TPS$ g!E"XglE"j X4 P*Fu
Nudj X4#P~$ PYg3M"g;M ~Og!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P"Fu NuJj X4!PHg!E"XglE"%@@% Hg3E"@
g)E j X4 P*Fu Nucj X4 g!E"gl]",~4}Ph DXD,Fg)E"j X4 P~P_g3u"!<g3} 1<@Ph DXD,GP~4Uq Nuzj X4 g'E
g!E"gl]",~4}Ph DXD,@g)E"j X4 P"P_g3u"!<g3} l<A,~4\Ph DXD,RPj X4 g!E$XglES$g+usu NuEj X,pP$@g!E"XglE"j X4 g!E$SCCCCCCP"Fu
Nuvj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P"P_g3u !<g3}"1<g!E gl] ,~4}Ph DXD,Dg)E j X4 P"Fu Nugj X4 P"P_g3
u !<g3}$1<,RP$@g!E XglE j X4 g3E PEEEEEEj X4!Ph DXD,SP~4Uq Nu}MMMMMMKKKKKKS X4%Ph DXD,;Pj X4 g!E XglE j X4 P_g3} 3=gl} g!E"gl]
", ~4}Ph DXD,Bg)E"j X4 P*Fu NuWj X4 P_g3}"3=gl}"Hg3E"@g)E j X4 P_Pzg3} 25g!ESgOu$P*Fu NuCj X, ~HH
P$RQ!E"XglE"CCCCCCj X4 P Fu Nuvj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P"P_g3u !<g3}"1<g!E gl] ,~4}Ph DXD,Dg)E j X4 P"Fu
Nugj X4 P*P_g3u !<g3}$1<,MP$@g!E XglE j X4 g3E PEEEEEEj X4!Ph DXD,XP~4Ug Nu}MMMMMMKKKKKKj X4%Ph DXD,=Pj X
4 g!E"XglE"j X4 P_g3}"3=gl}"g!E gl] ,~4}Ph DXD,Bg)E j X4 P"Fu NuWj X4 P_g3} 3=gl} Hg3E @g)E"j X4 P_PzZg3}"25g!ESgOuP Fu
NuAj X,pP$@g!E"XglE"CCCCCCj X4 P Fu Nuvj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P"P_g3u !<g3}"1<g!E gl] ,~4}P
h DXD,Dg)E j X4 P*Fu Nugj X4 P*P_g3u !<g3}$1<,HPS@g!E XglE j X4 g3E PEEEEEEj X4!Ph DXD,]P*4Ug
NuPMMMMMMKKKKKK~j X,"Ph DXD,DPj X4 g!E&XglE&g+usu NuEj X,pP$@g!E"XglE"j X4 g!ESCCCCCCPFu Nuvj
X4 g!'E gl] ,~4}Ph DXD,Bg)E j X4 P"P_g3u !<g3}"1<g!E gl] ,~4}Ph DXD,Dg)E j X4 P"Fu Nugj X4 P"P_g3u !<g3}$1<,DP$Rg!E XglE j X4 g
3E PEEEEEEJ X4!Ph DXD,aP"4Uq NutMMMMMMKKKKKK] X4 g!E gl] ,~4}Ph DXD,Bg)E j X4!PHg!E"XglE"j X4 P~P_g3u !<g3}"1<P*Fu
Nu{j X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} ,~4wP,~4wg!E"XglE"J X4'P"*$ PYg3M"g;M |%P“Fu Nu”*j X4 g'E g
1] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} g!ESCCCCCCP*Fu Nuxj X4 g!E"gl]",~4}Ph DXD,Bg)E"j X4 P~P_g3u"!<g3} 1<P*Fu
NuXj X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P~P_g3u"!<g3}$1<P Fu NuUj X,”P$ g!E XglE j X4 g3E PEEEEEEj X4!Ph DXD,gP"4U
aq NugMMMMMMKKKKKKj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} @PHg!E"XglE"Jj X4 P"Fu Nus%$@Q@% H
g3E"@g)E j X4 g!E"gl]",~4}Ph DXD,Bg)E"j X4 P"P_g3u"!<g3} 1<@Ph DXD,JP"4Uq NuD”~j X,"Ph DXD,8Pj X4 g!E&XglE&g+u&u
Nu\j X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu Nu~j X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=
gl} g!E"gl]",~4}Ph DXD,Jg)E"j X4 P_g3}"3=gl}"P"Fu Nuj%$@@% Hg3E"@g)E j X4 P_Pzg3} 25g!E"gOu"g!E gl] ,~4}Ph DXD,Fg)E j X4 P"Fu
NuXj X4 P"P_g3u !<g3}"1<g!E gl] ,~4}Ph DXD,Dg)E j X4 P"Fu NuTj X4 P_g3} 3=gl} g!E"gl]",~4}Ph D
XD,Jg)E"j X4 P"Fu NuWj X4 P_g3}"3=gl}"Hg3E"@g)E j X4 P_PZg3} 25g!E"gOu"P"Fu NuXj X4 g!E gl] ,~4}
Ph DXD,Hg)E j X4 P"P_g3u !<g3}"1<P"Fu NuTj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P"Fu Nu
Tj X4 g!E"gl]",~4}Ph DXD,Hg)E"j X4 P_g3}"3=gl}"P"Fu Nudj X4#P"$ PYg3M g;M"uOg!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P"Fu
Nutj X4#P"$ g3E tej X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 P_g3} 3=gl} @PHg!E"XglE"j X4 P"Fu Nus%$@Q@% Hg3E
"@g)E j X4 g!E"gl]",~4}Ph DXD,Jg)E"j X4 P"P_g3u"!<g3} 1<@Ph DXD,NP"4Uq Nuzj X4 g!E g!E"gl]",~4}Ph DXD,@g)E"j X4 P"P_g3u"!<g3}
l<A,~4\Ph DXD,+Pj X4 g!ES$XglESg+uSu NuXj X4!PHg!E XglE j X4 g!E"gl]",~4}Ph DXD,@g)E"j X4 P"Fu
NuxXj X4 P"P_g3u"!<g3} l<”,~4\Ph DXD,)Pj X4 g!E$XglES$Sg+usSu Nul\j X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu
Nuyj X4 g!'E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} P_PZg3} 25g!E gOu ,~,}P"$ g3E t*j X4 P"Fu Nuej X4 g
'E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} Q@PHg!E"XglE"j X4 P"Fu NuX%$@@% Hg3E"@g)E j X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P"Fu
Nuuj X4 P"P_g3u"!<g3} 1<g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} @PHg!E"XglE"j X4 P"Fu Nus%@Q@% Hg3E"
@g)E j X4 g!E"gl]",~4}Ph DXD,Bg)E"j X4 P"P_g3u"!<g3} 1<@Ph DXD,HP"4Uq NuTj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P"Fu
Nuvj X4 g!E"gl]",~4}Ph DXD,@g)E"j X4 P*P_g3u"!<g3} 1<A,~4|Ph DXD, !Pj X4 g!ES$XglESg+usu NuTj X4
g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} P"Fu Nudj X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Dg)E"j X4 P"P_g3u"!<g3} 1<P"Fu
Nufj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P_PZg3} 25g!E"gOu"P"Fu Nusj XP4 g!E XglE j X4’P"$ PYg3M"
g;M uOg!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P"Fu NuJj X4!PHg!E"XglE"%QQ@% Hg3E"Qg)E j X4 P Fu
Nucj X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P"P_g3u"!<g3} 1<@Ph DXD,GP"4Uq Nufj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P_PZg3
} 25g!E"gOu"P"Fu Nuuj X4-P$ g!E XglE j X4%P"$ PYg3M"g;M tOg!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P"Fu
NuJj X4!PHg!E"XglE"%@E@% Hg3E"@Q)E j X4 P"Fu Nucj X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P"P_g3u"!<g3} 1<@Ph DXD,GP"4Uqgq
Nurj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Dg)E"j X4 P"Fu NuQj X4 P_g3}"3
=gl}"P"P_g3u !<g3}"1<@Ph DXD,IP"4Uqgq Nuhj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} g!E"P_PZg3} 5g2u"05P"Fu
Nuzj X4 g!E g!E"gl]",~4}Ph DXD,@g)E"j X4 P"P_g3u"!<g3} 1<",~4}Ph DXD4-Pj X4 g!E$SXglE$Sg+uSu Nugj X4 g!E gl] ,~4
}Ph DXD,Dg)E j X4 P_g3} 3=gl} 4AP$ g!E"XglE"j X4 P"Fu NuUj X4 g3E"Q)E j X4 g!E"gl]",~4}Ph DXD,Lg)E"j X4 P Fu
Nu[j X4 P P_g3u"!<g3} 1<,~,}Ph DXD,1Pj X4 g!E XglE j X4 P*Fu Nu‘j X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Lg)E"j X4 P
_g3}"3=gl}"P Fu Nuz%@@% HG3E"@g)E j X4 P_PZg3} 25g!E"gOu"g!E gl] ,~4}Ph DXD,Hg)E j X4 P*P_g3u !<g3}"1<P"Fu
NuTj X4 g!E"gl]",~4}Ph DXD,Bg)E"j X4 P_g3}"3=gl}"P*Fu Nu‘'j X4 g!'E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P_g3} 3=gl
} P*Fu Nuz%@@% Hg3E Qg)E"Jj X4 P_PZg3}"25g!E"gOu"g!E gl] ,~4}Ph DXD,Jg)E j X4 P P_g3u !<g3}"1<P Fu
NuTj X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 P_g3} 3=gl} P"Fu Nu\j’XP4’g!E"XglE"]j X4#P"$ PYg3M g;M"t84,P4,g!E"XglE"j X4 P Fu
Nudj X4’P"$ PYg3M g;M"tOg!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} P"Fu Nuvj X4 g!E"gl]",~4}Ph DXD, @q)
E"j X4 P"P_g3u"!<g3} 1<",~4}Ph DXD49Pj X4 g!E&XglE&g+u&u Nuij X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} ,~,vP$ g!E"XglE"j X4
PAFu Nuh%@@% Hg3E"@Q)E j X4 g!E"gl]",~4}Ph DXD,Hg)E"j X4 P~P_g3u"!<g3} 1<P*Fu NuTj X4 g'E gl1]
,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P Fu Nu‘j X4 g!E"g1]",~4}Ph DXD,Fg)E"j X4 P_g3}"3=g1l}"P_g3}"3=g1l}"P Fu
Nuej X4!PHg!ES$XglES$%@Q@S Hg3ESQRQ)E"j X4 P P_g3u !<g3}"1<@Ph DXD,O0P"4Uq Nuij X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3
=gl} ,~,vP$ g!E"XglE"j X4 P"Fu Nupj X4 g3E"g)E j X4 g!E"gl]",~4}Ph DXD,Hg)E"j X4 P P_g3u"!<g3} 1<@Ph DXD,HP"4Uq
Nu~j X4 g!E"gl]",~4}Ph DXD,Bg)E"J X4 P_g3}"3=gl}"g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P Fu NuWj X4 P_g3}
3=gl} Hg3E @g)E"Jj X4 P_PZg3}"25g!E"g0u"P Fu NuXj X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P"P_g3u !<g3}"1<P"Fu
NuTj X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} P"Fu Nu{j2XP42g!E"XglE"J X4$P*$ PYg3M"g;M ~Wg!E gl] ,~4}Ph DXD,Fg)E j
X4 g!E"P*P_g3u !<g3}"1<P*Fu Nugj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} ,~,yP"$ g3E u*j X4 P"Fu
Nubj X4 (PLXDS$@S P% g!E XglE j X4 g!E"gl]",~4}Ph DXD,Q@g)E"J X4 P Fu NuYj X4 P P_g3u"!<g3} 1<*,~4}PLXDSGS 4 (Pj X4 g!E&Xgl
E&g+usu Nugj X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} 48P48g!E"XglE"j X4 P*Fu Nulj X42P*$ PY
g3M g;M"~Wg!E gl] ,~4}Ph DXD,Jg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu Nugj X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 P_g3} 3=gl} ,~,pP"$ g3E u
*3 X4 PAFu Nu\j X4 g!E gl] ,~4}Ph DXD,Ng)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu NuTj X4 g!E"gl]",~4}Ph
DXD,Ng)E"J X4 P_g3}"3=gl}"P"Fu Nucj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P P_g3u !<g3}"1<@Ph DXD,LP"4Uq
Nugj X4 g!'E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} 41P41g!E"XglE"j X4 P Fu Nuej X4 g3E"g)E j X4 g!E"gl]",~4}Ph DXD,Lg)E"j
X4 PAP_g3u"!<g3} 1<P"Fu Nurj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Dg)E"j X4 P Fu
NuSj X4 P_g3}"3=gl}"P_g3}"3=gl}"@PHg!ESXglES$) X4 P Fu Nuh%@e% Hg3ESEGg)E"J X4 P P_g3u !<g3}"1<g!E gl] ,~4}Ph DXD,
Lg)E j X4 P"Fu NuTj X4 P_g3} 3=gl} ,~,zPLXD$@$ P% g!ES$XglES] X4 P Fu NuzCCCCCCCCCCCCCCcceC] x4
g'E"gl]",~4}Ph DXD,Bg)E"j X4 P Fu NuXj X4 P"P_g3u"!<g3}$1<g!E"gl]",~4}Ph DXD,Dg)E"j X4 P~Fu Nu
Vi X4 P P_g3u"!<g3} 1<@Ph DXD45P% g!E XglE j X4 P~Fu NuEj X4 g3E PEEEEEEJ X4!PLXD$@$S 4_P~4Ug N
uZMMMMMMJ X4 g!E"gl]",~4}Ph DXD,@g)E"Jj X4 P_g3}"3=gl}"P Fu NuZKKKKKKKKKKKKKKKKKK] X4 g!'E gl] ,~4}Ph DXD,@g)E j X4 P"Fu
NuYj X4 P*P_g3u !<g3}"1<*,~4}PLXDS@S 4;Pj X4 g!E&XglE&g+usu Nusj X4 g!E gl] ,~4}Ph DXD,Jg)E j X4!PHg!'E
"XglE"j X4 P~P_g3u !<g3}"1<@Ph DXD,UP*4Ug Nusj X4 g!E gl] ,~4}Ph DXD,Ng)E j X4!PHg!E"XglE"j X4 P~P_g3u !<g3}"1<@Ph DXD,TP"4Uq
Nu\j X4 g!E gl] ,~4}Ph DXD,Tg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu NuTj X4 g!E"gl]",~4}Ph DXD,Bg)E
"j X4 P_g3}"3=gl}"P Fu Nu‘j X4 g!E gl] ,~4)}Ph DXD,Dg)E j X4 P_g3} 3=gl} P_g3} 3=gl} P"Fu Nuz%@@
%" Hg3E @g)E"j X4 P_Pzg3}"25g!E"gOu"g!E gl] ,~4}Ph DXD,Lg)E j X4 P~P_g3u !<g3}"1<P*Fu NuTj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P_g
3} 3=gl} P"Fu Nuaj)XP~4)g3E tTj X4 g!'E gl] ,~4}Ph DXD,Lg)E j X4 P_g3} 3=gl} P*Fu Nugj X4-P$ g'E
"Xg1E"J)XP*4)PYg3M g;M"tCg!E gl] ,~4}Ph DXD,Dg)E j X4 P Fu Nu‘j X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Dg)E"j X4 P_g3}"3=gl}"P Fu
Nugj X4 P_g3}"3=gl}"@PHg!E*XglE*$@@% Hg3E*Q@g)E"j X4 P~P_g3u !<g3}"1<P"Fu Nugj X4 g!'E gl] ,~4}Ph
DXD,Lg)E j X4 P_g3} 3=gl} 4°P$ g!E"XglE"j X4 P"Fu NuYj XP*4 PYg3M g;M"tF4_P$ g!E"XglE"Jj"XP~4"PYg3M g;M"t%P Fu
Nulj=XP4=g!E"XglE"j X4>P"$ PYg3M g;M"t%P"Fu NugjzXP4zg!E"XglE"J X44P~$ PYg3M g;M"tCg!E gl] ,~4}Ph DXD,Lg)E j X4
PFu NuYj X4 P_g3} 3=gl} 4APS g!E"XglE"j X4’P"$ PYg3M"g;M ~3%P"Fu Nu\j X4 g!E gl] ,~4}Ph DXD,Hg)
E j X4 g!E"P"P_g3u !<g3}"1<P"Fu NuTj X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} P"Fu Nuaj XP"4
g3E uTj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P_g3} 3=gl} P"Fu Nu{jaXP4ag!E"XglE"J X4)P"$ PYg3M"g;M ~Wg!E gl] ,~4}Ph DXD,Jg)E j X4
g!E"P*P_g3u !<g3}"1<P*Fu Nuej X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 P_g3} 3=gl} 41P~41g3E u*j X4 P*Fu
Nu4j X4!Ph DXD, VP 4Ug Nugj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P_g3} 3=gl} 4GPS$ g!E"XglE"j X4 P*Fu
NujjCXP*$ PYg3M g;M"~Wg!E gl] ,~4}Ph DXD,Ng)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu Nuej X4 g!E gl] ,~4}Ph DXD,Ng)E j X4 P_g3} 3=gl}
4DP"$ g3E u*j X4 P"Fu Nu\j X4 g!E gl] ,~4}Ph DXD,Vg)E J X4 g!E"P"P_g3u !<g3}"1<P"Fu NuTj X4 g!
E"gl]",~4}Ph DXD,Vg)E"j X4 P_g3}"3=gl}"P*Fu Nucj X4 g!E gl] ,~4)}Ph DXD,Hg)E j X4 P~P_g3u !<g3}"1<@Ph DXD,NP*4Uq
Nugj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P_g3} 3=gl} 4gP4gg!E"XglE"j X4 P"Fu Nujj>XP"4>PYg3M g;M"~Wg!E gl] ,~4}P
h DXD,Pg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu Nuej X4 g!E gl] ,~4}Ph DXD,Pg)E j X4 P_g3} 3=gl} 4?P"4?g3E u*j X4 P"Fu
Nu\j X4 g!E gl] ,~4}Ph DXD,Xg)E j X4 g!E"P~P_g3u !<g3}"1<P*Fu NuTj X4 g!E"gl]",~4}Ph DXD,Xg)E"j X4 P_g3}"3=g
1}"P"Fu Nucj X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 P"P_g3u !<g3}"1<@Ph DXD,QP"4Ugq Nu~j X4 g!E$glls, ~
4}Ph DXD,Fg)E$j X4 P_g3}$3=gl}$g!E"gl]",~4}Ph DXD,Bg)E"j X4 P_g3}"3=gl}"P"Fu NuTj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl}
P"Fu NudCCCCCCCCCCCCCCCCCCCCCCCCCCCC] X4 gl!E*gl]l*,~4}Ph DXD,Bg)E*j X4 P"Fu NuXj X4 P"P_g3u*!<g
3}"1<g!E*gl]*,~4}Ph DXD,Dg)E*j X4 P Fu NuVj X4 P~P_g3u*!<g3} 1<@Ph DXD4‘P% g!E XglE j X4 P*Fu
NuMj X4 g3E PEEEEEEEEEEEEEE] X4!PLXDS$@S$, fP~4Uq Nu {MMMMMMMMMMMMMM§ X4 g!'E gl] ,~4}Ph DXD,@g)E j X4 P_g3} 3=gl} ,~,fP$ g!E.XglE
g+].j X4 P"Fu NuOj X4 P"P_g3u$!<g3} 1<,~HHPS$ g!E XglE j X4 P"Fu Nuvj X4 g!E"gl]",~4}Ph DXD, @q)
E"Jj X4 P"P_g3u"!<g3} 1<",~4}Ph DXD4FPj X4 g!E.XglE.g+u.u Nu4j X4!Ph DXD,ZP"4Uqgq Nuej X4 g!E gl]
,~4}Ph DXD,Tg)E j X4 P_g3} 3=gl} @PHg!E"XglE"j X4 P"Fu Nus%@@% Hg3E"@Q9)E j X4 g!E"gl]",~4}Ph DXD,Tg)E"j X4 P"P_g3u"!<g3} 1<@
Ph DXD, \P"4Uqg Nuej X4 g!E gl] ,~4}Ph DXD,Tg)E j X4 P_g3} 3=gl} Q@PHg!E"XglE"j X4 P"Fu Nupj X4 g
3E"g)E j X4 gl!E"gl]",~4}Ph DXD,Tg)E"j X4 P~P_g3u"!<g3} 1<@Ph DXD, P*4Uq Nuzj X4 g!E g!E"gl]",~4}Ph DXD,@g)E"j X4 P~P_g3u"!<g3
} 1<*,~4}Ph DXD4LPj X4 g!E.XglE.g+u.u Nuzj X4 g!E g!E"gl]",~4}Ph DXD,@g)E"j X4 P P_g3u"!<g3} 1<",~4}Ph DXD4MPj X4 g!E.XglE.g+
u.u Nu~j X4 g!E*gl]*,~4}Ph DXD,Bg)E*j X4 P_g3}*3=gl}*g'E gl] ,~4}Ph DXD,Lg)E j X4 P_g3} 3=gl} P*Fu
NuTj X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P_g3}"3=gl}"P*Fu NutCCCCCCCCCCCCCCCCCCCCCCCCCCCCy X4 gl'E,gl],,~4}Ph DXD,Bg)E,j X4 P~
P_g3u, !<g3}*1<P"Fu NuXj X4 g!E,gl],,~4}Ph DXD,Dg)E,j X4 P"P_g3u, !<g3} 1<P"Fu Nuxj X4 g!E,gll,,~
4}Ph DXD,Fg)E,j X4 P~P_g3u, !<g3}"1<P*Fu Nugj X4!Ph DXD4pP% g!E XglE j X4 g3E PEEEEEEEEEEEEEEJ X4!Ph DXD4WP~4Ug
NubMMMMMMMMMMMMMMJ X4 g!E"gl]",~4}Ph DXD,@g)E"j X4 P_g3}"3=gl}"P"Fu Nuij X4<P$ g!E.XglE.g+].j X4 g!E gl] ,~4
}Ph DXD,Tg)E j X4 P_g3} 3=gl} P"Fu NuX%$@@% Hg3E Qg)E"j X4 g!E gl] ,~4}Ph DXD,Rg)E j X4 P"Fu N
uxXj X4 P*P_g3u !<g3}"l<g!E&gl]&,~4}Ph DXD,Fg)E&j X4 P"Fu NuTj X4 P_g3}&3=gl}&g!E"gl]",~4}Ph DXD,Bg)E"j X4 P"Fu

Nu‘j X4 P_g3}"3=gl}"g!E gl] ,~4}Ph DXD,Dg)E j X4 P_g3} 3=gl} P Fu NutCCCCCCCCCCCCCCCCCCCCCCCCCCCC) X4 glE*gl] *
,~4}Ph DXD,Bg)E*j X4 P~P_g3u*!<g3}"1<P"Fu Nutj X4 g!E*gl]*,~4}Ph DXD,Dg)E*j X4 P"P_g3u*!<g3} 1<@Ph DXD4yP$% g!E XglE j X4 P"F
u NuNj X4 g3E PEEEEEEEEEEEEEE] X4!PLXD$Q@$, ~HP 4Ug NuVMMMMMMMMMMMMMMJ X4 g!'E gl] ,~4}Ph DXD, @g)
E j X4 P*Fu Nu_j X4 P_g3} 3=gl} ,~,fP$ g!E.XglE.g+].j X4 P~P_g3u&!<g3} 1<P"Fu NuTj X4 g'E gl] ,~
4}Ph DXD,Rg)E j X4 P_g3} 3=gl} P*Fu Nuwj X4 g!E"gl]",~4}Ph DXD,@g)E"j X4 P~P_g3u"!<g3} 1<*,~4}Ph DXD4_@Pj X4 g!E.XglE.g+u.u
NuTj X4 g!E*gl]*,~4}Ph DXD,Bg)E*j X4 P_g3}*3=gl}*P"Fu Nugj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P_g3
} 3=gl} 4 P4 g!E"XglE"j X4 P*Fu Nu}j X4 g3E"g)E j X4 g!E"gl]",~4}Ph DXD,Dg)E"j X4 P_g3}"3=gl}"CCCCCCCCCCCCCCCCCCCCCCCCCCCCPAFu
NuXj X4 g!E,gll,,~4}Ph DXD,Bg)E,j X4 P~P_g3u, !<g3}*1<P"Fu Nuvj X4 g!E,gll,,~4}Ph DXD,Dg)E,J X4
P*P_g3u, !<g3} 1<g!E,gll,,~4}Ph DXD,Fg)E,j X4 P"Fu Nuzj X4 P"P_g3u, !<g3}"1<@Ph DXDA4CPJj X4 g'!E XglE j X4 g3E PEEEEEEEEEEEEEE] X
41Ph DXD4DP"4Uq NubMMMMMMMMMMMMMMj X4 g!E"gl]",~4}Ph DXD,@g)E"J X4 P_g3}"3=gl}"P Fu Nu'j X4<P$
g!E.XglE.g+].j X4,P$ g!E XglE %@@% Hg3E @g)E"j X4 P Fu NuTj X4 g!E gl] ,~4}Ph DXD,Tg)E j X4 P_g3} 3=gl} P"Fu
NuxX%@@% Hg3E @g)E"J X4 g!E gl] ,~4}Ph DXD,Rg)E j X4 P"Fu Nuxj X4 P*P_g3u !<g3}"1<g!E(gl] (,~4}Ph DXD,Fg)E(j X4
PFu Nu‘j X4 P_g3}(3=gl} (g!E"g1l]",~4}Ph DXD,Bg)E"j X4 P_g3}"3=gl}"P"Fu NuTj X4 g'E gl] ,~4}Ph
DXD,Dg)E j X4 P_g3} 3=gl} P*Fu NudCCCCCCCCCCCCCCCCCCCCCCCCCCCC) X4 gl!E*gl]*, ~4}Ph DXD,Bg)E*j X4 PAFu
NuXj X4 P P_g3u*!<g3}"1<g!E*gl]*,~4}Ph DXD,Dg)E*j X4 P Fu NuXj X4 P~P_g3u*!<g3} 1<@Ph DXD4NPj X4 g!E XglE j X4 P~Fu
NuLj X4 g3E PEEEEEEEEEEEEEEj X4!Ph DXDA4LP~4Ug NuVMMMMMMMMMMMMMMJ X4 g!E gl] ,~4}Ph DXD,@g)E j X4
P Fu Nu_j X4 P_g3} 3=gl} ,~,fP$ g!E.XglE.g+].J X4 P"P_g3u(!<g3} 1<P"Fu NuTj X4 g!E gl] ,~4}Ph D
XD,Rg)E j X4 P_g3} 3=gl} P"Fu Nuwj X4 g!E"gl]",~4}Ph DXD,@g)E"J X4 P"P_g3u"!<g3} 1<",~4}PLXD$@S$,kPj X4 g!E.XglE.g+u.u
Nutj X4 g!E gl] ,~4}Ph DXD,Ng)E j X4!PHg!E"XglE"j X4 P"P_g3u !<g3}"1<@PLXD$@$,fP"4Uqg Nutj X4 g!E gl] ,
~4)}Ph DXD,Pg)E j X4!PHg!E"XglE"Jj X4 P*P_g3u !<g3}"1<@PLXDSQ$,aP"4Ug Nutj X4 g!'E gl] ,~4}Ph DXD,Vg)E j X4!PHg!E"XglE"Jj X4 P P_
g3u !<g3}"1<@PLXD$@S , fP"4Uqg Nutj X4 g!E gl] ,~4}Ph DXD,Xg)E j X4!PHg!E"XglE"j X4 P"P_g3u !<g3}"1<@PLXD$@$,aP"4Uq
Nuzj X4 g!E gl] ,~4}Ph DXD,Pg)E j X4 g!E"P"P_g3u !<g3}"1<g!E gl] ,~4}Ph DXD,Dg)E j X4 P"Fu Nupj X4 P_g3} 3
=gl} P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Fg)E"j X4 P*P_g3u"!<g3} 1<P*Fu Nu\j X4 g!'E gl] ,~4}Ph DXD,Fg)E CCCCCCCCCCCCCCCCCCCCH X4 P~
Fu NuXj X4 g!E"gl]",~4}Ph DXD, Bg)E"j x4 P~P_g3u"!<g3} 1<P*Fu Nudj X4!Ph DXD4[Pj X4 g!E XglE j
X4 g3E PEEEEEEEEJ X4!PLXD$@S 4>P~4Ug KKKKKKKKKKKKKKKKKKK] X4 g'E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P*Fu
Nuwj X4%Ph DXD, IP% 'E"XglE"CCCCCCCCCCCCCCCCCCCC] X4 g!'ES$gl]$,~4}Ph DXD,Bg)ES] X4 P Fu NuXj X4 P*P_g3
u$!<g3} 1<g!E$gl]$,~4}Ph DXD,Dg)ES$j X4 P Fu NuWj X4 P"P_g3u$!<g3}"1<@Ph DXD4_@P% g!E XglE j X4 P"Fu
NuFj X4 g3E PEEEEEEEEj X4!Ph DXD@EP~4Ug NuuMMMMMMMM3 X4 g!E gl] ,~4}Ph DXD,@g)E j X4 P_g3} 3=gl} ,~,nP$ g!E(XglE (g+] (j
X4 P*Fu NuUjPXP~$ g3E uHj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P*Fu NuUj X4 P_g3} 3=gl} ,~,}Ph DXD,
RP% g!E"XglE"j X4 P*Fu Nu\CCCCCCCCCCCCCCCCCCCC) X4 g!E$gl]l$, ~4)Ph DXD,Bg)ES$SJ X4 P Fu Nuhj X4 P
~P_g3u$!<g3} 1<g!ES$gl]$,~4}Ph DXD,Dg)ES$] X4 P P_g3u$!<g3}"1<P~Fu Nubj X4!PLXD$@S ,zP% g!E XglE j X4 g3E PEEEEEEEEj X4!Ph DXD4
<P"4Uq NuuMMMMMMMMJ X4 g!E gl] ,~4}Ph DXD,Q@g)E j X4 P_g3} 3=gl} ,~,nP$ g!E(XglE(g+] (] X4 P Fu
uUjDXP~$ g3E uHj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P*Fu NuUj X4 P_g3} 3=gl} ,~,}Ph DXD,\P% g!E"XglE"j X4 P~Fu
Nu\CCCCCCCCCCCCCCCCCCCC) X4 g!ESgll, ~4)Ph DXD,Bg)ES$Sj X4 P Fu Nuhj X4 P~P g3u$'<g3} 1<g!E$gl]$,~4}Ph DXD, Dg)E$j
X4 P~P_g3u$!<g3}"1<P"Fu Nubj X4!PLXD$@$,tP%$ g!E XglE j X4 g3E PEEEEEEEEj X4!Ph DXD46P~4Ug
\MMMMMMMMJj X4 g!E gl] ,~4}Ph DXD,@g)E j X4 P_g3} 3=gl} P Fu NuuKKKKKKKKKKKKKKKKKKKKj@XP~$ g3E uTj X4 g!E gl] ,~4}Ph DXD,Fg)E 3
X4 P_g3} 3=gl} P*Fu Nu\CCCCCCCCCCCCCCCCCCCC) X4 gl!E"gl]", ~4)}Ph DXD,Bg)E"j X4 P*Fu NuWj X4 P~P_
g3u"!<g3} 1<@PLXDS@S$,0P% g!E XglE j X4 P Fu NuDj X4 g3E PEEEEEEEEj X4!Ph DXDP~4Uq NuyMMMMMMMM
j X4 g!E"gl]",~4}Ph DXD,Qg)E"j X4 P_g3}"3=gl}",~,nP$ g!E(XglE(g+] (j X4 g!E P"Fu NuY j=XP"4=PYg3M g;M"|F,~,)Ph DXD, 9Pj X4 g!E Xg
1E j X4 P*Fu Nudj X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Ng)E"j X4 P~P_g3u"!<g3} 1<P“Fu NuvCCCCCCCCC
CCCCCCCCCCCJ X4!PLXD$@S ,kP% g!E XglE j X4 g3E PEEEEEEEEj X4!PLXD$@S$S @P~4Ug Nut KKKKKKKKKKKKKKKKKKKJ XP4 g!E"XglE"j X4
P*Fu Nu?j X41PHg ! E$Xg1ESCCCCCCCCCCCCCCCCCCCCY X4 gl!E gl] ,~4)}Ph DXD,Bg)E j X4 P*P_g3u !<g3}"1<P Fu
Nuuj X4 g'E gl] ,~4}Ph DXD Dg)E j X4 P*P_g3u !<g3}$1<@PLXD$@$,gP% g!E XglE j X4 P"Fu Nu=j X4 g3E PEEEEEEEE] X,>P"4Ug
KKKKKKKKKKKKKKKKKKKj@XP$ g!E"XglE"j X4 P"“Fu Nu}j X40P$ g!ES$SXglE$CCCCCCCCCCCCCCCCCCCC] X4
g!E gl] ,~4}Ph DXD,Bg)E j X4 P*P_g3u !<g3}"1<P"Fu Nuuj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P"P_g3u !<g3}$1<@PLXD$@$,cP% g!E Xgl
E j X4 P"Fu Nu=j X4 g3E PEEEEEEEEj X,BP"4Uqgq Nut KKKKKKKKKKKKKKKKKKKJ ‘XP4 ‘g!E"XglE"j X4 P
~Fu NuQj X, 0P, ~4rg!E$XglE$CCCCCCCCCCCCCCCCCCCC) X4 PAFu NuXj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P~
P_g3u !<g3}"1<P"*Fu Nutj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P"P_g3u !<g3}$1<@Ph DXD,~P%Q@ g!E XglE j X4 P"Fu
Nu=j X4 g3E PEEEEEEEEj X,GP"4Ugq Nu KKKKKKKKKKKKKKKKKKKj~X@@P$ g!E"XglE"j X4 P"Fu
Nu{jwXP4wg!E$SXglE$CCCCCCCCCCCCCCCCCCCC) X4 gl'E gl] ,~4}Ph DXD,Bg)E j X4 P*P_g3u !<g3}"1<P~Fu Nutj X4 g!E gl] ,~4}Ph DXD,Dg
)JE j X4 P P_g3u !<g3}$1<@Ph DXD,zP%@ g!E XglE j X4 P~Fu Nu=j X4 g3E PEEEEEEEEj X,KP"4Uq NuUMMMM
MMMMKKKKKKKKKKKKKKKKKKKK j#XP4#g!E"XglE"j X4 P"Fu Nulj X4!PHg!E$XglESCCCCCCCCCCCCCCCCCCCC) X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P"P_g
3u !<g3}"1<P*Fu Nutj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P"P_g3u !<g3}$1<@Ph DXD,vP%@ g!E XglE j X4 P"Fu
Nu=j X4 g3E PEEEEEEEEJj X,O0P"4Uqgq NuUMMMMMMMMKKKKKKKKKKKKKKKKKKKK JCXP$ g!E"XglE"J X4 P"Fu N
upj X4 g!E$CCCCCCCCCCCCCCCCCCCCg!E gl] ,~4}Ph DXD,Bg)E j X4 P"P_g3u !<g3}"1<P"Fu Nutj X4 g!E gl] ,~4}Ph DXD Dg)E j X4 P*P_g3u
1<g3}$1<@Ph DXD,rP%@ g!E XglE j X4 P"Fu Nu=j X4 g3E PEEEEEEEE] X, SP~4Uq Nu KKKKKKKKKKKK
KKKKKKKKjcXP4cg!E"XglE"j X4 P Fu NuQj X, 0P, ~4rg!ESXglESCCCCCCCCCCCCCCCCCCCCY X4 PAFu NuXj X4 gl'E
gl] ,~4}Ph DXD,Bg)E j X4 P"P_g3u !<g3}"1<P"Fu Nutj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P"P_g3u !<g3}$1<@Ph DXD,mP%@ g!E XglE j X
4 P"Fu Nu=j X4 g3E PEEEEEEEE]j X,XP"4Uq NuYMMMMMMMMKKKKKKKKKKKKKKKKKKKKJ X, ~4!P$ g!E"XglE"j X4 P"
Fu Nu{ jwXP4wg!ESXglE$CCCCCCCCCCCCCCCCCCCC) X4 glE gl] ,~4}Ph DXD,Bg)E j X4 P*P_g3u !<g3}"1<P*Fu
Nutj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P*P_g3u !<g3}$1<@Ph DXD,iP%@ g!E XglE j X4 P"Fu Nu=j X4 g3E PEEEEEEEE]j X, \P"4Uq
NuFMMMMMMMMKKKKKKKKKKKKKKKKKKKK] X4 PAFu NuTj X4 g!E"gl]",~4}Ph DXD,Ng)E"j X4 P_g3}"3=gl}"P"Fu
Nufj X4 g!Egll,~4}Ph DXD,Pg)ES$j X4 g!E gl] ,~4}Ph DXD,Jg)E j X4 P"Fu Nu\CCCCCCCCCCCCCCCCCCCCT X4 glE
&gll&,~4}Ph DXD,Bg)E&j X4 P"Fu NuXj X4 P"P_g3u&!<g3}"1<g!E&gl]&,~4}Ph DXD,Dg)E&j X4 P"Fu NuXj
X4 P"P_g3u&!<g3}$1<g!E&gl]&,~4}Ph DXD,Fg)E&j X4 P"Fu NuVj X4 P"P_g3u&!<g3} 1<@Ph DXD,aP%@ g!E XglE j X4 P"Fu
NuGj X4 g3E PEEEEEEEEj X4!PLXD$@$ 48P 4Uqg NuuMMMMMMMMJ X4 g!E"gl]",~4}Ph DXD,@g)E"j X4 P_g3}"3=gl}",~,nP$ g!E(Xg
1E(g+] (j X4 P"Fu NuXj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P"P_g3u !<g3}"1<P"Fu Nugj X4 g!E gl] ,~4}
Ph DXD,Lg)E j X4 P_g3} 3=gl} ,~,pP"$ g3E t*j X4 P"Fu NuTj X4 g!E gl] ,~4}Ph DXD,Lg)E j X4 P_g3} 3=gl} P"Fu
NulCCCCCCCCCCCCCCCCCCCC) X4 g!E"gl]™,~4}Ph DXD,Bg)E"j X4 PAP_g3u"!<g3} 1<P"Fu NuXj X4!Ph DXD, [P$ g!E XglE j X4 g
3E PEEEEEEEEj X,]P*~4Uq Nu KKKKKKKKKKKKKKKKKKKJ X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 g!E"P"P_g3u !<g3}"1<P"Fu
Nurj X4 g!E gl] ,~4}Ph DXD,Hg)E j X4 P_g3} 3=gl} g!E"gl]",~4}Ph DXD,Jg)E"j X4 P Fu Nugj X4 P_g3}"3=gl}"@REP"
$ PYg3M"g;M vCg!E gl] ,~4}Ph DXD,Hg)E j X4 P"Fu NuGj X4 P_g3} 3=gl} @PHg!E"XglE"j X4 P~Fu Nus%@
@% Hg3E"@g)E j X4 g!E"gl]",~4}Ph DXD,Hg)E"j X4 P P_g3u"!<g3} 1<@Ph DXD,GP"4Uq Nu4j X4!Ph DXD,VP~4Ug
NuSj X4%Ph DXD,5Pj X4 g!E XglE j X4 P_g3} 3=gl} P"Fu Nucj X4 g!E"gl]",~4}Ph DXD,Ng)E"j X4 P~P_g3u"!<g3} 1<@Ph DXD, |P"
4uq NuSj X4%Ph DXD,3Pj X4 g!E XglE j X4 P_g3} 3=gl} P"Fu Nucj X4 g!E"gl]",~4}Ph DXD,Ng)E"j X4
P*P_g3u"!<g3} 1<@Ph DXD,~P"4Uq NuTj X4 g!E gl] ,~4}Ph DXD,Fg)E j X4 P_g3} 3=gl} P"Fu Nudj X4 g
IE"g1]",~4}Ph DXD,Ng)E"j X4 P P_g3u"!<g3} 1<@PLXDS$QRS , ‘P 4Ug NuSj X4%Ph DxXD,7Pj X4 g!E XglE j X4 P_g3} 3=gl} P*Fu
Nudj X4 g!E"gl]",~4}Ph DXD,Ng)E"j X4 P P_g3u"!<g3} 1<@PLXD$@$,bP 4Ug NulCCCCCCCCCCCCCCCCCCCC) X4!Ph DXD, L
P$ g!E XglE j X4 g3E PEEEEEEEEj X, P~4Uq NuJl KKKKKKKKKKKKKKKKKKK] X4 g!E P*Fu Nupj X4 g
IE"g1l]",~4}Ph DXD,@g)E"j X4 P P_g3u"!<g3} 1<“HHHHHHHPJ X4 g!E (XglE (g+u (u Nuij X4!PHg!ESXglESJ X4!Ph DXD4"P% g!E XglE j X4 g!E
"PAP_g3u !<g3}"1<P*Fu Nujj X4!PLXD$ES P% g!E&XglE&j~X@REPS g!E"XglE"j X4 P~P_g3u&!<g3}"1<CCCCP*Fu
NuXj X4 g!E gl] ,~4}Ph DXD,Bg)E j X4 P*P_g3u !<g3}$1<P"Fu Nuxj X4 g!E gl] ,~4}Ph DXD,Dg)E j X4 P P_g3u !<g3}&1<P"Fu
Nuaj X4!Ph DXD,EP% g!E XglE j X4 g3E PEEEEEEEEj X4!Ph DXD4XP"4Uq Nu MMMMMMMMKKKKh LX4 cya!
4L4Lg~ 4L4Lg~
4L4Lg~

4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4L
a~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~
4L4Lg~ 4L4Lg~
4L4Lg~
4L4Lg~

4L4Lg~

4L4Lg~
4L4ALg~ 4L4ALg~
4L4Lg~
4L4Lg~
4pdpdpdpdpiplpdpipipdpipipipdpipipdpipipdwiwg~
<-- That was the end of the code segment, where we overflow the instruction pointer past OxFFFF.
Also, remember when we talked about the relocation table, and how it has to corrupt some pair of bytes in our file? That’s right here: —-> XX <-——

If you load this program in a debugger and look at memory approximately starting at CS:FFFF, you’ll see the XX changed to something else (unpredictable).

** 28. PAPER.EXE *x*

Executing this paper in DOS, with an AdLib-compatible sound card (such
as the Sound Blaster) configured at 0x388, will play some music. The
music to play is specified on the command line, using a subset of a
standard text-based music format called ABC.[ABC’05]. For example,
invoking

PAPER.EXE C4C4G4G4A4A4G8G8F4F4E4E4D4DACS

will play a segment of the "Now I know my ABC’s"
The language supported is as follows:

song and then exit.

-G Basic notes
a-g Same, up one octave
4 Rest
~ (Prefix) Sharp
(Prefix) Flat
(Prefix) Natural - does nothing since key of C is assumed
(Suffix) Up one octave
, (Suffix) Down one octave
2-8 (Suffix) Set duration of note to this many eighth notes

Running PAPER.EXE
song. Available
"-bluehair". There’s

with arguments
songs include:
plenty of

like "-song" will play a built-in
"-alphabet", "-plumber", and
space in the data segment for more!

Running PAPER.EXE without any arguments will play a default song.

** 28. Running, debugging **

Speaking of running the program, old-style
64-bit versions of Windows. So if you
around with a sound card, you can run ABC-compiled programs inside an
emulator. DOSBox is an excellent choice. It runs on pretty much all
platforms (well, it doesn’t run on DOS, but on DOS you can just use
DOS) and tends to just work. You have to do something like

EXE files no longer run on
do not have an old DOS computer

MOUNT C C:\DOWNLOADS\ABC\

in order to mount one of your real directories as a "hard drive". To
verify that PAPER.EXE is printable with no beeping or funny
characters, you could do

COPY PAPER.EXE CON

to copy it to your console, or COPY PAPER.EXE LPTl to copy it to your
simulated computer’s printer (spoiler: It doesn’t have one). But why
bother? You’re reading PAPER.EXE right now!

I used DOSBox frequently during development, and modified its
debugger, especially for understanding the header values are actually
used. The ABC compiler outputs each of the intermediate languages for
a program as it compiles, as well as lightly-commented X86 assembly
with address maps back into the code segment, which makes it possible
to easily set breakpoints on particular pieces of code. Since
compiling other people’s software on Windows is a special nightmare, I
frequently worked inside a Linux virtual machine (VirtualBox)
containing a DOS virtual machine (DOSBox), a surreal scenario that I
was tickled to find a practical use for. Let us one day simulate
Windows 7 on our iPhones 21 so that we may render this development
environment one level deeper.

My modifications to DOSBox are included in the ABC source repository,
although they are not necessary to run ABC-compiled programs. When
running these programs under DOSBox with the debugger enabled, it will
complain about a "weird header" when loading the program (you’re
tellin’ me!) and the debugger will output the error

Illegal/Unhandled opcode 63
upon exiting (because we do execute an illegal opcode). For cosmetic

style points, the local version of DOSBox has been modified to instead
output

Thank you for playing Wing Commander!

** 29. PAPER.C **

This section contains the C source
paper. It may be
literals) make their way into
laugh at my many troubles:

code that was compiled into this
interesting to see how the code (e.g. string
the data for the paper. You may also

- I'm playing music, which has some dependency on timing, but there
is no way to get access to the system clock. Instead, I use for
loops with built-in constants determined empirically. At least
this technique of relying on the CPU’s cycle timing for delays
was common in the DOS era, so this is, like, a period piece.

- However, since the routine that calculates lengths performs a
multiplication, and multiplication of m * n is O(n), the delays
are not actually linear.

- You can see the many places where I’'m applying explicit casts,
either because an implicit coercion is not yet implemented for
ABC (I want to do it right, and the rules are a little subtle),
because some operation is not yet available at char or long type
(I implemented 16-bit first), or for efficiency.

- You can see the reliance on string literals for efficient lookup
tables, in keeping with the "printable" theme.

I also still need to fill up 20 pages in this ridiculously small font!

/-k-k-k-k-k-k-k-k**
* paper.c, Copyright (c) 2017 Tom Murphy VII Ph.D.

This copyright notice must appear in the compiled
version of this program. Otherwise, please distribute
freely.

Plays music in a simplified ABC notation, given on the

*
*
*
*
*
* command line, or one of several built-in songs.
*

*

KKK KKK KK KKK KK KKK KKK KKK KK KKK KK KKK KKK KKK KKK KKK KKK K XK

int _out8(int, int);
int _exit();

unsigned char *meta_note = "Now this is the part of the data segment "
"that stores global variables. This is actually a string constant in "

"the program itself, so you’ll see it again when I show you the source

"code later. We have almost 64kb of space to store stuff, although "
"this segment is also used for the stack of local variables and "
"arguments, and would be used for malloc as well, if it were "
"implemented. Storing a string like this is basically free, because "
"everything in it is printable, aside from the terminating \\0 "
"character. At program startup, non-printable characters are "
"overwritten by instructions in the code segment. Like, here’s one: "
"-—> \xFF <-- It’s stored in the data segment as a printable "
"placeholder.";

// Adlib uses two bytes to do a "note-on", and the notes are specified

// in a somewhat complex way (octave multiplier plus frequency.) These

// tables give the upper and lower byte for each MIDI note. Computed

// by makefreqg.sml.

unsigned char *upper = "\x20\x20\x20\x20\x20\x20\x20\x20!!t1rrrerrren
"\x22\x22\x22\x22\x22 \X22\X22# # # # # 6 L& &&EE" 1 [1 FHIFF Tt
"

/////22222223333366666667777T:::::::;;;;;>>>>>>>"
..... ?22222222222\0";
unsigned char *lower = "\xA9\xB3\xBD\xC9\xD5\xE1\XEF\xFD\x0C\x1C-2Qf{"

"\x91\xA9\xC2\xDD\XFA\x18" "8Y}\xA3\xCB\xF6#R\x85\xBA\xF3\x18"

"8Y} \xA3\xCB\xF6#R\x85\xBA\xF3\x18" "8Y}\xA3\xCB\xF6#R\x85\xBA"
"\xF3\x18" "8Y}\xA3\xCB\xF6#R\x85\xBA\xF3\x18" "8Y}\xA3\xCB\xF6#R"
"\x85\xBA\xF3\x18" "8Y}\xA3\xCB\xF6#R\x85\xBA\xF3\x18" "8Y}\xA3\xCB"
"\XF6#R\x85\xBA\XF3\x18" "8Y}\xA3\xCB\XF6#R\x85\xBA\XF3\XFF\XFF"
"\XFF\XFF\XFF\XFF\XFF\XFF\XFF\XFF\xFF\0";

unsigned char *default_song =
WABD’B" "AF’3AF’3E’G"
"AB D’A" "E’3E’3D’6"
"AB_D’A" "D’4E’2_D’2B2A2z2" "A2E’4D’4";

unsigned char *alphabet =
"C4C4G4G4A4R4G8" "F4F4E4E4D4D4C8"
"G4G4F4F4E4E4D8" "G4G4F4F4E4E4D8"
"C4C4G4G4A4A4G8" "F4F4E4E4D4D4C8";

unsigned char *plumber =
"e2ededc2edg2z6G4"
"cz2Gz2EzA2B" 27 AA2"
"G2e2g2a3fg3edcdBz";

unsigned char *bluehair =
"~A8z2F4"G8F3c4"A4F4~"A4"G8z8"
"~A8z2c8z2"c8227d8z2f8z2F4F4F4F8";

int Adlib(int reg, int value) {
int i;
_out8((int)0x0388, (int)reqg);
// We have to wait "12 cycles" after writing the port.
for (1 = 0; i < (int)12; i++) {}
_out8((int)0x0389, (int)value);
// And 84 cycles after writing the value. These numbers are
// probably far too high; recall that a for loop like this
// has to jump through every rung in the program! (i.e.,
// A single iteration is linear in the program size.)
for (1 = 0; i < (int)84; i++) {}
return 0;

}

int PlayNote (int midi_note) {
// First turn note off; silence is better than weird "accidentals.
Adlib ((int) 0xBO, (int)O0x00);
// midi_note = 128 actually accesses the terminating \0 in the
// above strings, which is what we want to turn off the channel.
Adlib ((int)0xA0, (int) (lower[midi_note]));
Adlib ((int)0xBO, (int) (upper[midi_note]));

}

// Zero all the adlib ports, which both silences it and
// initializes it.
int Quiet () {
int port;
// Clear the main tone first, so that we don’t hear artifacts during
// the clearing process if a note is playing.
Adlib ((int)0xBO, (int)0x00);

for (port = (int)O0x01l; port <= (int)O0xF5; port++) {
Adlib ((int)port, (int)O0x00);
}

}

int streg(unsigned char *a, unsigned char *b) {

int 1i;
for (i = 0; /* in loop */; i++) {
int ca a[il, cb = b[i];
if (ca != cb)
return (int)O0;
if (ca == (int)O0)

return (int)1;

// ABC provides no standard library, so you gotta roll

// your own. int main(int argc, unsigned char **argv) {
int strlen(unsigned char *s) { int song_idx = 0, j, midi_note;
int len = 0; unsigned char *cmdline = *argv;
while ((int)*s != (int)0) { unsigned char *song;
len++; MakeArgString (&cmdline);
s = (unsigned char *) ((int)s + (int)1);
} // First test for known songs. After that, if we have a command line,
return len; // use it. Otherwise,
} if (streqg(cmdline, (unsigned char *)"-alphabet")) {
song = alphabet;
// DOS command lines always start with a space, which is annoying. } else if (streg(cmdline, (unsigned char *)"-plumber")) {
// Strip that. DOS also terminates the command line with 0x0D, not song = plumber;
// 0x00. This function updates it in place so that we can use normal } else if (streqg(cmdline, (unsigned char *)"-bluehair")) {
// string routines on it. song = bluehair;
int MakeArgString(unsigned char **argstring) { } else if (strlen(cmdline) > (int)0) {
unsigned char *s = *argstring; song = cmdline;
while (*s == (int)’ ") { } else {
s = (unsigned char *) ((int)s + (int)1); song = default_song;

} }

*argstring = s;

Quiet () ;
while ((int)*s != (int)0x0D) {
s = (unsigned char *) ((int)s + (int)1); // Initialize the Adlib instrument.
} Adlib ((int)0x20, (int)0x01); // Modulator multiple 1.
*s = (unsigned char)0; Adlib ((int)0x40, (int)0x10); // Modulator gain ~ 40db.
return 0; Adlib ((int)0x60, (int)O0xF0); // Modulator attack: quick. Decay: long.
} Adlib ((int)0x80, (int)0x77); // Modulator sustain: med. Release: med.
Adlib ((int)0x23, (int)0x01); // Carrier multiple to 1.
// We pick octave 4 as the base one; this is fairly canonical and Adlib ((int)0x43, (int)0x00); // Carrier at max volume.
// benefits us since this array is all printable. Note that A4 is Adlib((int)0x63, (int)O0xF0); // Carrier attack: quick. Decay: long.
// higher than C4, since octave 4 begins at the note C4. This Adlib ((int)0x83, (int)0x77); // Carrier sustain: med. release: med.
// array maps A...G to the corresponding MIDI note.
unsigned char *octave4 = for (;;) {
non A = 57 unsigned int len;
", // B =59 midi_note = GetMidi (song, &song_idx, &len);
"o" // C =48 =0 if (midi_note == (int)0) break;
"2" // D 50 PlayNote (midi_note) ;
van// E =52 for (j = (int)0; j < len; j++) {}
"s" // F =53 }
"1y // G =55
// Parse a character ¢ (must be capital A,B,C,D,E,F,G) Quiet ()
// and interpret any suffixes as well. return 0
int ParseNote (unsigned char *ptr, int c, int *idx) { }
int midi;
int offset = ¢ - (int)’A’;
int nextc;
midi = octaved[offset]; ** 30. Is this useful for anything? **
for (;;) {
nextc = (int)ptr[*idx]; No. This is a SIGBOVIK paper. <3
switch (nextc) {
case "\"’:
// Up octave. ** 31. Future work **
midi += (int)12;
break; There are many code size optimizations possible, and while nontrivial
case ',’: programs can fit in 64k (such as the one in this paper), larger ones
// Down octave. will run up against that boundary quickly. Probably a factor of about
midi -= (int)12; 4 can be gained through a few hard but straightforward optimizations.
break; Can we Dbreak free of the 64k boundary? Earlier we noted that when
default: execution exceeds CS:0xFFFF, it simply continues to (CS:0x00010000
// Not suffix, so we’re done (and don’t consume unless a jump 1is executed across that boundary; this address 1is
// the character.) pointing to bytes that are part of our program image (this text is
return midi; there, in fact), so conceivably we could write code here. One
} significant issue is that interrupts, which are constantly firing,
*idx = *idx + (int)1; push 16-bit versions of CS and IP onto the stack, and then RETF
} (return far) to that address. This means that if an interrupt happens
} while we are executing in this extended address space, we will return
to CS:(EIP & OxFFFF). If we had control over interrupts, this might be
unsigned int ParseLength(unsigned char *ptr, int *idx) { a good way to return to the normal 16-bit code segment (i.e., to
int ¢ = (int)ptr[*idx]; perform a backwards jump), but as discussed, we do not. We may be able
if (c >= (int)’2’ && c <= (int)’8’") { to globally suppress interrupts, like by using our single illegal
int m = ¢ - (int)’1’; instruction interrupt during initialization, with the interrupt
*idx = *idx + (int)1; handler pointing Jjust to code that we control (and never returning
return (unsigned int)2048 * m; from it). This leaves the interrupt flag cleared, as discussed. The
} computer will be non-functional in many ways, because the operating
return (unsigned int)2048; system will no longer run, but we might still be able to do
} rudimentary port-based I/0, or build our own non-interrupt-based OS.
With interrupts suppressed, we can’t use the interrupt trick to return
// Parse the song description (ptr) starting at *idx. Updates *idx to to CS:0000. However, my reading of the Intel manual [INTC] seems to
// point after the parsed note. Updates *len to be the length in some imply that a jump performed from this region can be forced into 16-bit
// unspecified for-loop unit. Returns the MIDI note to play next, or 0 mode (thus Dbeing subject to the & OxFFFF overflow) with an address
// when the song is done. size prefix; however, this does not seem to be the case 1in DOSBox.
int GetMidi (unsigned char *ptr, int *idx, unsigned int *len) { Given how unusual this situation is, it may even be a bug in DOSBox’s
int ¢, midi_note; CPU emulator. Having access to a full megabyte of code (it still needs
int sharpflat = 0; to fit in the EXE container) would be exciting, since it would allow
for (;;) | us to build much more significant systems (e.g. standard malloc and a
c = (int) (ptr[*idx]); floating point emulator); more investigation is warranted here.
// End of string literal.
if (¢ == (int)0) return 0; I initially designed CIL with the thought that it could be used for
// End of command-line argument. multiple such "compile C to X" projects. These are primarily jokes,
if (c == (int)0x0D) return 0; but can occasionally be of legitimate use for low-level
domain-specific tasks where the existence of a reasonable and familiar
// Advance to next character. high-level syntax pays for the effort of writing a simple backend.
*idx = *idx + (int)1; (When making such a decision I like to also weight the effort by the

enjoyment of each task: i.e., the cost is like
switch (c) {

case "' (1 - fun of writing backend) * time writing backend vs
sharpflat++; (pain of writing low-level code by hand) *
break; time writing low-level code by hand
case '_':
sharpflat-—; ... but I have been informed that not all computer work is done purely
break; for fun.) This "portable assembler" application of C remains relevant
case ’'=': today, and CIL or LLVMNOP is a much simpler than GCC or LLVM.
// Nothing. We assume key of C, so there are no naturals.
break; Anyway, I discovered that the design of such a thing is not so easy.
case "z': While it 1is possible to "compile away" certain features by turning
*len = Parselength (ptr, idx); them into something "simpler," it’s not straightforward what feature
// No sound. set to target. For example, for ABC, we compile away the ‘ operator
return 128; into &, ~, -, and +1. In another setting, | may very well be present
default: instead of &. We normally think of the >> and << shift operators as
if (c >= (int)’A’ && c <= (int)’G’) { being fundamental, but in ABC they are inaccessible. I find the
midi_note = ParseNote (ptr, c, idx) + sharpflat; expression forms like "a < b" much easier to think about then the
*len = Parselength (ptr, idx); combined test-and-branch version, but the latter is much better when
return midi_note; targeting x86, and important for producing reasonable code in ABC. I
} else if (c >= (int)’a’ && c <= (int)’g’) { do think it would be possible to develop a simple and general language
midi_note = ParseNote(ptr, c - (int)32, idx) + (int)12 + sharpflat; for this niche where certain constructs could be compiled away in
*len = Parselength (ptr, idx); favor of others, at the direction of the compiler author, but such a
return midi_note; thing is firmly future work.
}
}
} On the topic of taking away, one might ask: What is the minimal subset

} of bytes we could imagine using?

There are some trivial subtractions: We never emit the BOUND

instruction (0x62, lowercase b) and it does not seem useful; a few of ** 32. Acknowledgements **

the segment prefix instructions are also unused. The instructions like

"ASCII Adjust After Addition" are currently unused, but since they act The author would like to thank the fastidious SIBOVIK "Program" Committee
on AX in a predictable way, they could provide ways to improve the for "Evaluating" my paper.

routines to load immediate values. But we’re talking about reducing
the surface, not increasing it. And speaking of loading immediate
values, we do certainly make use of the entire set of printable bytes ** 33. Bibliography **
in these routines (as arguments to XOR, SUB, PUSH, etc.), but on the
other hand, we can also reach any value from a known starting point by

INC and DEC, taking at most Ox7FFF instructions (half the size of the [KNPH’14] Tom Murphy VII. "New results in k/n Power-Hours." SIGBOVIK,

code segment, unfortunately). More essential is our ability to set a April 2014.

register to a known value, which today requires two or more printable

values whose bitwise AND is 0. Sadly, though we could go through some [MTMC’ 08] Tom Murphy VII. "Modal Types for Mobile Code." Ph.D. thesis,

pains to remove bytes from the gamut here and there, no natural subset Carnegie Mellon University, January 2008. Technical report

like "only lowercase letters" or "alphanumeric" Jjumps out as a CMU-CS-08-126.

straightforward extension; we rely on the control flow in the late

lowercase letters (Jcc) and the basic ops in the early punctuation [LLVM’ 04] Chris Lattner and Vikram Avde. "LLVM: A Compilation Framework for

(AND/XOR), not to mention that the EXE header barely works within the Lifelong Program Analysis and Transformation." CGO, March 2004.

existing constraints with access to both "small" (0x2020) and "large"

(0x7e7e) constants. [CKIT’00] David Ladd, Satish Chandra, Michael Siff, Nevin Heintze, Dino
Oliva, and Dave MacQueen. "Ckit: A front end for C in SML." March

Others have produced compilers for high-level languages with very 2000. http://smlnj.org/doc/ckit/

reduced instruction sets. In an extreme case, Dolan shows [MOV’13]

that the mov instruction on its own is Turing-complete (note however [INTC’01] Intel Corporation. "IA-32 Intel Architecture Software Developer’s

that this requires a "single absolute jump" to the top of the program, Manual. Volume 2: Instruction Set Reference." 2001.

an issue similar to what we encounter in printable x86, only we do not

cheat by inserting any out-of-gamut instructions) . Another [ABC’05] Steve Mansfield. "How to interpret abc music notation." 2005.

enterprising programmer, Domas, implemented a C compiler that produces

only MOV instructions [MVF’16]. I didn’t 1look at it while writing ABC [MOV’13] Stephen Dolan. "mov is Turing-complete". 2013.

(spoilers!) but he avoids using any JMP instruction the same way that

I exit the program (generating illegal instructions but rewriting the [MVF’16] Chris Domas. "M/o/Vfuscator2". August 2015.

interrupt handler). While awesome, the problem is somewhat different https://github.com/xoreaxeaxeax/movfuscator

from what ABC solves; here we are fundamentally concerned with what

bytes appear in the executable, which influences what opcodes are

accessible (and their arguments and addressing modes), but is not the Please see http://tom7.org/abc for supplemental material.
only constraint created. For example, in MOV-only compilation, the

program’s header does not need to consist only of MOV instructions,

and so the compiler’s output does not suffer the same severe code and

data limitations that DOS EXEs do. (The executables it produces are

extremely large and slow; they also seem to have non-MOV

initialization code.) The MOV instruction 1is also very rich, and no

versions of it are printable!

Of course, everyone knows that even unary numbers (just like one
symbol repeated a given number of times) is Turing complete, via Godel
encoding. So what’s the big deal?

##
#H# HEHE
#H# HH#
#i#
#H#H# Lidissssasssi
LEE N 254 i FhEFHEH A
#H# #i# FHEFH R
#i# ####
i ## ##sHH
Liiiasasd #H# =H#E HH #ESSHEH
#i# ## #i# #ESSHEH
LA 45 4 ## #HSSTHH
#H# HEREERE ## #ESHES
=#i#HhHd= HH= H# ## #ESSHE
#H# H# #H ## #ESSHEH
LEE N 2525505 B #ESSHE
#i# i # ## #ESSHE
L ia sl Lisiasasd #ESSHE
#hESSHRES s i L]
Liddasasassssssisasaiaiisis] #EEESSSHE
#i#—— —##%%

| S e e o o o g e

#i# HEEEER
FhEdRER A=t
fiiiasasd
#hEEHAEH
fiiiadasd
fiidasisd
#hHdHAH
#h#HH
4

#4

FhEFRER RS =
iissassssssssssi #
HEHHEEE AR

Figure 7. Printable X86

** Appendix **

Here is a histogram of every character that appears in
this file. There are no non-printable bytes.

char byte number of occurrences
0x20 186844
! 0x21 1042
" 0x22 1616
0x23 3216
$ 0x24 344 This
% 0x25 3859
& 0x26 73 column
’ 0x27 312
(0x28 8683 is
) 0x29 822
* 0x2A 512 unintentionally
+ 0x2B 193
0x2C 1718 left
0x2D 27759
. 0x2E 7325 blank.
/ 0x2F 224
0 0x30 1015
1 0x31 1383
2 0x32 542
3 0x33 1110
4 0x34 2231
5 0x35 360
6 0x36 299
7 0x37 172
8 0x38 295
9 0x39 101

0x3A 1418
0x3B 270
0x3C 402

0x3D 985
0x3E 34
0x3F 94
0x40 11820
0x41 509
0x42 320
0x43 875
0x44 1297

0x45 2326
0x46 715

0x47 214
0x48 249
0x49 418
0x4A 107

0x4B 342
0x4cC 343

S A, NKXEJAHMWOWOZEERGHIQOMEBUOQW P ® 0V I AN -

0x4D 448
0x4E 668
0x4F 248 OR IS IT 2!?!
0x50 2350
0x51 8240
0x52 143
0x53 371
0x54 358
0x55 151
0x56 82
0x57 123
0x58 2369
0x59 62
0x5A 136
0x5B 103
0x5C 136
0x5D 353
0x5E 703
_ 0x5F 23595
N 0x60 19
0x61 5196
0x62 1221
0x63 2364
0x64 2294
0x65 8596
0x66 1340
0x67 4248
0x68 3251

0x69 5307
0x6A 1378
0x6B 487

0x6C 2981
0x6D 1969
0x6E 4833
0x6F 5094

e N X Ed e TR QUWOBS3HAUWREITAQHDQLQTR

0x70 1770
0x71 268
0x72 4313
0x73 4849
0x74 7157
0x75 3332
0x76 676
0x77 1211
0x78 836
0x79 1023
0x7A 172
0x7B 46
0x7C 109
0x7D 861

~ 0x7E 16972

total 409600

The following characters were inserted to make the
above converge: 4853

oy oy of y ofy
Insect track
Debugging
oy ofy of ofy

25 Amazon Web Services: Field observations related to arachnid
cohabitation

Riva Riley

26 Blackberry Debugging
Allison M. Gardner and Kristen S. Gardner

149

Title: Amazon Web Services: field observations related to arachnid cohabitation
Author: Riva Riley (a human person)

Key words/phrases: wolf spider, Amazon rainforest, arachnid appreciation, predator/prey
interactions

Abstract: Humans and arachnids have had a long, tense coexistence that stretches out over the
entirety of the humans’ relatively puny evolutionary history. Behavioral studies even suggest that
humans have an innate fear of arachnid locomotion, and it has been demonstrated many times
that humans recoil instinctively when they see a spider scuttling along, minding its own business.
Here I present field observations made in the Peruvian Amazon Rainforest, Madre de Dios
locality. My field experience provides evidence that the instinctive response humans feel toward
arachnids may be reversed, and that an explicit symbiosis can form between humans encroaching
on wild territory and the spiders that colonize their easily infiltrated dwellings. This symbiosis
provides the spider with easily navigable terrain and a steady supply of prey (mostly insects
drawn by the crumbs and refuse of human lifestyles), and provides to the human a cleaner
environment without the annoyance of pests like roaches and the potential harm of disease
vectors, like mosquitoes.

Experimental subjects: Unwilling in both cases, the subjects of this case study were the author,
a field scientist in the Amazon rainforest, and an adult wolf spider the author called Octavion
starting from day 11 of their cohabitation.

Catalogue of interactions:

Week one: I discovered the den of the 20cm long (torso ~7.5cm longitudinally, legs 10mm in
circumference and well-guarded with numerous bristles) wolf spider on the second evening after
my arrival the Centro de Investigacion y Capacitacion Rio Los Amigos (CICRA). It was three
hours past sunset and the only light came from my small flashlight- [saw in the thin beam of my
light that the hollowed out area behind my sink was crawling (literally) with a beheaded
cockroach carcass. I slowly turned my head, and the 20cm wolf spider was whirling down my
wall. I shrieked and lifted my legs off the ground- it was fortunate I was still on the toilet. My
vocalizations did not seem to have any effect on the spider’s behavior (though the other scientists
did protest). The spider arrived behind the sink, grabbed the cockroach body, and began to eat. |
was horrified. The following morning, the spider was still there, as it was the following night,
and the morning after that.

Week two: I had been tiptoeing around a spider roughly the size of a Chihuahua for several days
now. I was scared to use my own bathroom and began to lose hope that it would leave. |
considered asking one of the other scientists to remove it for me, but I did not want to lose what
we colloquially referred to as ‘field biologist trail cred’ on a spider (the social dynamics and
hierarchies of field stations are the subject for another paper). I also considered using my heavy
snake-proof boots to pummel it to death, but when I got a look at the hulking scaffold of spider
flesh I was up against, I became concerned. If I failed to defeat the spider, I might start an
escalating series of antagonistic interactions whose natural end I did not want to discover. I

150

began to use my bathroom carefully, noting the spider’s habits. The spider was mostly nocturnal,
and so I did not use the bathroom during the night for several days. Its den is kept mostly clean-
it eats or removes stray insect parts. At the end of the week I discovered that singing a soft song
and shining my light alerts the spider to my presence, which it has also decided to tolerate. As a
response to those stimuli, the spider retreats to its den, and so I learn how to use my bathroom
while sharing the territory. At the end of the week I named the creature ‘Octavion’. The other
field scientists all complained about cockroaches getting into their luggage; I had no idea what
they are talking about.

Week three: Octavion and I have come to know one another. I have composed a specific song to
sing when communicating with the spider, and he seemed to respond differently to this song as
compared to ABBA’s ‘Dancing Queen’. I talked to him as I brushed my teeth and combed my
hair, and he would cue in to the vibration patterns of my voice and sit on a ledge to listen. On the
last day of this week I awoke in the middle of the night only to see Octavion’s underbelly mere
inches from my face- he had climbed onto my mosquito net. Disquieted but not terribly so, I fell
back asleep, and from here on out, I receive notably fewer mosquito bites through the netting in
the nighttime. Octavion consistently chooses not to bite me through the mosquito net.

Week four: A second wolf spider arrived in my room. I was not enthusiastic, as it sat on my
hairbrush and could jump over a meter in a single bound. It was gone within a few hours, and
Octavion spent longer than usual in its den. I wondered if Octavion were female, and how I
would deal with baby spiders. I began thinking of ways to work out a system for inviting guests
over. I have already alerted my friends at the field station to follow appropriate protocol if we are
congregating in my room in the evening.

Week five: With no parting communication, Octavion has gone. His den is empty and I spotted a
roach in my cabinet. This made sense, as he was a spider, and spiders do not communicate
information like this. Nonetheless, I experienced a sense of loss. Another field scientist
mentioned a large wolf spider lurking in a different bathroom. I hoped Octavion was happy
without me, but not too happy.

Weeks six-eight: Octavion eventually leaves the station. I try not to worry about him, as he is a
spider, and cannot worry about me.

Discussion:

My room had significantly fewer pests during the time of Octavion’s cohabitation, including
cockroaches, cicadas, crickets, and beetles.

151

0 S
.
O !
8 '
c l-f) — |
p— b |
~
(@)
o
a 2
E ‘
-
- I :
© (To T : '
(@)] I
] |
— M 1
) , :
> L
© o

[|
With Octavion Without Octavion

Figure 1: average number of insect pests in my jungle bedroom with Octavion
and without Octavion (p=0.02)

Octavion was not messing around. My affection for him seems unnatural to other humans, and it
requires effort and coaxing to get others to appreciate the great service he did for me. In fact, |
wonder if my affection was not simply an adaptive response to help overcome humanity’s
aversive reaction to arachnids in the face of their overwhelming benefit. If other humans could
tolerate our arachnid brethren more openly, fewer pests and insect bites might become the norm.
I believe there is a path to more directed mutualisms between spiders and humans that might
completely change life as we know it. Spiders are small and mobile, and can access areas
humans cannot. We should take advantage of this tremendous resource literally crawling at our
feet (don’t jump!). By establishing communications between humans and arachnids, we may be
able to harness their ick factor for our own good. These associations will minimize potentially
dangerous insect bites and provide companions for the people they live with. To take advantage
of an arachnid association, I intend to establish more formalized communication protocols to
help cement the bond between human and arachnid in the modern era.

152

Blackberry Debugging
Allison M. Gardner™ and Kristen S. Gardner?*
1School of Biology and Ecology, University of Maine, Orono, ME

?Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
*These authors did not contribute equally to this work.

Background. Culex pipiens Linnaeus (Diptera: Culicidae), an important mosquito vector for West Nile
virus in urban landscapes throughout the northeastern and midwestern United States, oviposits in a
variety of natural and artificial containers such as small ponds, discarded tires, and storm water catch
basins. These habitats are mainly fueled by plant-based detritus from the surrounding terrestrial
vegetation. Detritus type and quantity determine the composition and abundance of microbial
communities that form in container habitats as microbes break down terrestrial leaf litter. In turn, these
bacteria and fungi provide a direct food source for mosquito larvae and influence oviposition behavior of
gravid female mosquitoes through emission of oviposition attractants and stimulants. Thus, detritus from
terrestrial plants and its associated microbes play a critical role in determining vector distribution,
relative abundance, and life history traits that are important for vector-borne pathogen transmission
including adult body size, longevity, biting rates, and vector competence. In this study, we test the
hypotheses that leaf detritus of three native and three invasive shrubs asymmetrically affects oviposition
site selection and adult emergence rates of Cx. pipiens.

Methods. Six focal plant species were selected among shrubs common within the geographic range of Cx.
pipiens: Lonicera maackii (Dipsacales: Caprifoliaceae; Amur honeysuckle), Elaeagnus umbellata (Rosales:
Elaeagnaceae; autumn olive), Rosa multiflora (Rosales: Rosaceae; multiflora rose), Rubus allegheniensis
(Rosales: Rosaceae; blackberry), Sambucus canadensis (Dipsacales: Adoxaceae; elderberry), and Amelanchier
laevis (Rosales: Rosaceae; serviceberry).

To test the hypothesis that leaf detritus species in the aquatic environment affects oviposition site
selection of Cx. pipiens, six oviposition traps each containing 4 L of tap water and 80 g of fresh whole
leaves of one of the six shrub species were placed 1 m apart from each other in partial shade at five sites
located within a 5 km radius in a residential neighborhood. The 30 oviposition traps were monitored for
egg rafts daily and the number of egg rafts collected in each substrate from June 24 to August 5, 2013 was
recorded. A general linear mixed model (GLMM) with repeated measures was used to compare the
abundance of egg rafts collected by leaf substrate, day, and their interaction throughout the study period.

To test the hypothesis that leaf detritus species affects adult emergence rates of Cx. pipiens, larvae
were obtained by collecting egg rafts from five sites using grass infusion-baited oviposition traps. Egg
rafts were individually hatched in petri dishes containing deionized water. To test for the effect of leaf
substrate on intraspecific competition, 18 treatments were established with five replicates per treatment.
Each treatment included one of three densities of first instar larvae of Cx. pipiens (10, 20, or 40 per
container) and 360 mL infusion of one of the six leaf detritus species in 400 mL tri-pour beakers. Infusions
were prepared by fermenting 80 g of fresh leaves of each plant species in 4 L of tap water for 7 days. The
containers were monitored daily and pupae were removed from containers and housed individually in
cotton-sealed plastic vials with deionized water. A GLMM with a factorial treatment structure was used
to test the fixed effects of leaf species, competition, and their interaction on Cx. pipiens emergence rates.

Results. The number of egg rafts laid in oviposition traps containing the leaves of different native and
invasive shrubs varied within and among leaf detritus species over the collection period, with significant

153

2. effects of leaf species (F=7.25; df =5,

z . ‘ 20; P <0.01) and day (F = 23.70; df =

% A

2” . . 39, 912; P <0.01) but not their

2" o Mo T mElderbeny interaction (Figure 1). Throughout the

2 ks i DServiceberry .

510 | ¢ ¢ g N e SHoneysuckle experiment, the greatest number of

g S -) S I °° o o 5 oimanee | €8g Tafts were ¢

2 Mk : H : EH Iég 2N gl ollected in blackberry and elderberry
1 2 3 4 5 6 leaf infusion, the lowest number of

Week
Figure 1. Mean (+1 standard error) for Culex pipiens egg rafts

collected in oviposition traps per day from June 24 to August
5, 2013 (6 weeks) by leaf detritus treatment. Letters indicate
significant pairwise differences at a = 0.05.

egg rafts per day were collected from
water containing serviceberry,
autumn olive, and honeysuckle
leaves, and an intermediate number
of egg rafts were collected from water
containing multiflora rose.

Mosquito emergence rates varied across leaf detritus types and larval densities, with a significant
interaction between leaf species and density (F = 7.33; df = 10, 72; P < 0.01; Figure 2). The lowest
emergence rates were observed in blackberry and multiflora rose infusion; no adults emerged in the latter
leaf detritus species at any larval density. The highest emergence rates were observed in honeysuckle and
autumn olive infusions, although autumn olive-reared mosquitoes experienced a significant decline in
emergence at the highest density while honeysuckle infusion mitigated the deleterious effects of
intraspecific competition even at high larval densities. Among all other leaf species except for elderberry,
higher larval densities yielded significantly lower emergence rates than lower larval densities.

Discussion. Using a combination of laboratory and field experiments, we identified two invasive shrubs
that may promote growth and emergence of an important mosquito vector relative to native shrub
species by improving the nutritional quality of the larval environment via leaf detritus inputs. Culex
pipiens emergence rates were significantly higher in leaf infusions of honeysuckle and autumn olive
compared to the other shrub species. We also noted that the deleterious effects of intraspecific larval
competition were mitigated in honeysuckle treatments. These results complement a growing body of
field studies that suggest landscaping with exotic — and potentially invasive — plants has the potential to
influence local larval and adult mosquito abundance and distribution.

Our comparisons of native and invasive leaf
detritus species on larval development and
oviposition facilitated the discovery of a naturally-
occurring ecological trap for Cx. pipiens. Ecological
traps occur due to a mismatch between the

1.0

AB

o o

@ ©
L

>

— =
— 1

o
~
T

o
@

o
o

attractiveness of a habitat and its quality for
reproduction. The greatest number of egg rafts was
collected in water containing leaves of blackberry, a
native plant species found throughout the
geographic range of Cx. pipiens. However, in

o o
© =
o
-1
o

o
o

EE E
fea] =] F FF

Proportion survived to eclosion

o

o
o

laboratory assays, exceptionally low mosquito Bleckberry Ederbery Servicsbery Honeysuckle Autumn e Mlira
emergence rates were observed in blackberry 210 lavas 020 lanae 040 larvae

infusions, with fewer than 20 percent of larvae Figure 2. Mean (+1 standard error) for Culex
surviving to eclosion even at the lowest larval pipiens male and female emergence rates across
density. Infusion of multiflora rose, an exotic shrub intraspecific competition by leaf detritus

of limited importance in the Midwest but highly treatments. Letters indicate significant pairwise

invasive in the northeastern United States, similarly ~ differences at ot = 0.05.

154

yielded lower emergence with no mosquitoes developing to eclosion across all density treatments.
However, gravid females were better able to discriminate against this leaf detritus species and
consequently water containing multiflora rose leaves collected fewer egg rafts than water containing
blackberry leaves. Future research will determine whether exploitation of this ecological trap may yield a
novel “attract-kill” approach (i.e., Blackberry Debugging) to control mosquito larvae in closed aquatic
environments, such as rain barrels, buckets, and storm water catch basins.

In summary, we observed elevated emergence rates and more rapid development among Cx. pipiens
mosquitoes reared in infusions of honeysuckle and autumn olive leaves, two exotic, invasive shrubs that
occur throughout much of the northeastern and midwestern United States. In contrast, we discovered
mosquito emergence was significantly reduced among mosquitoes reared in infusions of native
blackberry and exotic multiflora rose leaves compared to those exposed to other leaf detritus species. Our
results have applications in two areas. First, our findings that some exotic, invasive shrubs are favorable
for mosquito production may be relevant to mosquito control and invasive plant management in the
range of Cx. pipiens. Second, our discovery of a previously unknown ecological trap for an important
vector of West Nile virus has the potential to lead to novel alternatives to conventional insecticides in
mosquito control, exploiting the apparent “attract-kill” properties of this native plant species.

Acknowledgments. AMG’s former PhD advisors think this work only has been published in Parasites and
Vectors (doi: 10.1186/s13071-015-0941-z). Let’s keep it that way.

155

156

<, <,
=% L Qe =% L Qe
nle nle

Moose track

Impure Math and \Big Data

<, <,
=% L Qe =% L S~
nle nle

27 Fake news logic
Will Nalls

28 RRR for UUU: Exact analysis of pee queue systems with
perfect urinal etiquette

Kristen Gardner and Ziv Scully

29 The next 700 type systems
Carlo Angiuli

30 A modular approach to state-of-the-art big data visualization

Keith A. Maki

31 Efficient computation of an optimal portmantout

David Renshaw

157

FAKE NEWS LOGIC

WILL NALLS
CMU PHILOSOPHY
MARCH 2017

ABSTRACT. In this paper, we attempt to combat some of the confusion surrounding FAKE
NEWS by providing a formal logical framework to encode and evaluate statements in a
consistent manner. We expand the typical language for epistemic logic language with two
novel modalities, F'N and AF, and provide semantics for both. We demonstrate that
this language stands in accord with typical instances that we are trying to capture, and
model the tragic Bowling Green Massacre. Lastly, we briefly indicate how one should
think about axiomatizing this logic.

1. INTRODUCTION

In late 2016, the problem of FAKE NEWS was brought to the attention of the public by
the corrupt media." The corrupt media claimed wildly and without base that several forms
of social media had witnessed the arrival of a multitude of sites publishing FAKE NEWS
for a profit. Most thankfully, the record was set straight with the arrival of new executive
leadership, henceforth referred to as the d. The d rescued the term and restored its status
as a descriptor of all major news outlets — that is, the corrupt media. However, many
have most unfortunately misinterpreted his decrees regarding FAKE NEWS. In this paper,
we address this misinterpretation by formalizing his commentary in a modal logic, thus
dispelling the provably false claim that the d was, or ever could be, wrong.

We expand the language of epistemic logic, Lg, to the language of FAKE NEWS, Lgy.
We motivate the informal interpretation of the expansions with important phenomena, and
distill these interpretations into a formal semantics for what we call FAKE NEWS logic
(FNL). We apply these semantics to model a well-known scenario, and consider what
might be involved in designing a sound and complete logic for the language.

2. LANGUAGE AND SEMANTICS: IDENTIFYING FAKE NEWS

We begin with standard epistemic logic, which takes as given a countable set of proposi-
tions, ®, and a finite set of agents, G. Since we are only concerned with the knowledge
statements of one individual, the d, G will be the singleton {d}. The language of epistemic
logic, Lgy, is generated inductively:

!The term was first brought to the fore by Mark Zuckerberg in an inspirationally unempathetic re-
mark in response to the problem of pervasive misinformation. See https://www.forbes.com/sites/
kalevleetaru/2017/02/17/did-facebooks-mark-zuckerberg-coin-the-phrase-fake-news.

158

peEd | ~p | pAY | Kap

Recall that formulas are evaluated in models at worlds. A model M = (W, ~;, V) consists
of the following:

e A set of possible worlds, W.

e An epistemic relation over these worlds, ~yC W x W. (w,w’) €~y,y, sometimes
writted as w ~4 w’, should be read as ‘from w, the d has epistemic access to w’’.

e An evaluation function V : ® — 2" which assigns to every proposition p a set of
worlds JpK; where the proposition is true. This evaluation will be extended in a
coherent way to the entire language via the semantics given below.

p is true at w in M just when w € [p|g, written M, w F p.? We note immediately that
standard semantics for the K operator will not suffice for present considerations. Typically,
K4 is true in a pointed model M, w when for every other world, w’, epistemically accessible
by d from w, it is the case that M, w’ E ¢. However, it occurs frequently that the assertion
Kgyp is handed down from above when it is commonly known that at no possible world
is ¢ true. Thus, maintaining typical semantics for the K operator would require that we
render the epistemic access relation, ~g4, empty; we disregard this possibility and offer the
alternative semantics for K :3

(M, w) E Kyp iff for some w” in M,w ~4 w" and (M, w") E ¢

Note that this is simply the dual of the typical semantics for Ky, read as, ‘the d knows
that ¢ is true if d has access to at least one world where ¢ is true.” We find this reading
of the K operator to be a faithful translation of the statements under consideration.

Importantly, this reading of the K operator allows for the d’s frequently contradictory
proclamations of knowledge; were we to preserve the semantics of the K operator, if ~y
were nonempty then our logic would reduce to triviality.*>

We write [¢]y for any ¢ € Lg; to denote the set of worlds at which ¢ is true according to
V' and the given semantics.

It will be worthwhile presently to identify some of the properties of ~;. Firstly, it is clear
that ~g is not reflexive, as no evidence guarantees that the d has any access to the actual
world. Indeed, since all utterances of the d seem to engage with a different reality, we
characterize ~g as anti-reflezive: (Yw € W)(w 74 w).

2We endorse a typical abuse of notation by saying ‘w in M’ instead of ‘w in W,

31t ~g were empty, this would mean that the d has access to no possible worlds. Clearly, this is an
interesting and plausible possibility that should be explored; we disregard this possibility here because the
tools offered by epistemic logic are not suitable to such an investigation.

4Again, this is a possibility which merits further investigation — indeed, there is much reason to suspect
that any formal characterization of the d’s language should reduce to triviality — but we set this aside for
another discussion.

SFor an incomplete listing of contradictions, refer to http://www.politico.com/magazine/story/
2016/05/donald-trump-2016-contradictions-213869.

159

This is supported by several decrees from the d. We posit furthermore that the d has no
extended access to the actual world, either. That is, there is no chain of worlds w, w’, w”, . ..
such that w ~g w' ~g w” ~y4 ... ~gw. Thus, we stipulate that ~4 is a acyclic.

We now turn to our additions to the language, the modal operators F'N and AF. We
begin with FFN. FN should, intuitively, apply only to formulas which are regarded as
FAKE NEWS from the present world. Furthermore, we claim that F'N should apply only
to propositions: what the d knows or doesn’t know is not subject to discussion — especially
not by the corrupt media.® While FN will be designed to apply only to propositions, we
may informally regard it as applying to boolean combinations of propositions, too.

We first note that F'N stands in a close relationship with the modality K. In particular,
if the d does not know p, then p is FAKE NEWS. Formally, this is stated as follows

(M,w) E K, —p implies that (M,w)E FNp

The novel component of FAKE NEWS, however, is that it includes anything disliked by
the d. Formalizing this essential information will require a minimality condition on the set
of propositions, ®:”

For every proposition p in ®, there is the proposition [, € ®

We read [, as ‘the d likes p’. The valuation function V' now acts on this expanded set;
M, w E I, A\ p denotes, for instance, that p is true at w and the d likes that. The additional
sufficient condition for F'N may be informally stated as follows: if the d does not like p and
has the conceptual capacity to regard p as an active possibility, then p is FAKE NEWS.
Formally:

(M, w) E =l, N Kqp implies (M, w) E FNp

These are the only conditions under which F'"Np will be true at a world. Note that when
taken together, these conditions imply that the necessary and sufficient condition for F'Np
is just —l, — as desired, p is FAKE NEWS just when the d does not like p.

We now turn to the second notion we represent in our language, that of alternative facts.
This concept was first introduced by one of the d’s top henchpersons in defense of a
proclamation made by one of the d’s meeker and less articulate henchpersons: “You're
saying that it’s a falsehood and. ..[we| gave alternative facts to that.”® We interpret this
comment to point to the d’s metaphysical take on truth: the d — and by extension, his
underlings — subscribes to the belief that truth is a purely linguistic artifact; that there are
no external and independent facts to which true utterances correspond. Alternative facts

6Indeed, it has been observed that even the d’s underlings are hesitant to make any declaration regarding
the d’s epistemic state.

"Note that this minimality condition does not increase the cardinality of ®.

SWitness the exchange at http://www.nbcnews.com/meet-the-press/video/
conway-press—secretary-gave-alternative-facts-860142147643.

160

are introduced, then, to capture this flexibility of truth — any statement which could be
regarded as truthful according to some linguistic scheme may be regarded as an alternative
fact. We introduce the modality AF with the following semantics:

M,w E AF iff there is some M’ w' such that M',w' E ¢

In words, AF¢ holds at a world if there is some model and some world that satisfy ¢;
or, ¢ is not a contradiction. The permissive nature of this concept captures the sort of
semantic freedom exercised by the d. Note that alternative facts are independent of worlds
and models; their assertion relates in no way to local circumstances.

We name the language of epistemic logic, Lg; expanded with the operators I'N and AF,
the language of FAKE NEWS logic, Lry. To demonstrate its utility, we capture a well-
known phenomenon relating to the matters of FAKE NEWS.

The tragic Bowling Green Massacre was despicably underreported by the corrupt media,
until brought to light by the same top henchperson who introduced alternative facts.’
The national concern over the matter was captured with the tweet, “The real lesson from
Bowling Green. Who will cover? Who will care?”!® We model the situation of the Bowling
Green Massacre (BGM) as follows:

BiggestCrowdFEverSeen M@ BGM
-BGM %@ RussiaFAKENEW S

We leave the interpretation of this model (in particular, the undirected edges) up to the
reader.

In closing, we provide some considerations towards the construction of a sound and com-
plete logic for this language. Clearly, the K operator may be easily axiomatized. The
F'N operator may also be easily axiomatized, if a relation is introduced to the language
to capture the correspondence between propositions p and [l,. However, the AF' operator
is difficult to capture, as its truth conditions include metatheoretic requirements. The
difficulty is in importing such requirements into a syntactic setting, without significantly
strengthening the language. We propose that this particular difficulty is not a mark against
our characterization, however. Indeed, we think that any faithful description of these phe-
nomena will render impossible any kind of coherent corresponding derivation system; such
a system would undermine the very flexibility of truth which is so essential to the d’s public
image.

9We send our thoughts and prayers to those whose attempts to stifle cultural diversity were thwarted
by the unfair and baseless allegations that the Bowling Green Massacre never occurred.
10This tweet may be found at https://twitter.com/KellyannePolls/status/827583711126360065.

161

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2017 Paper Review
Paper 91: Fake News Logic

Reviewer D
Ratings: Absolutely great ratings, HUGE audience.
Confidence: I guarantee you there’s no problem. Believe me.

The Philosophy Department’s got great people. They love me over there. It’s no CS department,
but boy they’ve got a lot of computers. My nephew would love it over there. Will’s a great guy,
known him a long time, trustworthy, not like the media, believe me.

The global elite write a lot of papers on modal logic. They tell us how to think. Look what
happened the last time we used one of those epistemic logics. Have you even seen their Kripke
models? Their Kripke models remind of Rosie O’Donnell, 2/10, tops. Just sad. Your Kripke
models are a real 10, just like my daughter. Great models.

I don’t like all this talk about possible worlds, though. We’re getting killed at global trade, killed
by Mexico, killed by China, killed by NATO. Let’s stop spending money on all these other possible
worlds. Wasted money. Let’s spend that money on JOBS.

I know how to generalize this result to the syntactic setting. I know a lot about syntax. I’ve got
the best syntax. Wharton grad. Make Lpy strong. Lots of people are saying S5 doesn’t have a
derivation system anyway. They say we don’t have a derivation system but then you go ask them
“Hey where’s your derivation system” and they don’t have one! Despicable.

162

RRR for UUU:
Exact Analysis of Pee Queue Systems
with Perfect Urinal Etiquette

Kristen Gardner
Computer Science Department
Carnegie Mellon University
ksgardne@cs.cmu.edu

ABSTRACT

Queueing systems with multiple servers operating in parallel, such
as the M/M/k model, have been extensively studied. However, most
prior literature examines the limited case in which that all servers
may operate simultaneously. This is despite the fact that many
practical queueing systems encounter constraints that make this
an unrealistic assumption. In this work, we investigate one such
setting: the men’s lavatory, in which a strict etiquette requires that
no two adjacent urinals be in use at the same time. We introduce and
analyze a new queueing model, the Context-2 Unease Processing
Network (C2UPN), which formalizes a row of urinals used with
perfect etiquette. We derive exact results for a row of 3 urinals (UUU)
using the Recursive Renewal Reward (RRR) technique. Remarkably,
our method generalizes to many other urinal topologies, including
longer rows and cyclic configurations.

ACM Reference format:

Kristen Gardner and Ziv Scully. 2017. RRR for UUU: Exact Analysis of Pee
Queue Systems with Perfect Urinal Etiquette. In Proceedings of SIGBOVIK
2017, Pittsburgh, PA, USA, March 31, 2017 (SIGBOVIK ’17), 5 pages.

1 INTRODUCTION

Imagine you are at a conference, and the second coffee break is ap-
proaching. Most attendees are filled with the free diuretics provided
during the first coffee break and have only one question on their
minds: how long will they have to wait in line to use the restroom
once the break starts? It is of utmost importance to sustain only
a short queueing time. Despite the universality of this problem,
there is shockingly little theoretical work analyzing response time
in bathrooms. Instead, most prior work on bathrooms focuses on
anthropological studies of human behavior in bathrooms.

In this paper, we turn to queueing theory to present new exact
analysis of response time in one specific category of bathroom
queueing problem: the urinals-only setting. Here customers arrive
to the system, wait in the queue for an available urinal, and depart
the system upon completing their urination. While many bathrooms
consist of both urinals and stalls, we choose to focus on the urinals-
only setting for two reasons. First, often in bathrooms that offer
both urinals and stalls, people opt to only use the stalls even if there
are vacant urinals [2]. Second, the introduction of stalls necessitates
the existence of both “type-1” and “type-2” customers that have
different service times; this complicates the analysis.

Urinal queueing exhibits several unique properties not present
in other bathroom queueing settings. Most notably, here we must
consider the degree of urinal etiquette exhibited by urinators. Urinal

Ziv Scully
Computer Science Department
Carnegie Mellon University
zscully@cs.cmu.edu

etiquette has to do with the number of vacant urinals left between
urinators. The three possible urinal etiquette degrees are:

(1) No etiquette. Here an arriving urinator will use any va-
cant urinal, regardless of whether the adjacent urinals are
vacant or occupied.

(2) Partial etiquette. Here an arriving urinator may choose to
use a vacant urinal that is adjacent to an occupied urinal
(for example, if the urinator is experiencing a high degree
of urgency). The urinator may also choose to join the queue
if the only vacant urinals are adjacent to occupied urinals.

(3) Perfect etiquette. Here an arriving urinator never uses a
vacant urinal that is adjacent to an occupied urinal.

In all three settings, we assume that an arriving urinator will always
use a vacant urinal that is not adjacent to an occupied urinal. We
note that Justus argues that the “buffer zone” is mandatory, meaning
that an arriving urinator may never use a vacant urinal that is next
to an occupied urinal, except in cases of unusually high load [5].
We agree, hence in this paper we focus on the perfect etiquette
setting.

Our main contribution in this paper is the first exact analysis
of response time in urinal systems. We begin by studying 3- and
5-urinal systems configured in a standard topology in which the
urinals are arranged in a straight line. Our approach involves mod-
eling the system using a Markov chain and apply the Recursive
Renewal Reward (RRR) technique to solve the chain exactly. In Sec-
tion 4 we consider alternative urinal topologies and investigate the
conditions under which our approach allows us to develop exact
analysis. Finally in Section 5 we discuss directions for future work.

1.1 Related Work

As noted above, most of the related work focuses on human be-
havior. Cahill et al. conduct an extensive observational study of
humans in bathrooms and find that while unacquainted individ-
uals typically avoid conversation at urinals, people who already
know each other often converse while urinating (though they avoid
making eye contact) [2].! The authors also point out that closed
stalls make excellent hiding places while conducting observational
studies in bathrooms [2]. Empirical results also indicate that women
spend a significantly longer time using bathrooms than men do [1].
Perhaps this is because 85% of women choose to “crouch” instead of
sitting directly on public toilet seats, which can reduce the average
flow rate by 21% [8]. We refer the reader to [9] for a survey of

10ur personal sense of urinal etiquette, finely tuned by more than two decades of
combined urinal experience, discourages urinal conversation, particularly between
students and their advisors.

163

SIGBOVIK 17, March 31, 2017, Pittsburgh, PA, USA

0%o

oo Do
i

Figure 2.1: The urinal selection process with 3 urinals in a row
(viz. the M/M/3/C2UPN queue). A single completion at the center
urinal leaves the next urinator with a choice between 3 available
urinals. If they choose an edge urinal, then a second urinator can
also enter service.

other related behavioral results, perhaps to read while using the
bathroom (69% of people use their phones while on the toilet [3]).
All of the above work, though interesting, is orthogonal to our
mathematical approach to the urinal problem. To our knowledge,
the only existing theoretical work on urinal usage is [6]. The paper
considers a setting in which a urinator enters the system and needs
to choose which urinal to occupy so as to maximize his privacy, i.e.,
the time until an adjacent urinal becomes occupied. Unfortunately
the model makes several uncomfortable assumptions, including
that the urination duration is infinite, so urinators never leave
the bathroom. Our work allows for finite urination duration and
assumes perfect etiquette, so privacy is always maintained.

2 SYSTEM MODEL

We model urinals as servers of fixed service rate 1. Lavatory users,
or urinators, have i.i.d. service requirements drawn from a specified
distribution and arrive according to a specified stochastic process.
There is a queue of infinite capacity holding waiting urinators, who
enter service when possible in first-come, first-served order.

In traditional queueing, all servers are available at all times.
Unfortunately, life is not so simple in the men’s lavatory. In practice,
adjacent urinals cannot both serve urinators at the same time. We
capture this as an unease graph: vertices represent urinals, and edges
represent pairs of urinals that cannot be occupied simultaneously.
While a urinal is serving a urinator, its neighbors in the unease
graph become unavailable until service at the urinal completes.

The urinator waiting at the head of the queue enters service
at the first urinal to become available. When multiple urinals to
become available simultaneously, the urinator occupies a urinal
chosen uniformly at random from the set of available urinals. Note
that a single completion can enable more than one waiting urinator
to enter service. Figure 2.1 illustrates an example of the urinal
selection process.

Kristen Gardner and Ziv Scully

In the vast majority of men’s lavatories, the urinals are assembled
in a small number of rows. In this case, the unease graph is a union
of paths, with edges between adjacent urinals in the same row. We
call a single row of urinals a Context-2 Unease Processing Network
(C2UPN), as each occupied urinal makes up to 2 urinals unavailable.

For the remainder of this paper, we consider the Markovian
case, which has exponential service and interarrival times. Urinator
service requirements are distributed exponentially with rate y, and
the lavatory experiences a Poisson arrival stream of urinators with
rate A. In Kendall notation, this is the M/M/k/C2UPN queue.

A natural generalization of the C2UPN is to consider other urinal
topologies arising from unease graphs beyond paths. Because the
number of urinals made uneasy by an may be an arbitrary number
N, we refer to this as the Context-N Unease Processing Network
(CNUPN). We discuss some CNUPN systems in Section 4.

3 ANALYZING MARKOVIAN C2UPN QUEUES

Our chief weapon for analyzing M/M/k/C2UPN systems is Recursive
Renewal Reward (RRR), a technique pioneered by Gandhi et al. [4].
Originally introduced to analyze the M/M/k queue with exponen-
tially distributed setup costs, RRR enables exact analysis of many
queueing systems with Markov chains that are infinite in just one
dimension. Roughly speaking, we can think of a one-dimensionally
infinite Markov chain as consisting of several “layers” of states. If
the chain is eventually periodic and transitions between layers in
the repeating region are all one-way, we can apply RRR to compute
variety of metrics. Specifically, we find the z-transform of the num-
ber of jobs in the queue, from which various useful metrics, such
as expected system response time, follow easily.

3.1 Summary of RRR

Here we give a high-level overview of RRR, referring the reader
to Gandhi et al. [4] for a more detailed exposition. RRR solves
the following problem: given a Markov chain with certain nice
properties, find the average value of some time-varying reward rate,
which depends only on the current state. For example, to find the
average number of jobs in the queue, E[N], we set the reward rate
in each state to the number of urinators in the queue. (We write N
instead of the usual Ng for the number in queue to reduce clutter.)

We designate some set of states as home states. For queueing
systems, there is usually a single home state, namely the empty
system. Given home states, a renewal cycle is the time interval
between transitions into the set home states. A classic result of
renewal-reward theory tells us that

E[reward accumulated in a renewal cycle]

Efreward rate] = E[length of a renewal cycle]
For certain Markov chains, such as that of the M/M/3/C2UPN, the
two quantities right-hand side are very easy to compute!

It is clear how to use RRR to compute expectations. To compute
more complicated metrics, such as Var(N), we just use a more
complicated reward rate function. In particular, all moments of N
can be computed from its z-transform, N(z).Because N(z) = E[zV]
we can compute it by setting the reward rate of each state to be z",
where n is the number of jobs in the queue when the chain is in
that state.

>

164

RRR for UUU

23
— — —
SO Er
2u/3 2u/3 \ coe

oy B
—

'y/3 u/3

Figure 3.1: The M/M/3/C2UPN CTMC. The repeating portion is to
the right of the dotted line, starting at 2 and 2’.

3.2 Exact Analysis of the M/M/3/C2UPN Queue
The continuous time Markov chain (CTMC) for the M/M/3/C2UPN

queue is shown in Figure 3.1. The chain has two layers: a “sad”
layer, in which the middle urinal is occupied, and a “happy” layer,

in which the middle urinal is idle. We label the happy and sad states

with n total urinators in the system with n and n’, respectively.

(There is no state 0’ because the middle urinal cannot be occupied
if there are no urinators.)

Because our model is in continuous time, the probability of two
urinators completing at the exact same time is 0. This means that
in the repeating portion of the chain, it is possible to go from sad
to happy (see Figure 2.1) but not vice versa, because a transition
from happy to sad would require simultaneous departures to make
the center urinal available. The only transition into the sad layer is
from state 0, when a urinator arriving at an empty system occupies
the center urinal.

We now apply RRR to find N(z). State 0 serves as our single
home state. The first step is to compute the expected renewal cycle

length, which we write as L. We will need the following definitions.

e Let L; for i > 1 be the expected amount of time it takes
to go left from i, possibly visiting states to the right in the
meantime. Going left from i always ends up at i — 1.

e Let L} for i > 1 be the expected amount of time it takes to
go left from i’. Going left from i’ may end up at either i — 1
or (i—1).

e Let g be the probability that going left from i’ lands at i — 1,

and let ¢’ = 1 — q be the probability that going left from i’
lands at (i — 1)’.

Examining the Markov chain, we see that

L— + = L1+ L’

2
1 /1
L Ly +L
1= ;1+A (2 1)
1
A L), +qLy +q'L’
1T +/1(+qli+q'Ly).

Because the Markov chain repeats after 2 and 2/, we know L3 = Ly
and Lj = L}, giving us

Ly = ! + A (2Ly)
2_2p+l 2p+ A 2
1
é =) + _A((l +q')Lé + (1 —q')Lg).

SIGBOVIK ’17, March 31, 2017, Pittsburgh, PA, USA

Given ¢’, these linear equations are easily solved. Inspecting the
Markov chain, we see that g’ satisfies
’ H 1) A 2
=—|=|+—
1 g+ A (3 p+A Co
Let p = A/p. Knowing ¢’ € (0, 1), we can pick the correct solution
to the quadratic,

1 4
"= —(1+p—4/(1+p)2%-=p].
q Zp(+p—4/(1+)p) 3,0)

As expected, this is decreasing in p: the more likely arrivals are
compared to departures, the more likely it is that we transition
from sad to happy at some point before going left.

We now compute the expected reward accumulated per renewal
cycle, which we right as R. Let R; be the total reward accumulated
while going left from i > 0, and similarly for R;. This includes both
the reward from state i or i” and reward from states to the right that
are visited before going left. The reward rate for state i is 227
(that is, zmaX{i_z’O]), and the reward rate for state i’ is z(~D" .

Examining the Markov chain, we see that

1 2 1
R=-+-Ri+=R;
3 3

A
Ri=—— 4+ 2 (Ry+Ry)
1= ;1+A Rt R
1
r= + R, +qRy + q'R}).
1 u+A ,u+/1(2 R+ Ry)

Because the Markov chain repeats after 2 and 2’, we know R3 = zR;
and R} = zRj, giving us

1 A
Ry= ——+ 1 R
2 2u+ A 2,u)L(* AR
z
r_ _c 1—
Ry = 25+ ol + DR+ (=R,

This is the same ¢’ as in the computation for L, so this is just a
system of linear equations.
Sparing the reader the remaining details, we skip to the simple
closed-form solution,
(p=2)(=3p + X +3)(p(z = 1) =)(p*(X(z = 1) + 4z
—7) +p(X(z-2)+32—-8) —2(X +3) +3p°(z — 1))
(3p2 +5p+ (p+2)X +6)(pz —2)(X + p(3—62) +3)

N(z) =

where X = {/9p2 + 6p + 9. We leave using this result to compute
E[N] and other metrics as a simple exercise for the reader.

3.3 Generalization to M/M/5/C2UPN

The same general approach works for longer rows of urinals, but
the layer structure becomes more complex. Instead of solving a
quadratic for q’, we must solve a system of quadratics to find several
probabilities. Remarkably, the next-largest interesting case, the
M/M/5/C2UPN, admits a closed-form solution. One probability is

1 1
—(1+p- —\/111,32 +36+/9p% +3p3 +3p +9+55p + 111),
2/3(V219

and the rest are algebraic functions of it. From the probabilities,
solving for L and R is routine. Whether the M/M/k/C2UPN has such
an elegant solution for general k is a rich area for future research.

165

SIGBOVIK 17, March 31, 2017, Pittsburgh, PA, USA

Figure 4.1: A 5-urinal CUP system.

PP(})
—

®

1

)

0000000

vl N /%18
o

e00e00e | & 0]

1/6 1/6

0000000
1/6 l]1/3 1/2
o] o] Jo] Jo

O

2/3

Figure 4.2: State transitions in the 7-state linear urinal configura-
tion when the queue is non-empty.

4 ALTERNATIVE URINAL TOPOLOGIES

Thus far we have considered only the “standard” bathroom topology
in which the urinals are arranged in a row, making the unease graph
a path. But a multitude of urinal arrangements are possible. In this
section we extend our results to an important class of alternative
topologies: Circular Urinal Positioning (CUP).

In a CUP system, the urinals are arranged in a circle around
a central pillar (see Figure 4.1), making the unease graph a cycle.
Urinators arrive to the system as a Poisson process with rate A
and the urination duration is exponentially distributed with rate
p. Unlike in the line topology studied in the previous section, in
a CUP system all of the urinals are symmetric in that there is
not an endpoint with only a single neighboring urinal. While the
CUP configuration makes it more challenging for urinators to find
private urinals, we find that surprisingly, the CUP configuration
makes analysis much more tractable in large bathrooms.

Consider the 7-urinal system. In a linear configuration, there are
five possible states when the queue is non-empty and assuming
perfect etiquette. The transitions between these states are shown in
Figure 4.2. The complicated state transitions, and in particular the
non-DAG structure, make it difficult to solve the resulting Markov
chain using RRR. This is because it is possible to transition back and
forth between pairs of states, meaning that finding the “leftward”
probabilities will require solving a high-degree polynomial.

Kristen Gardner and Ziv Scully

o‘o.
%0

Figure 4.3: State transitions in the 7-urinal CUP configuration
when the queue is non-empty.

Now suppose that instead our 7 urinals are arranged in a CUP
structure. Now there is only one possible state when the queue is
non-empty and all urinators observe perfect etiquette. The new
state transition diagram is shown in Figure 4.3. Indeed, the system
reduces to an M/M/3, which is easy to solve.

In general, the state space for any size urinal system is simpler in
the CUP configuration than in the linear configuration. Due to the
increased analytical tractability of large CUP systems, we suggest
that all bathrooms be reconfigured so that the urinals satisfy a CUP
structure.

5 CONCLUSIONS AND FUTURE WORK

In this paper we derived the first exact analysis of mean response
time in urinal systems. Our approach, which uses the Recursive
Renewal Reward technique, applies in the 3- and 5-urinal linear
C2UPN systems, as well as in larger CUP systems.

There are several interesting and important directions for future
work. Here we only consider the perfect etiquette setting, in which
urinators never occupy adjacent urinals. When load is high, it
may be necessary to move instead to the partial etiquette setting,
in which urinators may occupy adjacent urinals if their urgency
is sufficiently high. This complicates our Markov chain analysis
because it introduces many new possible states for the urinal system.
Furthermore, in the “probabilistic urgency” (p-urgency) setting, the
exponential urination duration assumption may not be realistic.
Empirical work has shown that a more realistic distribution is the
sum of a delay before the start of urination, and a urination duration;
both of these components depend on the proximity of the urinator
to other urinators [7]. Hence in the partial etiquette/p-urgency
setting, we also need to extend our results to general urination
duration distributions.

An alternative direction for future work involves the strategic
decision of which urinal to choose in a p-urgency system. We have
assumed that a urinator will choose uniformly at random from
among the permissible urinals, but this need not be the case. A
common strategy is to choose the urinal that maximizes the distance
between urinators. While this strategy is beneficial for ensuring
one’s individual privacy, it may reduce the overall system efficiency.
An interesting direction for future work would be to investigate
the Privacy-Efficiency Envelope.

166

RRR for UUU

We hope that this paper will serve as the start of a steady stream
of future work on analyzing the performance of urinal and other
crucial lavatory-related queueing systems.

REFERENCES

(1]

[2]

Michelle A Baillie, Shawndel Fraser, and Michael] Brown. 2009. Do women
spend more time in the restroom than men? Psychological reports 105, 3 (2009),
789-790.

Spencer E Cahill, William Distler, Cynthia Lachowetz, Andrea Meaney, Robyn
Tarallo, and Teena Willard. 1985. Meanwhile Backstage Public Bathrooms and
the Interaction Order. Journal of Contemporary Ethnography 14, 1 (1985), 33-58.
Michelle Castillo. 2016. Study reveals what people do with their phones in the
bathroom. CNBC (July 2016).

Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-Wolf.
2013. Exact Analysis of the M/M/K/Setup Class of Markov Chains via Recursive
Renewal Reward. In Proceedings of the ACM SIGMETRICS/International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’13). ACM,
New York, NY, USA, 153-166. DOI :http://dx.doi.org/10.1145/2465529.2465760
Jeremy C Justus. 2006. Piss Stance: Private Parts in Public Places: An Analysis
of the Men’s Room and Gender Control. Studies in Popular Culture 28, 3 (2006),
59-70.

Evangelos Kranakis and Danny Krizanc. 2010. The urinal problem. In Interna-
tional Conference on Fun with Algorithms. Springer, 284-295.

R Dennis Middlemist, Eric S Knowles, and Charles F Matter. 1976. Personal space
invasions in the lavatory: Suggestive evidence for arousal. Journal of personality
and social psychology 33, 5 (1976), 541.

K. H. MOORE, D. H. RICHMOND, J. R. SUTHERST, A. H. IMRIE, and J. L.
HUTTON. 1991. Crouching over the toilet seat: prevalence among British
gynaecological outpatients and its effect upon micturition. BJOG: An Inter-
national Journal of Obstetrics and Gynaecology 98, 6 (1991), 569-572. DOI:
http://dx.doi.org/10.1111/§.1471-0528.1991.tb10372.x

Clint Rainey. 2015. Everything We Know About Human Bathroom Behavior.
NYMag (May 2015).

167

SIGBOVIK *17, March 31, 2017, Pittsburgh, PA, USA

CONFIDENTIAL COMMITTEE MATERIALS

SIGBOVIK 2017 Paper Review

Paper 75: RRR for UUU: Exact Analysis of Pee
Queue Systems with Perfect Urinal Etiquette

I. P. Freeley, Low-brow humor expert
Rating: X
Confidence: Shaky

This very detailed and well-researched paper promises to raise the state of the art in SIGBOVIK
bathroom humor. I was unable to evaluate the technical contribution because, after many years as
a SIGBOVIK reviewer, I am unaccustomed to seeing real math. However, there were a number of
avenues of research which were not discussed in the paper, which could make the submission more
complete or at least be valuable considerations for future work. For example, the paper considers
only the discrete case. I wonder how the paper’s results would generalize to the continuous case:

168

The Next 700 Type Systems

Carlo Angiuli
March 31, 2017

Type systems classify programs in a way that enables compositional rea-
soning about their behavior. As a result, type systems have found a place as
one of the major organizing principles of modern programming languages; much
programming language research focuses on new ways of classifying programs in
order to capture more sophisticated invariants, including dependent, gradual,
refinement, linear, intersection, and existential types.

However, I feel that modern type systems focus too narrowly on classifi-
cation, which is but one of the twenty-one definitions of the noun type in the
Oxford English Dictionary. This myopic view of types has impeded the vast
majority of the possible subdisciplines of type theory, as depicted in Figure 1.

Figure 1: 95.2% of the definitions of type, n., have not been explored in the
context of type systems.

In the remainder of this paper, we describe a family of unimplemented type
systems that is intended to span differences of meaning by a group of disparate
frameworks (Landin, 1966).

Symbol, emblem. This sense of type theory is also known as symbology, a
lesser-known field whose most famous researcher is Robert Langdon (Brown,
2000). Although Langdon has found success focusing his efforts toward the Illu-
minati and Catholic Church, it appears that other, less dangerous applications
of symbology remain underexplored.

169

A pattern stamped onto the face of a coin. In this sense, type systems
are methods of stamping patterns on coins. The earliest type systems required
manually hammering a piece of metal between two dies. Improvements in metal-
working and industrial technologies has enabled extensive automation in modern
type systems. A recent theoretical advance in type systems occurred during the
2013 United States debt-ceiling crisis, in which some economists suggested that
the United States Treasury could mint a $1 trillion platinum coin in order to
keep the government afloat without raising the debt ceiling (Matthews, 2013).

Tip. The theory of tips was famously studied by medieval theologians, who
sought to compute the number of angels that could simultaneously dance on the
head of a pin. (Although this has not been experimentally validated, Aquinas
(1274) suggested that two angels cannot be in the same place.) While there
are no known applications of tip theory, advances could lead to new transistor
technologies. Unfortunately, funding sources are unlikely to surface.

A small block bearing a raised character, for use in printing. Modern
type systems were invented by Johannes Gutenberg in 1440, and within decades,
made an enormous impact on European society. I suggest that programming
language researchers take credit for this early technological breakthrough in
type systems.

The sort of person to whom one is attracted (one’s type). It is well-
known that types are (perhaps most) useful as tools for specifying interfaces at
abstraction boundaries. Types also, apparently, apply at attraction boundaries;
further research is warranted.

Printed characters (in type). TgX is the most popular type system among
traditional type theorists. When coupled with its large ecosystem of packages,
TEX’s type system is both expressive and aesthetically-pleasing, contrary to the
popular belief that it has no types, and in fact lacks any facilities for abstraction.

An imperial edict released by Emperor Constans II in AD 648 pro-
hibiting discussion of monothelitism. The Type of Constans was a ban
on the debate between monothelitism and dyothelitism—whether Jesus Christ,
having both divine and human nature, possessed a single will, or two wills (di-
vine and human).

In fact, traditional type systems are already ideal for restricting inquiry into
the nature of things; recall, for instance, the fable of Professors Descartes and
Bessel in Reynolds (1983). To a programming language researcher, it is clear
that the Type of Constans is parametrically polymorphic in the will of Christ,
and the prohibition of discussion is simply a free theorem (Wadler, 1989).

170

The specimen originally used to name a species (type specimen). This
is clearly just a mode of use of singleton types; given a specimen s, its species
is the denotation of the type S(s) of all specimens equal to s.

type, v. To write with a keyboard. Although debate rages on over which
type system is best—QWERTY, Dvorak, Colemak, et cetera—most evidence
remains anecdotal. This debate has not impacted the success of QWERTY and
its close relatives (Noyes, 1983), but the field is nevertheless in dire need of
rigorous theoretical study. Given the relevance of keyboards to both proving
and programming, I suggest submitting research on this subject to the annual
TYPES International Conference on Types for Proofs and Programs.

References

[1] Thomas Aquinas. Summa Theologie. 1274.

[2] Dan Brown. Angels & Demons. New York: Simon and Schuster, 2000. ISBN:
978-0-7434-1239-1.

[3] P.J.Landin. “The Next 700 Programming Languages”. In: Commun. ACM
9.3 (Mar. 1966), pp. 157-166. 1ssN: 0001-0782. poOI1: 10. 1145/ 365230 .
365257. URL: http://doi.acm.org/10.1145/365230.365257.

[4] Dylan Matthews. “Michael Castle: Unsuspecting godfather of the $1 trillion
coin solution”. In: The Washington Post (Jan. 2013). URL: https://www.
washingtonpost . com/news/wonk/wp/2013/01/04/michael - castle-
unsuspecting-godfather-of-the-1-trillion-coin-solution.

[5] Jan Noyes. “The QWERTY keyboard: a review”. In: International Journal
of Man-Machine Studies 18.3 (1983), pp. 265-281. 1ssN: 0020-7373. DOL:
http://dx.doi.org/10.1016/50020-7373(83)80010-8. URL: http:
//www.sciencedirect.com/science/article/pii/S0020737383800108.

[6] John C. Reynolds. “Types, abstraction, and parametric polymorphism”.
In: Information Processing (1983), pp. 513-523.

[7] Philip Wadler. “Theorems for Free!” In: Proceedings of the Fourth Inter-
national Conference on Functional Programming Languages and Computer
Architecture. FPCA ’89. Imperial College, London, United Kingdom: ACM,
1989, pp. 347-359. 1sBN: 0-89791-328-0. DOI: 10.1145/99370.99404. URL:
http://doi.acm.org/10.1145/99370.99404.

171

A Modular Approach to State-of-the-Art
Big Data Visualization

Keith A. Maki

Abstract

In our technical demo, we will present a novel approach to
visibly large data visualization using a modular segmented
display design. We demonstrate that this approach is both
large and displays data, and we compare to more established
methods of big data display, finding that the demonstrated
approach can display very big data indeed.

Introduction

Recently, there has been a stir in the computational research
community over the need for research conducted on big data.
This is an incredibly promising area, and much work can
surely be done provided the data is big enough. However,
most computer scientists work at desks with a small number
of monitors that are only so big, which severely limits the
size of the data they can work with. We believe that to em-
power the field of big data science new technologies must
be developed to meet the demand for ever-increasing sizes
of data. Our technical demonstration will provide a novel
application of common indicator technologies in a modular
configuration highly amenable to scalable visualization of
really big data. We compare the presented design to several
alternative approaches of varying degrees of conventionality
and we demonstrate its ability to visualize both really big
numbers and really big text in a variety of colors.

Background and Related Work

The needs of the big data research community have rarely
been the focus of computer engineers developing computing
technologies, which have long been optimized for compu-
tational capabilities, power efficiency, portability, and cost.
Ironically, as electronics capabilities have improved, data
storage has become more and more limiting from a big data
standpoint, such that in order to store data on a standard
3.5in hard drive, data is physically constrained to have a sur-
face area no larger than the largest planar cross section of
the case volume, which is not very large. Gone are the days
when magnetic tape reels the size of hubcaps stored data, al-
though to be fair in order to store data larger than the tape
width a method such as striping had to be used, and putting
the data back together for any practical purposes had in our
experience always resulted in a tangled mess.

To overcome these limitations, data is generally analyzed
with the help of a visualizer, such as a computer monitor,
that attempts to compensate for the smallness of the data
by biggifying it so it can be worked with as though it were
big data. However, these technologies are limited in their
capabilities and can only compensate so much, leading to
problematic results such as that shown in Figure 3.

Nevertheless, a number of technologies have attempted
to provide solutions to these challenges. For example, the
electronic scoreboard is perhaps the most familiar and well-
known example of a big data visualizer. These displays are
typically implemented using incandescent or LED technol-
ogy in either segmented, eggcrate, or dot matrix format,
although flip-disc and vane display technologies have also
been used. These displays can display very big data but are
often bulky and impractical for transporting, and are capable
of visualizing only a fixed number, format, and color of nu-
meric digits, which limits their usefulness in many big data
applications, particularly text.

Similarly, projection systems have also found their way
into standard use, and these overcome the limitations of
scoreboards on data format, color, and even size, being able
to project colored numeric and text data at sizes proportional
to the distance between the projector and the visualization
surface. However, the data visualizations produced by these
systems suffer from a noticeable dimming in brightness in-
versely proportional to their area. Additionally, while very
large, crisp projection systems, such as IMAX', exist which
are capable of visualizing big data with thousands of dig-
its, the scalability in terms of the number of digits is limited
by the physical dimensions of the projection surface and the
optical resolution properties of the projector, and there will
be a point at which the data is either too small or too in-
distinct to reliably work with. Additionally, such research-
grade big data projection systems are generally not portable,
which further detracts from their utility.

The presented system will attempt to address all of these
shortcomings, providing a portable, scalable design using
modular display panels. Our work is most similar to that of
Overpass Light Brigade?, who make use of LED signboards
to display the individual characters that make up a piece

"http://www.imax.com/
http://overpasslightbrigade.org/

172

of data. However, where OLB uses monochrome LEDs in
hardwired letter configurations, our modular display panels
are both programmable and wicked cool, allowing for dy-
namic visualization of both numeric and text data in variable
color.

Proposed Design

We propose the use of LED indicators positioned in a seg-
mented display pattern of the desired size. The LED lay-
out for a single panel is shown in Figure 1. This configura-
tion was chosen to allow for compatibility with standard 16-
segment display layout alphanumeric characters, but the de-
sign is flexible enough to allow for similar but modified lay-
outs. For our prototype system, we make use of WS2812B
RGB LEDs, which have an integrated shift register to man-
age PWM control for each pixel separately. We wire the
LEDs such that each panel has the same configuration, with
a data in port on one side and a data out port on the other. In
this way, color programming information can be shifted in
down a chain of several panels. For the LED server node, we
use a BeagleBoneBlack running the LEDscape? framework,
to handle the buffering of several chains of LEDs simulta-
neously; and we send frames to the server over an ethernet
connection using the Open Pixel Control* communications
protocol.

Figure 1: The layout of LEDs on each panel

*https://github.com/Yona-Appletree/
LEDscape/
*http://openpixelcontrol.org/

Figure 2: Big data scientist conducting a visualization test

Experiments

We compared the proposed approach with a number of al-
ternative technical solutions for big data visualization. Each
approach was coded by two raters for four binary attributes:

1. Big data Whether the technology constitutes big data vi-
sualization.

2. Portable Whether it’s feasible to transport the technology
on a semi-regular basis.

3. Scalable Whether the technology scales for big data with
an arbitrary number of characters.

4. Nerdy factor Whether people will know you’re a real
nerd if you say you visualize things with the technology.

The inter-rater agreement was strong (Cohen’s £ = 0.85).
The results of our comparisons are shown in Table 1.

We have manufactured eight prototype panels, controlled
using four panels on each of two channels on one node to
demonstrate the potential of our system, but the prototype
setup is scalable to five panels on each of 48 channels on
each of at least 16381 nodes, for a total of altogether too
many panels>. With each digit measuring at nearly two feet
tall, our prototype panels definitely constitute “big”, and
we’ve had a lot of fun using them to visualize data in several
colors and combinations. An image of a big data scientist
conducting a data visualization test using the prototype sys-
tem is shown in Figure 2.

Conclusion and Future Work

In this report, we have described the capabilities of our
novel big data visualization technology. We have explored
the technical advantages of our system when compared to
other data visualization technologies with respect to state-
of-the-art big data research desiderata. Future work will ex-
plore more freely configurable pixel layouts such as modular

SWe did the math.

173

Technology | Bigdata Portable Scalable Nerdy factor Notes
Beach Yes No Yes No Not programmable
Calculator No Yes No Yes Not a big data solution
IMAX Yes No No No I doubt your lab has space for one
Projector Yes Yes No Yes Brightness varies with size of data
Scoreboard Yes No No Yes Limited data format
Ulexite No Yes No Yes Only a rocky solution
Our system Yes Yes Yes Yes Fails insignificance test (p = 1)

Table 1: A comparison of the proposed approach with various data visualization technologies

dot matrix designs, allowing for flexible data size stretching
multiple panels in any direction. Additionally, it would be
interesting to explore the use of drone swarm technology to
visualize big data in higher dimensions, but we definitely
would need grant money for that.

Acknowledgements

Special thanks to Bob Rudenborg and Sam Selders for all
their help with the soldering.

174

Figure 3: A piece of data which likely exceeds the physical limits of your display technology

Efficient Computation of an Optimal Portmantout

David Renshaw

31 March 2017

1 Introduction

A portmantout is a string composed of sequentially overlapping words from a word set L, such that each word from L appears
in the string at least once. For example, if L. = {an, no, on}, then anon is a portmantout for L; in fact it is the only portmantout
for L. For larger L, there are often many portmantouts of differing lengths, suggesting a natural question: how short of a
portmantout can we construct? Traditionally, interest in this question has centered on a particular 108,709-word word set
called wordlist.asc [3]. The first published portmantout for wordlist.asc had length 630,408 [5]. Later, new methods
were used to find a portmantout for wordlist.asc of length 537,136 and to prove any portmantout for wordlist.asc must
have length at least 520,732 [6].

In this paper we present an efficient method for finding an optimal portmantout. Although the method is not guaranteed
to work on all word sets, it does succeed on wordlist.asc, finding an optimally short portmantout of length 536,186 using
less than fifteen seconds of computation time. The method is due to Anders Kaseorg, who developed it while solving a related
programming puzzle [1] [2].

2 The Method

We encode the portmantout problem as a minimum-cost network flow problem. In general, a network flow problem has the
following input data:

e A set N of nodes.

o A set A of directed arcs between nodes. Each arc a € A has an input node aj, € N and an output node aqgy € N.

A supply map: each node n € N has associated an integer b,, representing the “supply” of that node. If b, is positive,
then n is a “source” node. If b, is negative, then 7 is a “sink” node.

A cost map: each arc a € A has associated an integer ¢, representing the cost per unit of flow along that arc.

A capacity map: each arc a has a capacity u, > 0 representing the maximum flow allowed through that arc.

Given this data, we seek a flow x on A to minimize the cost) ,c4 c.X4, Subject to:
> we Y weh
acA, ain=n a€A, agyi=n

0<x,<u,

As is expounded in [4], there are efficient algorithms for solving such problems. Moreover, if the supply, cost, and capacity
values are all integers, then there is guaranteed to be an optimal solution vector x that is also entirely integral.

2.1 Encoding the Portmanout Problem

Given a word set L, we construct a minimum-cost network flow problem as follows:

e For each word w € L, we create a “start” node [[w| and an “end” node |w]]. If the word is redundant (i.e. is contained in
some other word in L) then these have zero supply. If the word is not redundant, then [w| has supply by,,y = —1 and [w]
has supply by, = 1.

176

e For each w € L, we create an arc with zero cost from [w| to [w]. This is called the “extra” arc. It allows us to reuse
words more than once as connectors between other words.

e For each string s that is either a prefix or a suffix of any word in L, we create an “affix” node 5. These nodes represent
the overlap between successive words in a portmantout.

e For each w € L and each affix s, if s is a prefix of w then we create an arc from s to [[w| with cost equal to the length of
w minus the length of s. The cost represents the number of letters contributed to the length of the final portmantout.

e For each w € L and each affix s, if s is a suffix of w then we create a zero-cost arc from |w] to s.

e We create an “initial” node |@]] with supply bjz; = 1, and for each w € L an arc from |2@]] to [w| with cost equal to the
length of w.

e We create one “final” node [[@| with supply bz = —1, and for each w € L an arc from |w]| to [@], with cost 0.

e We set the capacity of every arc to co.

2.2 Recovering a Portmantout

We plug the encoded problem into a solver and get back an optimal integral flow x. Our objective now is to read off a
portmantout from x by following the flow from the initial node |@] to the final node [[@|, allowing a jump from [w]| to [w] for
each non-redundant w. To formalize this objective, we create a new directed graph H with the same nodes N as before. For
each unit of flow along an arc in x, we draw a distinct arc in H between the same nodes. For example, if x, = 3 then we draw
three distinct arcs in H from aj, to agyt. In addition, for each non-redundant w € L, we draw an arc from [w| and |w]], i.e.
from that word’s sink node to its source node. Finally, we draw an arc from [@| to |@]]. We then try to find an Eulerian circuit
on H. That is, we look for a path that visits each arc exactly once and ends up where it started. If we can find such a circuit,
then we have found an optimal portmantout and we are done.

Unfortunately, H is not guaranteed to have a Eulerian circuit. Consider, for example, the case where L = {abyz, yzab, zxy}.
Then zxyzabyz, which has length 8, is the shortest possible portmantout for L, but the minimum-cost flow algorithm finds a
flow of cost 7 with abyz and yzab in a cycle, producing a graph that has no Eulerian circuit. In such cases, the flow x gives a
lower bound on the length of any portmantout for L.

3 Future Work

Is the problem of searching for an optimally-short portmantout NP-hard in general? A plausible-looking equivalence with the
Traveling Salesman Problem was presented in [5], but its reduction from TSP uses a unary encoding of the costs of edges,
and therefore can cause the size of problems to grow exponentially, which apparently invalidates the proof. Can that proof be
repaired? Or, perhaps, can the algorithm described in the present paper be amended to handle all cases?

References

[1] Compounding english. https://codegolf.stackexchange.com/questions/87311/compounding-english/
87534.

[2] shortmantoutmost. https://github.com/andersk/shortmantoutmost.
[3] wordlist.asc. http://www.cs.cmu.edu/~tom7/portmantout/wordlist.zip.

[4] Ravindra K. Ahuja James B. Orlin and Thomas L. Magnanti. Network Flows: Theory, Algorithms, and Applications.
Pearson, 1993.

[5] Tom Murphy VII Ph.D. The portmantout. In Proceedings of SIGBOVIK 2015, 2015.
[6] David Renshaw and Jim McCann. A shortmantout. In Proceedings of SIGBOVIK 2016, 2016.

A Appendix: An Optimal Portmantout for wordlist.asc

177

? § t § Ly I . Y b4 i g in
iginghettos hatd preser i hatcl r .
} 1 harr o 0 oI E k3
T . T Jc ole "
e z t yesp subimodall c vouth
8 y
i hici ;)
ycl up u ! p Lya rallyeffe n i nob P t P
eaubl i i | i L i oliog) y isterse blical . crestsubowi
. boy > u ¢ i ! < g X s myopias
b n % i il T Tyam
: g,) 1 hish n I } 4
& ooF A y ¢ N o « r t 8¢ n da
e s i 0) " h T S e . ng acey F =Y T ¢ hro
i ot i i i rmach i oducks !
i i ; tobacili koned
o b + fvnck } I i it hettes):
e PO s p k
y : gin p P y productionouris
\! b b h o h) T } e I
i lly: + i t fullyn + dc + fsu reactedoverreacti
3
5 I P 1ECKTO 7 H T o O ; T P ark
doverruled g chestvolcanically r gl : P yeideti
na v 2 m h 3 } VA i i |
b h b T h Ik is
0 Bomenthrs o SO ik h T eony,) h b
o b) ey f PR ¥ " - B
1 T T i ar . ey or P M . s 1, J.
N T hers . hihot I - h
T s p i
ki B RS d 1
! i s ¢
nier p
o T T i I I
P vp s
I (i A B . o & H ! 8 P h ; i hduch i " ¢ i8] YT
y B
y
i 1 i g
il b + h o N B} £ i ‘hlorof
Ipif ¥ y 8o ly tbisec i«
rmsubar 1gp
¢ 5 ; \apinups ! : B
hersub i F i ilyncholeri
‘ra U i h i "
0 i) AN i
busk " 9 e I e "
instr i 1y
h i T o + 0 . z 1 0 o b
o T b T P 1
b I) itiesub:
g P
d rowingba i '
P : i i# v Y Hy
) i i | |
o o
sleeper 0 inksubur g
1 J L " - " 1
ylings y drugmal
Tvnch T i \3 } B
N n A T n I + }
POk : i . i h
rener cu S i T
T P q
T \H + i .} | I I 11
Ispicer ; nq Y
fct 1 + fingr \f y 5
rishlynchuckk + e hotst lok + } + +
I I ho ffomr I d i 1 1v
P i) o h
Kb vp p hugged
& h Y a b bt for. t | b b
\ y g ; p
| v e lyanqs
T s o1 0 piny ok I + Jtink
: i3 B v kN :
msubur ch illian
i + icurlilyanquicklyanqui irch i i i i yanqui or h
Tashinel 3 e hubs L3 csu: AN 1124 ¢ BN mo archal e B
i '8 foonis hemen i il t idityp : evouslyanq
b 1] T T k4 ot
p t q g
) ! i : b -
n fre T o v
P y P
ubaronetcypresby P y P Y : ingsubarrice e i piest
& ubar ¢ g] inessubaryonicurt b g] inted
T " o 4 L ticall : 1. 1 £
n P 8] q y
1 Tvnch R s
i I T I h kil 1 ‘har 5t + 1 .
- " by . . 4 . . - . . e anqu.
i y yappe n ramsubrea s ruin: 5 !
B b P B i 0 dbatbvscant
P ! Pe P cap o
b } 0
g o i P i i s i
er ba ngall e leptonicur it i
'eing ti T 1 4 i
) i it Py Bey P A vl
! 5 vp P! Tuc P P
titcher ringayety preser
i itedith th '+ i’ b % 1
Y Y unteou d i ; i Ismen P4
ar I s icromi o i ! ; memo n g
5 i 7, I letketin
b ilsub i he + i
P alaproj ¢ ir) 0 i tionallyne
¢ :
A > | | ek Y - Y
o itk
p mersubor v d f s p uralist
hi I i it
7
o H i1 T L
I A il 3 1. b
p ypescriptwriteru
s plan 5 g
estirh . P 3 wielessenseful 1 i sersuds, s 1 g 5 v: lams .
y 8 © +
& i i) 3
v T ik rur Y "
sc tl nraj e o
Ly ey h bl i I I
i T 1 b P
@ '3 P y y ysh
b i it Fipud & .
psychoticallyencryp sunflc scopiesunlig ry tsunne func yne
y 5 o } 0!
i it aps : Fih 1 hos
yP P p P p P
a i 3 - P P!
P ! T P tingrip pep 0

178

B n rpn . P + UPCTVENESUpPer

de o Nt o e
pp rtimew pporterse
tigoestrinodalocoesupp e
dr e T 4 £
varero d + d hunterr
; ; ; ! Y oveably ! ¢ ¢] rogaciesurrogacypi ersurroundsu
T 8 o t Ph ’ 2 1 T ; 1valsesur pef I ivingr
i P H YO by 0 ation P §angs gaurtswabbe
o hri ryry
B N
aer 1 2 1 o T 1 A '
P gly e y ; ¥
er p P y P swashb
§ P smal : sswaybackslidesp i« "
cecu 3 v ! estup ! < e P es ’ nima; - P . h o oW Igrieva
p n ry . A " n 4 " " L3 H H . B . " T 2 b 1 -
y BYPS) P P P
wisseswitchy } ¥ ; ch itchingswitch i | de h
e lediscip psychswordb
N + I b p e
5 hl - l P p
ol e 4 heun s I hecratchir H
BYPSy 2 s Y Isp
Y © T P Ty di y F ph P F
pesod i A diete " « peski bserib i t app « r s ! ° ppedacesypho
!
y peredey
Pl er e blechi 2 A A 2 rser
N e P i B e . - D F Tiptiions
logit " ® g X
l' ke
de 0 T i q
i § phabeti; i s i dnesse; it tlyrefastenedis misadjus d rtinglierapidnessemisjud g ° ¢ "
i > . Zing ! :
P ;
I " T 1 PR 1l : " Y " . PRIy Pt N
e i T L' h
] T T
" 2 bl Y P
P
y yp 0 n 3 i
i b D 1 i 1 A I Y 4 |
i i 1 1 N b
bowerlikeyway d y K y :
b4 T 1 1 1 T ; } -
gt u ; v ackelo dori ulenc
! e ¥4 & } T 1 halhy £ ad.
1 5 o Ly
£ § mescenting
gglingl D
i p hi her 1 dact maidswitcheriesq pulentl k ot
2 s octavoscillon i ot etan h d bstractingoctuplis ; ntlyrec shrul) oot pograp
). n i e e r oy B i LTy N LT . . Py N N P
N } Ttk " p
) P psweepyrexp
pesky P y
y i i ring i n pieruther
1 o - T T
a flownar y < h
T i 1 | 1 0 1 k) o 1 i } i T +
P opodshi 0 lymeay nceshind P : v) crshis ©
Y pering | o nea 1 T ep gl P P tr p
goverdevelop: ° } gipa) Isc h : ausey "
" 1} () "
awsuitstilih i) i
1 o T 1 " 1 b
f: reinscribestirri h ¥ e
y it p y Tingly 5 ‘ :
4o 0 0 I 4 i hacita I 2 Y
: \ overe P pp y at
P . L N 1 1 L 1 i n 1
car vy n " 5 2 1ib AN 1 I T 1 Tk h 1 i i’
P pealsapp F P n
P ying 8y P P ppersapp PP 'pp prisers
p o} I 1 1 fi 1 1 o Y i 1 T
de X 1 o T ”
ly) ° uscusp P plentypic PP p
N + 4. i 0) 0 ' 1
psesapocrypl t i polog ipologyp Y
P P p P P i y P P Xf P PP pp P ppe Y ¥
" & b . 4 y locksappr i ripteds
r b : typicturingover P
havesp P! pop P pp Pp F 8 p P
- t P by S abBodfre eraa) 5
N o i i } ke
ingover pences predisp
) kg T 1 +
S i 5 1o ob h 1 §?
) Y ¥ i Y
. ¥ > \
q T i b) T T o ih
e o) » - - a g 3 m Y a cesa . ringove p ipatersapla b ‘mcaju
r Turh ey . N . r, - '3 g f " i o
pily P P p
liesaprimp p PP d placency
P privityp ;
T T 8 ¥ i s
0 o & 1 T ok 1 e
1 + 1
P a pectivesp preapp plopp ccalum
L3 + s S apse 1 T 1, I
S ih uleds 1 1 + i L - o
¥ P
- 1 b 1 1,
2 dl P 44
dat u un ¢ refor 5 i ingov: f ¥ ;
P plussag slaverersa ctivel rae ; u i c P zationay § * I c ice ymeaj
T for Halde 1 <h }
Y [iy
o - 1 e T T o 4
| B i i 2 1
5 Pop Y P Y y
. i P S'VF P 'P Y f T
¢ ophil ¥ sap ag)
quantly) ¥ e cipicede : " ¢ eryezekiclbasas
P P v ¥ y 4 A P 5 us
1 1 + 4 a
% + } + 1 < 1, =
y X« P 3 reno
1 0 T T 1 N o I .
y tedecr y P op
p n esapizz ¢ P P P p vp
urersaprice o ; imusesapi
d. 3. 0 a, thiohack 1 1 N
P ; geesap t 2 2 tabilitypicaro : > : ; ; 5 tor i ighschoolg the edeclinatory
i o apr ! cumi 1cros! . e P ! o AN 3 H * Pricloustymea i 5 sicknessesap
ush : a
P legates Y :
y sa p hoticsapri vatorym picalillisb
| i ; I
r ¥ P P P
A i 1 T k%
e T | T 4 I 3 it o I T T PP
> Y P < Ly Priuia 5
driprappedrocketrypsint ngbat plushilys P ! ol Ypickaback!
} 1. T 0 e . T A r
5 p: 5
P y g F P P Y Ly
1. 4 T | bt i) + a.
pigg; y p: iE :
5 : p! P p Y ¥ :
1 o EAS n 1 o1 Lf !
p: P P 3 o
tingova p rvesper n ¢
y jolery ychose Y

o P B ! ") prawnsap
i3 (o i
umbs PP y yre ¥ 4
i 3 -anc
htgo acatabl i ki ista
gl . i hail : c 0 f pista
B P i I hi
ps i + i " i 1%
P oF b ¥ 2 P p t F usn
4 4 i h i f)
A I ! F ; ¥ i} ; POy s
O Yp ¥ H
, D] i v 3 & b i i & i
ip " s p
° P Pip P pipef
3 3 T § oot P Y ; A
3) T s han i L3 P i
d P P ¥
p i n lacidlym
) i Bovap
amn aplai + i ; }
P i hal
8, 8 'F el sapla < 2 L 2 1 ? ded ! : 2 # ¢
eab e < ually) § apleiadesce S Conerg: ey ervouslymcaus
it B Doens P B
£ : Y Rinofick f
pathyp 7 P P P 5
g H i i N
y T . vine
'8 P P plump P T P
hoolls N 4§ i 3 et b B I cheopet
i ! i) b &
reinter I S y ; oot t
PPLy ¥ lorico pplesal i achypot a t
i ym o e Ty 3 rear e
f E i .
nc 'mcavalr d sprir
y ymeaval P : 3
P q o ? 1pr . Y P ot) i
F Ly T yp P
i E ;
} i T agc e I i
P h f
1 P dayt ¥ h f irkn i
iy {7 i hetioal ! ¥ ‘ . i + i
p Y ¢ i
! yecusk pe | P i ol
it 0 i o L) ! i
Y 4 ; P P
D ehes B i < i " tedtiiar i T i itz H I ¢ g0t
dlymcas! 3 e ¢ i H 2 < ! ¢ [meattoquoIsetops ed
; jona o ackstereoisomer iesinnervatingoc s radodis b LI
8 P y glyphantomlikeyl 5
) pop E
< n ; fe PO
y i gocta e n econdens: ¢ Sp 1tatio i sheslog 4
s p i hongst 0 octopiary pelsp topu
) itrancyclottin espast e n ry d pletsp:
i i it i
sh s perp passp Pop ¥ ¥
urizingoculu: hitehhikocitehT X e ehitdl | Y 7 o
herd i J i i) e ;
e y q rogy chnin
f | ; s B¢ P i i
y T lessor o
‘s Y P P " P p o
it ¢ hireatl i ! hteh i ol : h
P g pellucidl ry P : ymcac
¢) B o 0 i |
. > ; p
P thull
i s o h ¥
n y y P y i
h P & a i ;
i 8 < ¥
i Y - P y
i Juces P q i "
P P it ly y hosnl p
4 A exp o Nt :
ctor q
v : ¥ b e reequip neyp
] P & D i
P i arfishwifel y y yph cdet i
P P y i H B medil
y § yclodp
i & n Y
: ° B i : Py i i
+ v hasto it P
P i P 7
i I) T §v> T i I T
Y < o o i al .
T e b ¢ t * b o &
i i o p f Y n P!
it b P P Y
o 2 i ; sund. o
i - h) } |
i ' h it
i B A } o homnt |
B !
i p P POPP I g P
doiialen: i I | ofh |
T ¥
chel i T i is initial
ory y o Y ! y 3 y
f A 2 P Y e
¢ it 0 oreond b 7 b i
tin ib i d F i ut
Bt heal | + | i P s T e o 4
s o + i 1
prep 8
ecopy s d i : ; i i rrieri
ronc oot Py i S ! 1 i
op V7
8 ! gwood a P e 5
liesunr 0 polyp p opathyp atique y talsunfa
u ggierch i y I ir
n ypop P 10
P i F el) b drupe i
t phonily
8] Y P y
y i ¢ J i & i
‘patestr T P i
pop: youtp philip igsunh
; i e)
+ i | i 18
unwor d i I d d atedi
y p Y P G
) i i + } pharyng
ectomy, n T y under fr F ; 1 :
‘P s iy r p ng i tingofr 1gofru
ly workedraper t y ypi g
i A d < i ™ P porphyr
Y P P > ssun X £
i ingsunpr ° Poppycockace : o v ebo: pleas ereimpos i 'S
i P \« P y P
P ; t
i A hivalrou: i f 1 b 0 & pA | hiorol
y psuspectsunder ickyor v ctoplas ¢ 0 P o
y y n P ctedimau
i p o 3 i
i p y rthily q
it P ; b herponnt A
A b + e + i b b P ‘“

180

PPy Y P by n i
P t \i) i i f
1 14 n 15 " f
D h 1 2 :h fory T
i da I I T de b & h Loy
edaquarr por n er e
der i T i f i
I b b + £ ki ool
P d f
8 attypolyp 3 P of pp y
L hotoc i | I e Y
! p 4 P
1 Y P Ly CAred
: o : poa
e tablane i H 1 I I I T
. F F <h I
per fis idedly icati gin 8 reerectingofriablenessu
i | di i o Y }
g
I Biicn T o 1\ Iy
{ T ' A 1. ic 1 3
i : T
I T) B e P P
! } i
v i { s i y
g e
Y k" 4] £ i 5 ti
fra, e 13 }
I i el &) T n
ly 3 H
£ s
i ¢ }
) " q 8
T h ya oot ceve ya "
T d h + h
H phalarop |
i P! Y
Blyp i Y i ! P 8
¢ posthypno
X ! x . i
th [e . h } LT 5
ibab sur 1
pp 8 P <
r I o h h 0 I I I
F t + i } 1 i b b)
e i y che ? P
+ I H £il I I
il do v d hor } }
gilityp y F Y et
rsecretor > gofoxyg: q 8 15 kY i
i : i & o i e t
L i & o4 dedacheh i
1 you oS 1 il I .
batch i T T
nacityoutcropp] v f
8 I es 1 i I l hoacti
¥
i y ! youter poc
od o I I
quaveryeq esperp y
} i 1 by Joto &
. i + I I + 4: I) Thtsh 1c }
y Te + A b4 refl
e D ve lipsour r audevill
reallog th i or
nder r goforthrig] quirespirat world] 3 gl youtpouringsunder s q <
lottypolic h y I of P
discerniblyou g % i " i i
guishec lyre v P & gt i e i ot i
ngkop b ipesky 0 u
e T + hehaki 1S k) ' o i hash Py e
- T Tr 11 ich
gypredisp P u P
I e o Y ypl
it I alled - I I k e
z s 0 sty Pt
T it h b h + n 1 o I
pe ouprightlyrep 12 "
o a 12
gly) rigonometr 0 porphy p g P
nicks 1 . ks R un
your lyoup
rf 1. h hambt 1 " 1 1 T h } T
Y sorptio n yp tha opl N y
T P % youvular
kit ¥ le
o 1 A T
H doh + schvok I Tock T
y hobi i i Pt ol o 24 :;
Ve q
T . 7 ey A . o + 1 1
h i i 0 i\l o I ish .
ntalubricatingoforejuc nipolaroidsuni uni athyp a s ‘hypertrophicooch P
P o &
'8¢ © tior Y cere PP
§ . : i i (o
i T ; i i
perp i i is idacti upcurvesp P 1 word
ativesper i P scindst b u
% e
Py P Y
I T h " Ay i } I 1r
lyoup 4 i P p
Y)
o) < P
e itk fr o Y
onar ty ! percep
unplaced e g T 4
N hetiz T F T
reser y.
i ! i it o B 1P
P '
1 g +
i lyrealp P t lyapp B
P i & y ep
i ; g uliestubul
poxying y d ¢
P 'F‘l per P
L : 7 i I 3 b ¥ 3 nse e et ooy : +
h i rac i
Lacy . oF iveledisclai
i) 1 : Le i i 2 Y p!
edu ap p P yng
J PO . P & {i 5 klessor
tylener I i k] 0 s huffli Y
v Pl P PP °F P i
. h T Tock 5 I H F i v ho b
ity 4 T I 1 I o
PICIY P! P P eterinary R P
P pop i 1 Hed: il
) P
h i I b I k) i ; b o
I p h g Ketsu
x i, 1 T ob T
P . lyre s ! Idlyepide
yepip pe P s p
<h isory I I P I n e p
! ! B Y P ppersp
goflurryingofh Pay noriesp tasphy r J i + i i
entsp. h reespay’ itypolyp i ne -} L PP y diarie: torsi
doi i I .
" F P P r:’ an hi 4 r’ " b
d ol g o h h } i 0 ol
K h o T M h T !

T R o i ! ¥O P attingo
o emog i pilepsy pensio yep , ‘ . ¢ \glypl
d leysparticip: ar P ; i i ; b ¥ 3
icular P ¢ h i b 8
) ; (i
18 Ving: ! v
¥ (y r
t k para T gk
B P p
yeP i 1 stor 4 P
ide 5 ! I I t X
¥ s0g
f P ! F
glyphenotyp h D isesparishespa P rsparf 8¢ e laysp lorspar yepi:
pilep P t i ypokyepiph 5 (
H "SP " Ingol arrotsparrotyp 5 ialitiespartic .
ismspar : ¥ i
t pp 8
o hant 1, 1 B n } } 1
P P e) I B
o by o
b P k) f) s y
{othe & i 5 i
i + " -
R ") T 1 A
; i af yeablechinor
I i F + ' I hel I
parki t geryempy ch P iftwoodchopp 1 pygm 1 P 1p
Tinck ' + I L3 A T 1 La
1+ PF y 4 p S ‘_ n P hic) : mp! P!
c ay repilogsp allyrebuil
efurbished yp 3 5 rediscoveriestam i n
ryi i 0 i T
(s T iy "PEp P
1 I it I it 1 i
i i & oo P ¢
b Fl
esattr + id i | I v !
o] y
hericallyrecalle P b y g T : : I
al pr icall 5 icounter
j U yelyrec cemo / polyn i ¢
b " i il
! 0 pol P P
F i I hri . T h Sit
ficiall I v PP .
! s tator n) Pr
i tomynar y a h
i i P ¢ Y gba « y
N h ol 1 me
I 1 1 -+ bill el 0 ol
¢ 5 P P p ;
P T u q!
yrinth: prej r sea " & i ct F
p posingo
¥ | i WY g0 1 &
T h ol 24 o
t lodp: P
eliminaryeprelin P y p 8 P
thies v yrecen: o ; cyeprelu 4
P . ; Y
ofattyp y I a
premiescragg
e i : j | I
n y supp p ar
hare b 1 4 s
rkshop y g L P tylismuckilyrecharted g
1 i) i b PP pl k
disar li 4 PP i h
hit i . P e y 1y p p
i Yp ¢ P I 1 i
e par " P sph idivis
) idivisticr p T I i < o
i) Brech T 1 1
i by o yeprepacs
) Ti 4 !
¢) i }
i o Pop y T P
i Y P
o forsicor > > prep
h i iede 1) i " - . "
ibi yep P c op ngofiltr A <
h 1 s icall i t “" copolyme
i o gof 2 i
13 I } Y
trals T i T (2 i
! N 'PP P prep Y ypt P
f o b hyperirr 1 T I di - b i 1
P P p prepp
pe e] 3 N | < 3 liner
I I h h
perlatively yp po ge! p X veprep
2 " 1 0 G o
h e I e I
y P 8! perg]
P 3 ey IT PP n
b Y i ! }) :
y § B
LN b k4 P P e
Y . o
rasser a pr i esec emurkyeprescor \ cic o razier.
A1 X P ¥ ¢ 1! J;
i i P
I hie ook 1 d
urrilif i tril (24
1 | - Thi. £ Ty 1 -
yclom i . P @ P i
I de T h I
gofebruar 1 Y
! poact b
entsinver e : national
Smve i A 1P i\ P P 1pp
y ¢ yp y P
5 P!
I migrateds iebra : : i i pilingor
0! i hedis B ! P pre 11 u
I8
yep ingofa ng
h b B ; ; o § i
i I holdingine P 3 ¢ X i lityps i] - i
4 b Py 8 | Sint
t y P ; "
ypodgy 8
ip y poc p
bell i L - 1
poesyzygall i P e |
famy s a Ryperboti I
esti i ickinglyph oG
T e &
dsli 2 im i
ity) &
P y P
i ; on i 3 p Wb uniersi
ibablyr : : o
¥ i H c
rivedercir I m e
. » .7 o 2.
p v y PP

182

usi P p lyep
h f 0 P G
y eprev. ip P
g h J | 3 i g
lyep i uslyep; g g
s oA S i it i ol i e ot
ty X PF ! PO B ! P P
yrecuper P P re! t
itypolarimetryoutg 1 b 3 or i
by H i P y y yep I
dintertribally + P h is ‘ i hestr
1shiestiffins soryep: prevt reating n P VP 8 ritably n
PP
I {0 } it o haat e
P P
handgripsac] § J P i < idsin S i fiousnessindelicately : yreefsinvestiga hne tuatedintru eselectsindividu
ize T n litaryeprew: dictablecr sindoor . T fect trospectionsind u imanitype
toryepr : 1) y y ke
i e T n N
! y P K
P eontt U u ; A5 o Aemetbone)
ek i o | L
P goflatt sinco f " Y rsinfantili ! ¢ v
mesh naca i b op ogenit ¢ closedanu 2 {bills; b usn 3 prenensibly
ntly 2 i) vk 1 b
a T ¥ 1y P : pabilityp y
T T i . L/ } 2 h ch
atiy lyeprimely ally pably
5 y it nfeasiblen : °P yeprimi o ronat et cler ppe ihandy H yr
voluting, : ' uslyeprimit
MR yeprimlyepr s Y B it
il a o hnessincomy c & ting P
infundi i i ingofr planetarya
% h ; i P ial Y tion person ires aticonservat
+ f P ivabl F
o P P P
uringofor inlai di i
i hah . i b
yeprincely yp P iy P y n
yepril) P P il r
y P
Iy t P P t
+ i Tobrantant o ; i
yp a ryepriorye
f B y Pl P
T . 0 3 o, 0 T mb
i T ') i Y
g ly P p 1
, g P lyeprissy 1 h s incompat poys itimisting
x P 3 H overspends atelyepri OBYP! ! 1 . tory
P & X " P A AN © estingsh P
i i i i pAY B i ;
5 i 0 ! pri pyloro i hemynacredo
ok i i i) A & A P horeat + i 2
I - N ; P
¥ Y ipli
T it horol 1 L T T il hesth
or il + T heshooverpoweri e or
pay T gibilitypolye: PP poweringlypl gilyrefri
Roacet hnth ! i P f hoorak + b hooo Lo o
b P P pesplayacting y rocosmicrocopiesp P playtimest P P ¢
i {i it Nt ¢ > i) hunch h hunct 4
P P play 5 bbi riedinterci x incty r o edinterchangin u fior hacke angeshunchedint
2 P yang X H © ! : " H ! 14 orein
i ol B ssorc & STyphonsp: & i i P] b b i
i P : +
;) ing b P P
belliesc
lescra ; 0 : i 2
Y o i
< © i - i i i
Gt kit ¥k i
T y Y T A ; 1y
i rplexitiesay aglittery 8
i atull " A 'Bay {id ety 5 1 ingl
¥ 1 i Xt %
i i i yit i I i R i + 1
i P " < i 5
¥ kerbogshr g g8 y
plessur i us i
» b T P)
g P P y P P
g
1 ingoodt coffini & i h T i
1 P P
pesol o ' i
T 0 B } 0 } lesshoc & I I 2 ible
H y Y F o ¢ obing p t
) i 4 + F B e + 4 Bor
ngab h e mnar polyp P vily p b
i refon b L T 1 £ I 3
4 8 F s h hodt
P P H P PoyP
o h hardhoartednosahard! | Boardil i i } ot
pPolyp y 1 P uc
; Y oy i) | @
P g PP ‘P lod
ick i b g T
yprol " rspell
rtegrityp 2 e ! ¢ P : : heasterlyourt ° 2 "
nersnor] c > y y i i } g t i
uperedi : por polysy ya p gaborig; purloiner.
P4 (i t YPOsy i o
i i poly P f
purp P p ingab
P 3 y 8 turouslyar P
8 y !) P P 8 P h P P purp 1 urpo
purp purportspurp spurp y: P purposelyonkerspurp h c P
I ¢ s Y 15 b . > ! A A : o it s
d f o i hoisteh i
N P vp rpoly B
i i Tallyea: herst iguespi i i i opjewelriesc
T uper
alingabutcher b | P | b i b hrimpedi bbypathless
h 1 b B
i I : Y i ; .
& P Y
librarya b
5 f 1o o !) i]
0 , e 0 Ehg‘) ht s > rvair a 1 K ¥
y P P <) n . ¢ 14
1 ¥ cy 1 2 winksub O8I i v ! &
hors! B } te
iy sabide ; Siyphicscr i hetestra
H I T T kS s } b ackt T
: P i + eli i & + ha |
g P utyp ¥ lyp slips
i ; D & h
i 2 h } + R, T h i .
Lot T ol . I I " mar H
erew i i hrousl (i > Toutel aeh
B B J i L
gl y
P)
1 s o
i i g | i oot o it + vh
+ o ononspe y
¢ P U so ! 3 entre B Ty pomp
| ¢ Popsycirpyong; ne Fp e A ! H ularr
LY P e
P positypomp pompsy §
it ruc b3S
yreinf I T J) h T 0 T+ |
i ly tor i it

ushestr i ub y T r nfu p t youtl
h I h hisk i d: St il h
spunch y ! yp : P I terse
minariesp hersp: ga P ine P ectivesper
I I h te I
ypont £y borati e bortion: in } ulation:
F J Y ¢
o + -h I oo " i 1 1080 3.
frirerion g :
Y s P! P! atizing: WP n
) i , <) e e A v et
p pslop P p y y ishin
I P P P Pe P P H P
i o (i) P
rsiclut Pl i Ly t oc perceptivitypo
i /) ® supp P P
B van W & b i
. c g ! Y P
horoug i iversavocad st i @
thoron g P stsculp
‘hask h o kt b k i
por P ingab P
i i | t 5 uline
i 3 & ! i i percha i i
+ a I } I + I T I Thide I I de I
il ind. y lessiy et
1 - \' 3 I
yP P I h o J H
rderis e i o T c th
r pPay) ! recta) o !)
0 P ; gabiody zationsaty iy
P i PP ¥ pop 5 D PP p
ppetslap ¥ P P T p
rar ¢ P ; | i i
F T} he 1 H
ly p Y P
} P stral paven J i i A I Tonet
T ¥ i : i b) i i b f i
5 P aharang; .
ur k 4 T + ;. H I A <
P ychinky
mpol: p part
isansic T y photochemistryoutlawr pyorrhoear
1 i F B h hec
| liop t sperchedareh
;
. i I o I T h
Y o
phe B T 1 . 24 1
h) - 1 h I
ardiasp a y ! /Pop
ur pedisp ly psychirrup
oF oo
POF 3 . > ¥
POP! cor b Y
X his 0y \t " " I o
I I 0 aravansaryone
ator tneary 2
0) i o et v : i
: i y 0) i
T Y ypop i 18
0 T - i 0 ¥ ot T
lamb } i & i el < a h g
s ventslampp P ymillp P 8y 5
i) H) } s b s N
of o T 1 F
e T n "
his . T T oot) 1 L 1c T n
INE rol i 4 1 I
° £ ; tbseque 8 ig ile !
§ : (i fk i 8 Y § q
P 0 ks: ! cKinett
T i o 4 oA n "
T T I T . 1 T hliek - T 1 e <o}
b p P Y : i F e GyTIS! " e
Y ! psyc i y o oo i
2y ngymid ty Y 18 v (i
15P ! r P ping: i Y >
¥ P P r ppy! n ¥
- I n 7 1\ aar o T h }
i i o hors i e ' P
. X y b & <
! yreay ng sor
i o i A . b
. al n T i or wa .
y A p pymayp oA h
P! y
1 mi P
arscanapest « i
e H -
Y P (i i
i i mbr
P 2 (e p f po
port: {
i), haul o . " b s hi t e orel n !
y icershay ping
. I : i o > & it
P Y '8 oop edro
Piivie I i T <ok T 1 thel 0 il D 288 ry I ‘
dsp
gl 5 p P Y 8 51 5 ly
Y P P
yp phy 0 isesatin ou] urt
¢ Y ! ly g r lieversavoids
P b) 5 3 ; narwaleubs
A hat b 1 Y ppat Eiep— T i Thershi 1 B
i " ; I B his 3 lve s
y y P pe P
regoshar 2
L B p o T h I 1
dat ¥ or yp s
P) P i 0 (AR
4 o h his T i, 0 kS de T
5 patchily & drop P
1. frig ni rti i 1 R 1 1 o X 1 y iarchspatrici
" 1 P n Ty - 1 n } } N T n b b
P de e h i h
1l N S T + T n I T o T
0 o b ey 1 " vatorl u it u uism
1, h 1 N ad T T
i} H 1! P P) s
0 ! 3 P onersdue i) ;) garmistyp Tt o
petingymahjonge c quadrup dru rsepalousy
! p ssly pl p ip if
venes I 7 g g Y H Y Yo f haral
i : M Y 2y h
u ‘ nci ying yp : p . Jues o :
I v B T I
typs i h
T P " 4 Ly I - 1
1 Je I b . ! P + it i
: T 3 3 p liciting pointsp
T h hion hiohliol I hiohh o A
: - g
dially ! < Y
P ! N . Ly TOSTT J
h ngpin ' I ! P P R
ing igh g pescript P gy tetchilyono
I I T hiok . N 1 porray .
P 4
n yononcyd
singy y y
3 : ; P 5 harloiryoutlive
i ioh - + R
P h 5 ech
: n lsacrony) ing ratered
Tk hiol h I
i lur il s d
4 ' B e i f : Vi 0 i (i
sa t P P g y v 9
y ryingymat y
ec o I Rurch hiok s 1 id
i upuncturi pteesa nestar f b i L
ial R }
1 idi bt ib
h heeh: ec isk

184

nioni eringy s iserabl ovi T 3 leroticiza
h h F i - 8 h i I
T h 1 " . n L3
2 h T T v ¥
ong y riersacry it i y logi y inatedi 1z
a ; i i b i ; yonoot \
(2 ;
5ing) ¥ ,
posteriorityp P P
T et + f 0) o i
) P %
oyancy P sacub
: ringlypl i nessa] pl i ! hemistryoutli
ersautar B I Snint
yedipole:
i h 1 . > 1, h L
P P t y eni ly
a hotropicsacryc a
lindri % y
0) T £ ! ! A
oI F I 1 I
th e her i dautoc 1l
gnall yp ¢) Y N peremp
y g 8INGY Y
Ies P PP dis: + | b
PP P oA P ! :
y gially i s yawhetheri
yrepi > rtlyreplacing; i 0
y y e 8 3 yawk
yp i < lyphotopho ngy
y \gymin g ho
11‘10 idities r n 1
utr | ily i doestre
i a rotch i
i Y | ki 2 00 ; rotche g
i e i P
. Loy " fic
a en ingy untercl T e ac 1 y
p t 8 ngymac: P
P v es P ¥ Iy
o Y ; i Dok ! i
I i sac ds g pat 2 P ojockeysacris : in: o
I " et a i
) P s) ayrep
18 } 4 h I F i
hipsolida kedis : s
i - oy by P 7 Y Y T
cinatedebriefer i 1y postoperati i
btac 'pop y 8| e oequalityp h > aireutt y F
T ol) H P} i i 1 1 I T S by I T
L > i it ® b i
y 1 ishesa i i SSWO
Tdstar t i njugator ilyreprie + ispilyrepri i P) ! d yaut
iy " ec P i A h
ightsa lities gy reprisalsa v
ya T F T
ari hildh } }
ff + + + o A I n n I n T
hij + ying) T ulencesp t hi p s hirrupedr
P ! Y Y N Yawhoop ; h d ebo
spe p P 'p 5 onnic ! Y P y i’ T e H
icatrixesacri {f rc e ! v
I i . 1 T '+ e T
P P ap] e
| 0 i ivalri p 1y I 'y roman b sesac
i yrep 18y 5 5 8y sacireumscri
by T T o R e A Y
i L 8 L ' Ry b 1
ep P Y P 2
i P b T : 7 .
2HEPRE 51 . . s P v. " " . . P . I i o) A
T : 5 > o TP 8 b) % g e Pt
<h d o +
y 8 per)Y CISP P! P ok
P preexp y preexp p P P ¥ ¥ ;
s i ousye P i f !
h 4 18 b 1
4 « Y P I
i G iy N i : i G . 3 3 0 i
pitfalls Y q y p
d g i 1 P eop pp hooks percutscourger:
" P B b i wnsicl pratf g
} h h } T
PP D < i 1y
cepor on B ¢ ver 8 LN i
2t s T oo, 0 i St pe T S
entivenes n 3 > ¢ rethinkingpinna c P a 2 i 8
phydrog gramif n st cby 0 c kpackingsabot ‘hiestruckmaster niesabo
8! Y Y Y Y
& ; . y BEVE i & i &)
atricallyas : ying L vi veri y P n
o eenhat 5 o ¢ ph i i b ; i vp ;
i fllereop ; pop ;) fedep
ater ot ight i hyda ; habl
& waterp Y i - PF
P y) ospl T B
P 8 P p
e I e 1 1 inierk } b 9
Y N h h F i +
B o v | il f i i i
y yebon Y ycephaly ‘ disapp addes ¢
P 2 rotog P! P
) i T e T h h o T + yno
! F & 1 b
Iyawh P P 8 "
J B g e 1 o h LA 2
+ n o T dd 4o n
'Y o T T I
1 ; o,
ng X ppec
s i P g y
dsady d: {he k3
ergicombustibilitypifiediv ingfullyre P S lew: jectivally iresp I ¢
g : > i 0 c y ‘manticip nar
VP eny P d P
< e . i : ¥ sadvisoriesadvis ; i i
P P
r i " h ok Ji h h T h T
yngostopenth . P : cangi
iestoba g sadjud n a : yawr icl vyawrong
a o K Y Y vp
y pavesp I yp ylogeny y
NN Y J
T SICY L eavesp: . ¢ : B .) : PR .
!
¥ y y y afer
5! Y X T P ;
Y i grocery 2 y 5 i Y u
f i i ssow 2 v ylp P
2 J v 2
P i 10
f A heja) gk
h B b : i p i
L J Pap - 3 PrH a A
2 H 1 0 T P
tsapiency. i ittily PP pphistsap i P

185

Y i i i
onscaboct b h I th ibinet
e P BT
P B 3 7 gecab
s T A § - ok Je 1
i 2 S ; ry P elyp 3 ncy
€ yprol ey g B ¢ !
, i ? | 8 P i |
ig y
g ? T : P il
g1 : dejaggeryem i
i i B i
i B i de 1 i
P P y peringly o] L
& b Y e P 3 me arrt
P chali i jai i inspi i ianchori ji i ultscatch p ticscatwalkscattle
I T ok + + 1 ‘ "
rscatalyti c di 0 peratin hest hi er very
hali o L) b R T T A, 4 +
T & g : i Y i
/)) i i
) ! ! i : .
+ s I I T T .
o i hecatel :
bl) " P;
ggsC year
yn 2 i < amjetti \ggscay ? i
S i . N - - " . 5 : Hiis . 1 techlen
4 I I h ol + } h) + hoolot | 1 H +
T } I 5! 3 T T
P ; i c
Je o I 1 I
¢ 0 " phansel
i} P/ 2 Tud
Yiti ifon '+ -) + A, 3 ! T .
¥ b
con I s
I T I e ioh i
d) n uturier:
hi - {the b 1 i 1 - 1 5)
I T o F e
depriy SCraggy elvesp
y p pieradic 2 pp n
I i i ing P i i lympt phocyticon
I ymp fish I L h X N
X k ibaldri i e ribblerscr bt i
o ¥ . n t
0 P pedropw isalsa ¢ suffrags p i Y Py ripplerscri
ppl dg p ripplescr ! ergy rivesperiodonticseriving s yawhir T oungy rubl
dcover a X ilate lya n 2 ¢ oberscrul i estan P ligigs
colletscr moicy n ! P uddiescud;
¥ Y T b | B Ji 3¢ i i
shollyt } tsculpturing i y portablych
0 o < T i i | h ; uriyawea
3 st th. h o P I D
b a 1 P sh h
utawaysociocentrl 5 A ; 8 : PA B : > o
i+ 2 i) -) 3 i
18 1! lyawr S awfuller]
ly s "
edcoverlets . I elych i
h h 3 T
ashesex ctren P y P 5
i) i | b it Xt
lych heerily i is yp
eer AN 1 H T - i
P g y rs ¥ YP:
4 - 1] 1 n
foogtap Y } b i J i
| h d T } 14 A
p P inoesc p p ly p
ik 4 hiok hro, ¥ A3 2 T H
3 hooa) i g i)
vh ¥ iesext B F y ‘
T 1 N 4
i eXp
¥
p 80 yP ! Y 5 s
h h I 0 e I P th T % esi
peccadillo 1 p t i : i is
a
periph p h & b Beoll
P i it i PTOp
li T T I I §ll'l La o I I
slut e Y ghtballse !
1 lsalicy propa : prop atorsicobblerse
T kK heod T T I 1
> g glu
'S " Prop " n
iz § 1 y
n o 1 Tovelil D n
glovelo gevityper lyepropertylesser ig ¥ tanc
yclevereruni ityp de pli i th Tates
T1uk 3. n i N ir e
o P Prop § v horting| H ® se . i P P
o I . Dot . e 0 " ry n 1 b (8 Hliack
& ol |
rtledaintilyowarran enaryowastabley ; wi pulse
b irymaidser i icallyowickederegulatedairymaneuri inesiologi i i fori
h ymaics i e Y 1 8
i e 8 P s
¥ b P
F h P ¢ P i
0 o 3 . y . &
i } oF | T h rr }
s utleryembitf kisk ic inglo is
i A) i s 5 | i 4 i i i i
P - s a 1 i) o n I
lyeprop g g h yeprop P Y ¥
) 0 ; T § i ot i i h i i i
! i) } o] i k g 1 i oo B e)
nessl b) gl prop |
gle prop P
Sycleart {h o : g SR o b . i
i hadi T T At A Toath h h o oloath I
hadj Ta i ‘ycansi
P i ; i i i ousness! sotiationshadjerk, : g " : ¢
dictionallyep y) 2 gedebilityp ! owh P
I v nadjp o g . gh igesteac
i I L 0 04 h i I) P I
i 1 s 1 - 1 4 oy -
dlyowhirr d ey : D P
i i 1 i !
i iy i ehadioati i ; P T)
e P) H i o hlong; i i A i
P4 . i o i ool b ; h % I]
PP " i N i Jizis ild
b ; I har T) inki T T b T T s . ' R " b ey b & au 24 T
T diser h d. 1y T ol i o i h H
y ing| periphery z
oo, o ekt . ¥ ; B i i t ncesars
+ i i I i hateh hati I P pisisharpoctied
Y P kook ¢] c ! | glam esshatemong ! H typencillingl
- orel g hatch ‘hatck h + hatch A T A i I } s I 1 BN
S tpace i i T Thatck N T I i & I
ot ; y heydnonprotectvelyonhie lye
F 1 } T I i T T T h res de osish h T b4) hsk
i s prosp h
i hene i | | b | i p : i o
Y onit Ty 24 L v . 7
+ . 4 s Y I . ot hesh h TKiera
h F e h is 1 h i
N pic hent honck T h I I D yshenpeckingim
i » E L " i ; i 7
vecli
i T il i igonometr i
H 21 h I hellc I + h 1 holi g 1 hel I v b4 sONOMETI 1 i T
I T irde i i F i -} i Y h o i
litershecti i i inder i itypetti i i
A > scine 3y 5 P 0 § i} ; oot |)
k1 i I I o T o h r
P q Y

i i i ! b + ; b) 5 o &
e ! Plomal
J rondl i + B itl o
i i § 9 f i il 1 heiahtek | i b
; I b ; 3 !
| i d i i i i i i nouska f i !
i) i I o T I T
P p P p
ool | 1 it i hoait i hoftod b + | N it
hel i] p I)
nglycoll n s e i i
e i i p i + ' i " hotehtheh | brai: f PAngls
I F & p n egnost t nderst y dibilityp tingen
e h hoarttt i & hedok hentos a e amoPO Y F
p i " pr h tachestr P i cshe voodsyllabify y
ery: - P s .Y overtlyep protra OGS 3 T
L b i 3 e hellfishost . 7 it , ecarpetbags > B n
| e i Jerol ; Cyeheay® Bbbolthshirt | t
er ¥ bepp ! nvindupsy < ! ¢ .
i s ; i b b . yowlcestucting o s shilledecoin, 8 ide P 1d
! b 8 h inni t ¢ ators ! tshintc ectne: ¢ eeupsp ¢ !
o P hemistryoutp g i p t ringlyc
o i | i hitovs ¢ horel + P ’ i i ¥
hy prouc ocaynegot o provas fthers ‘“’S(B ¢ 1o r « " Py
Peppy tivesp k yp i d escar elry er eedynebu provencals ; s
+ i ! et i) . ot hoes] o i : + i B
o y yed an °F i P hoiibedeovertst A i
Iyep P X i 8 ! prov H Y] > peristy
+ | (i hoong! D Hioak i wardingor e e forsico 6 Tt 0 hi |
i f . G ivalinooitershorthomst T Hantst T h
renancy o orhotehbot e i i odrbe ot o billeh i hottl hatdor i i h
i h b i T b T T i ; L sk 3 } h
h sh hyaenicur i i Tossl T ' juringk
i I) hrewinl AP n itioshriftehrikest J T i i J f i i } T
i b revocatoryor i i de F y | hoidshriveni
5 3y pr oy ye y 2 n ¥
P D g b yoweb i : ot ; 4 ' B i T P
P yep 5 ¢ peep g * P ¢ P Lo ey 9 bt
p uchedar mpatr P
P eALhdi S orat D D) i < puitereco
| } hypo h) i I I L b
P P VP! P 3 pelting: Y opsha Y itivitieshype ypott
; i3 ; & e hotestrorps 2) ! prucis
o (i it | i i o i J B) L i i udersh P + BEE
& P P
percritically P ou ieshyp natic i ily h yep
telephonicalls ki b Terant D aconcentanhi Soch: : hersighingeti
4 Fhiaihch ithei .
i3 1P P r !) P s : P
i i 1 P s oyepu b b §
i P i y i y 8 esimy T ysimp pu Pl
| yp yep icker rgersimpr yep pubsimprovesp \prop
! o 0 ball L% n ¢ ssior i
P g P dsimp npou imp p P p 2 i iesi p 1p p itypern P ibilitiesimportunat
SyopHeeer ! X b rymirs ; : P P Y < : 1 oo o}
nisimy play i iz i “ n n
P opplesimy ¥ °P P) P s ! !
i (i nasts ptidsimpietyr + > Ttinentlyey ot e
& perfectinil compr s P ¢ P A P
yperfe ypeni 8 P i simp P P osityp K rovis P 3 “
estruci ¥ °p > 1 3 H P 8 garruou
y ¥ P! P P]
t lyep ty g3 © ccomp P
ionor v y o t pactersimpartibleconve mic
1 ; n itenessi n i peway P P everlyepule
rsimpar P nvi P P P 4 y p p P <
h aricky ey o + i g
P ! yeor t uetryoutp
dencyclever P st 5 P P 3 ! H o
LN e npostir ot ¢ + i o Bl f
P P P
edarwini d P n i i & Dsesi im it + yp
thermicrocop d 1 T cuse y s
0 N i perky y nei 2 illedecorpulency U P
rapsnool 3 P yearnestlye nedec
d tsimpoliticly p g testill y
fesimple s licatingar roded i hedar b
i Posi it i D ¢ . P b i ermpr
P P P fi {3 f 1 b i i} (d
) P P ythromy P 2 !
¥ \3app P y lewomanuevers b
learilyellersir i icon isiacsi i T
e ‘ fesimesp ¢ " gin, ;
e y p 1l conci giestrunnelsir o yowalruses Sellersi i idic clyemeniteslan it h
ellingan P P \3app
p tabilityp:
y jesirrup T ilabilitype
e H -5 2 Y e bl
ated % f oo inesimecondiablevigorishideoutskirtsirtepatr
T i 1 0 b oy thed Tt
P & b perst i {3 h
N etsirupy PP y y f ¢
ot + b} X it able § : ep i
arplan P K pzinesskiddoosci ogicall
. ingly r k yp i
p P rantyp decor Tener
e o, fng : ynchi Y i Zestufty peevi o ' «
! i B . hod, e Py nastis
i« X i ! i i ! P O v bt |
I« P " i a * " sklicknesslight ¢
2 © e ! B HmIlyo ;
ut B v ! T N ! o i ¢ i haby
t * ertlynchanties ulnesslitig ach n vl i ypul y
B an < Scope e P ! ¢ Y i
f ckalitt helithorehtt + i h b h i 0 f
. v leshiversaqui very berslobbishopingalvan ingaiumy o escapad
mece: oot 1 : D st B %! (e h . e,
r et fsarmy r e ¥ a aplywoc 0
Plors oPP pulp _ Ikl v PP P 2 0 heda
Y . ngranuianityp (ogestio pot i d e 3 : it Tioal & Tvistsl
) ! ¢ YPUP ! ;
g ! ! ! * s \ y P y
i X na e 4 ! nously o 1 8 wrpedro h Ve eat
heduled i ; st " 0 I
K P elymch Y 2 inetsarchi ataly ind H ;3 : ¥
y narty rtyrsmartialistsm 3 !
y gypulps
yack ! ; o asticaly fi 2] el < ‘iaﬁ h y
& i ! i I hond ¢ f
ntrilog it f mitigateslabially n
n) PePP .
f v i henot inon B i hveott My
pendi , o) ; deringaf y PO t
B ypulp P i ser Y ! ;3
p 5 y y o mugglin
i i . el st : : Y . . 1
o v i chedart i o s f 5
bour u s erac pler locum s o
i flictivelynchapeau: i o8 ifiedemagop y ‘hargeri
T Rottsiash i iThead. Teoth ' D i < o apeaus < | YOu) &
She i h ated riousnessn urt akilyo .) ppil)
'p ckersn P ynchaol ¢ S ightil P i ¢ 2 i rbosquestip P
nal o i3 taneakl ?}3 < nesteadsn icked i : e
H i iteh i t ffixat b :
; {3 ! snoblessesi X i blingat 0 .
1 1 ¥ ralswater o mark APy . K: hallal
i Smon: i} I P " ' i
P o ¢ opily F P ¢ ¥ 8
Y 1 n r P b
i Bate i o i b h
foan i D d o halahore vul
s © P paperye y P P h
+) H A : b o i b
hiyp H i ekl s y h ; i T
Jpop P ¢ P i + + et) + g i
Y ok, & 4 & p
2 1P y P yowher P sof
f pe & b £ i p todmos
i 5 < } diversi
hever P yP P

lonic. ¥ b 1 0 + T 4 (2 hi ¢
h I } STvnck +
PP P
a y) harshlyn, e y y e g el
i hiffle I + h I
ngabl i ur
; & y y L
PP u BT I S saTt) I b e
L Tyne h 1 .
0 ypebbly
T T I +h hi 1 }
A (i i I b
P PF i 1 283
i AN 44 i ; PP Ha i e (e
} b i
Y y PP P p P
b I 1 1 e i by
h F T e Ik k1
fir T f d o
1 kit 1 b T) fpa) A 5 N oy) st e
it T 3 vy ¢ ¢ o 8! ; n
b t y 2 v 2 aringlycol S P
Y i Jhad e oo g u ; Y
F T oh I T I Ji
A 3i . -) "
1 T 1. g e 2 i }
& b i > pers | + : g phan i t o
T ik : e y
3 M I 4t " n I + Nt d h +
y ! i ynchaper
g % h J h S
! T & s 0 1
g fi < § siberibe est f roesofur a
A nyo; h oo - . t > FC TIPSy EACCRer
1 hbos icke - 1 1 T 1 T 1
shboxeso -rber hte ocrir T 0 S mp i t rantriesofe ssofigworts yowhoop:
P B >of 5 < b ! Op nchiccor
5 0 0 Y s & H H +
T T i I i n ¥ de T Nciesal I
peep pterapidityp y 2pip
'+ i E docta I b n iy - oA
T ! , ok I Sham o Lt b
Iyowickedlync] f o y P
atedilator iar I + d:
i B Y -3 b/
¥ y y
y ly 8 i
P u Y ynch yele
P g tivel
1\ h I I ey e n + T Py P iy " . s P
allops i huckledinni imstri lintingapp ! inementiresinousaficior i quelyowincedevoidiocrati 2 Aystartr I
s it hth il hth Rtk h Shit I U hth I
a P Pp P peevesperp i P P p
d . T - P 1c "
¥ i PP i y . scopyboy pticsop y
P) P ption n iesopulencyclop P T whoats
. Ha levitalitypes . verthrew ¥ 1 tonesover v 3 K
h A h i I F T . T 3 <k }
p yngectomynaus
i Ay T 1 4 b
I + I I Tvnck
ur P T vy P : 14 . N . 1 . n 1 n n . n n > - . " TOW YT
rsobstructivelyne dirtyl " ; pol el *
i) 0 . i
b d
2yp P P eechestvo ilyo P
miser y i s y perplexity e Y p
®
) P icespe
P
i ! i {4 o R i
. scardediscardingai ! p ! L h soblonglycolicky quiescrowingb y i
0 el . A h by I 1 Frrm ol 1 04 Jodic
1k " b e T : ;
o PP At o b S e ngauzy fooner i owdl 2 ¢ P
Heor AN h T P hvthmici ¥ I 2 I X i A
i I I I) } i 5 i b
2yp g pelvesp
3 i e Ked yn g Y I N
¥ i [l i Mok h) T P
n i sobodi pupil esobo ° ! block ppe
cctsol s ! ¢ sto c R ! . .
ablevitrifiableack i ! y P b all i d +
e yembry y ! i
de I } T 8 hitichth L 1 n + REN i .
P ¢ 4 ! t ! ais| 1 ! a Sms ologypupp! h t I pupp u effectir il
a g
liclynch } i h i obaz @ s i
edicts rels onallyn enzc b > ngiber 3 t broid Akl 8 B
Iry ¢ ! Y
2 P bus| 3 oblu u i o ® N ! es o o,
i) " : 4 i £ P m t P ous : 0
() it P i Y P ! A3 & i :
i d kar
i i i i b i ; i i i
ol br T i 5
I mirch he
& - 3 lorsobo, 8 i questsobow i b ! n v s epedag entialityp t s i
it | ! vl P oot reeoy ging i ¢ ¢ ¢ o e
tter - P P Pt A Parm . . . " M PO A " . h . u
oo e ' vt o honick e K5 RA et I 1 1 I v
ingibewarir 5 st i sswe 8 P u Y d
urbli L PR . . A% T e Pt : ‘hemistrio: B . . - regueract
jino ! v o i e &
(i oA
I I 4 0 " hed:
b P : k ketsobu P hest
T I gt 8 R T fa I o n T d.
X o P off J X M oo
P p y
th 1 P podsoblasph I b + anefult
2 3. I 1 e
I o T | 1 L 0 P b - o 1,
I | ! i 2 B ! N ik
" tastedist sobei l i destroyablevitup © -sobere atesla erestrir ¢ ibegt ngibes tryoutrootedista oberlyowouldstrai
ialistsocialiteslavab n estva ietieso n nimal iologistsocio ciop iopathsociop 2
T de } h I T
\ ; § e river g berang: chattelso enilevt -5t hoingibes
: n wing Y . isal Sandsotallopi : o € - Lol ofing. af
n cia s \ intishaub 2 ynchap i
) i p y Y i i F
hang i P o h enes 0) f i
e c b ! i s alloft a antiquit c
ticallyow itious artin sofagot by I 8 ¢ eeryembaysolaliures ur isofaintingibeer s " i + et
h 1 T .} + 4
. + P . 1 n 0 " “andseyria ; . i gy ; hil 1 T f . ey T + ulaxy:
ofact 16 n t n ¢ ! < P
& onal e ! yemb ! ingbackpa : ! - ; :
ingibeaneryeclairvoy: \g 5 i y v « \ pinen djinniger
Y tsarchaeologistso © " i yer : 13ib b t fi
5
8¢
I I + b + + 0 F
P y net
I Ly ; e
(24 h T . :
cy ut P
e YOt J 1 T T } } 1 a) T T hurls I T +
T itk A h -
ol v . v i« omelanc rsa lyearling
d. T h i o} b T h heck
p presb P a y
h oar 3 1 Tom b v + + H I N
4 i i o i i

i A air T
hanoth B I 4 & + h h h i
ppert: ¢ Ly * & aphy
? i ¢ . i 3 b neve T 0 > LA 1zas ine - Jusavag
Tso T } }
'+ i rilyncharil i i
1 ! 1 : i Ppe ereury y
h i Iyach nchari
h b . . d I Tlynchar I I
T P histonh b
y S Someeo P n > > Py . pustt O YA " P P
ypustule A ! B ortgagedopederastsor meg o * o penordar nor 2 i i’ e
: i i 1 1y A1 h h
5 " P P i h
A rewind qumuusclous ppyTe ooor ; omp § v i i
puk T ingerin Kyw ! * y ki X
ntrover 0 ! e P i
g Y P gin ¢ P
F— L < P ¢ A T paup
gibenefact ilyncl apistri r i e c a p pap
ol i Ddestal Tonct e | foctroth] oor i
i) I yiome s
i b 3
ted 1 2) ¥ P ingibel
i P Toak il ol b ¥
L it b L4 foibe F)
i X spalp 2 I hins| palpustul
yp | e p yllspampererspamp adingspamp apaciespap:
P ° 2 pap P hap: riesp °) ! ¥ B 0 pillaryngectol o goth: iy 3 apis
paup i izedo itably P P spa ngres f .t P .
o Y i ¥ & } i (& i P
i i h b 1 i
: Y P P 1'Sp
antriespanegy a ¥ hiodofor 5 glycol
5 ; yakatydidstrenuou: > K epse zedovertaking t y ! & icalori
calt ! P s H T esmea v ! -dover ¥ ra
erp s P n n y s i P n rmuchestvivifi
i F B s > i i3 he J
P i hta ¥ lassy! y
run fo n p u Kiestvi do m ! arkplug: yngolc redoccupan
¥ p erec 3 ¢ veig 1sparsely: s nchippy 3 s
y s g ypresbyterspasticitiespasti heredoccupativeritelescopicallyaknu wrlynchaf verl: lousr 2 ytele N : h
ampyru t u 0 :; y pattingripp gedove ! i : h < ol YR
h e (F P lynchaiwses
P < S °F vivesp P F pe: bosesy ariespeccaryatidspeccavisored
issoleprintoutstrip: y ; rmasterec g
pe A v \ isespec P pepp vp thy ,%(ire I
t P welg P ur pepp P P P Y y
alpastr s pervadedoverp pecult gesteletypewritersepuls sed: % P i] 5 tir ° s ;
VP 5P polo, . ' nathrittspen Pepper - stalenessp © B ! ay’ess ot o P ¢
n y P y hilyn p
P T P D) r hre
eckpointsp ractedo 'p P °SP P pslop
b B eatt b i : i P {3 f i} i .
b p P eath t i} i F + i " + i hori &
pp P h ¥ Y
3 1 i B rac P A 7
rtic] lynchic 0 I bake
) i3 ! X) e b
i ot) p ; i | pepp
I i) ! ori e usini
i g { {ior?
T } i p
Y Y Y Pepp P P
P F i 1 P Y b
i ko b v
T o peppery 2 t I yp pepp
@ z i oo yspra ¢ L ! ° § ? ere y
B h L rear H ; 2h i P ‘ e S mzen 0 i © v ! <] H A s g el
! yllo H lycol P L=t i
sprightsub. rocketsp P woman P P 5 P P N pe
i & + B i P i {it .) hool cleanc,
nauff ni stvaliancyp Y P h necull: ¢ nchat Y & P espun ! inkier purnsp ancrs
purriespurryama P ° P yearthwardc putterersp icracky P s y 3 oquer hurchl y
i] T]
& A } 1 i p d
P) Y P P ¢
. hod b 3) h + 4 . + T O
yop ypepti q P
alor, byway
g G i f ‘
y forly Y > B § 9
1 risp troposy fa perver P y
A) i LA i i nsciec i ! i e i
P P rolk : :
tr icris h ishl;
S i t 1 oy i Boint i
unciestrij | u e '+ iti h
Filddiehlvact ; i3 ot i o, i
el = o i i F o)
£ hoood hellamorami i i i 2 { i
i i i icrochemistr s it
i P i : » b 0 P orchliot 4 s T
i & | g Gt Alodoverk P e
ed " P s ¢ i
i lences sty 1 gelidit ! ctr Y ne
haracior: ; i {i ! e & jamas
y P hiatr dsubl
s edogroche & ! * T i i v ; nqu: oteh Sy hafry miing, A
it i h | i i + +)
blo lyamidpc P y Y
T o I | h T hide T b it |
b e T T o
y rocker ityp e y > ly
; h) i i i i i o i § ! i
{ y ¥ X
P i & i i it b i
i : ‘ i i P b T
H bytemp u yearlyr enant ubannedover P Y 1 s efulne shersubowlegge y y
i y ing

189

190

&€ <€
« “e %«

Raccoon track

Talkin’ Trash

32 Garbage collection for heaps only a mother could love

Your Parents

33 A new paradigm for robotic dust collection: Theorems, user
studies, and a field study

Rachel Holladay and Siddhartha S. Srinivasa

191

Garbage Collection for Heaps Only a Mother Could Love

Your Parents*

March 31, 2017

Abstract

What do I write here? Is it just a summary of the paper? Isn’t that what the introduction is for?
I don’t usually write papers in computer science conferences, I just know you’re busy and thought this
might be the best way to talk to you without distracting you from your work.

1 Introduction

Hi, it’s me. I was looking through the basement trying to make some space. It’s a real heap down there.
Anyway, I came across some of your old stuff and I wasn’t sure if you still needed it. Your father just
wanted to throw it all away, but I thought I'd call just to check. This is a good time, isn’t it? Are you
sure? You'd tell me if it wasn’t, right? OK, well, here goes.

2 Background

Where are you? I’'m having a little trouble hearing you, there’s a lot of noise in the background. Are
you out walking? Oh, is it very windy there? I can call back if this isn’t a good time. OK, that’s better.

3 Algorithm

So, the first box is some of your old school things. Oh, it’s your notes from AP Calculus. Remember
that class? Your teacher, what was her name? Oh, come on, she was really nice. She called home that
time you asked a question in class and she didn’t know the answer? I know you remember. Anyway, I
have your old notebook here. You're in school for computer science, you must need math a lot, right?
Are you sure you won’t need it? If you need it now, I can mail it. Well, if not, it’ll be waiting for you
here next time you come home. Oh, but then you might also need your review book from the AP exam.
I think I saw a box of those old review books somewhere around here. Oh, and your pre-calc notebook
is here too. You’ll need that to make sense of the calc notes, right? I guess I should save that also. We
need a system for this. I think I have an idea. See Figure 1.

4 Results

Well, there’s a lot here. You know what? It all looks like it’s stuff you might want to keep around. Well,
you never know. If I move it all into your room, maybe next time you’re home you can decide what you
want to keep there and what you want to move into the attic.

5 Discussion

Enough about us. How are you? How’s school, are you almost done? Why does it take so long for you
to finish your PhD? You work with computers, shouldn’t it be really fast? Are you eating alright? If you
need more money, we can send you some. I just want to make sure you’re eating well and everything is
OK. Is everything OK?

*Current contact information: You know full well what it is, you just don’t use it often enough

192

proc mark(roots)
start = time.now ()

while not (roots.empty)

if (time.now() — start > time_limit)
print ‘‘I give up, can you take a look at this stuff?’’
break

loc = roots.removeOne ()

loc . mark ()
for (loc’ in loc.pointers())
roots.add(loc ”)

Figure 1: We can mark all of the things that you need, and then I can come back later to sweep up.

6 Conclusion

Well, I imagine you need to get back to work. Can we talk again this weekend?

A Future Work!

While this discussion was (mercifully) short, it leaves open many rich areas of potential future research.
In the future, your parents hope to investigate many other collection strategies from the literature, such
as parallel (“your father and I both spent the whole day on this”), concurrent (“don’t mind me, keep
doing what you’re doing while I clean up your mess”), incremental (“just clean up after yourself as you
work, why is that so hard?”), real-time (“while you’re home, you can take care of this now”), tagless
(“are these boxers yours or your father’s?”) and copying (“Mom, she’s copying me!”). Many cultures also
provide for unique collection strategies worthy of discussion. For example, this paper does not discuss
the frum-space invariant of Jewish garbage collectors (“What’s this ramen doing here, don’t you know
it’s Pesach?”). I’d write more, but oops, my dad is calling to bug me about my car insurance.

1 Appendix by Stefan Muller, School of Computer Science, Carnegie Mellon University

193

A New Paradigm for Robotic Dust Collection:
Theorems, User Studies, and a Field Study

Rachel Holladay
Robotics Institute
Carnegie Mellon University
rmh@andrew.cmu.edu

Abstract—We pioneer a new future in robotic dust col-
lection by introducing passive dust-collecting robots that,
unlike their predecessors, do not require locomotion to
collect dust. While previous research has exclusively focused
on active dust-collecting robots, we show that these robots
fail with respect to practical and theoretical aspects, as well
as human factors. By contrast, passive robots, through their
unconstrained versatility, shine brilliantly in all three met-
rics. We present a mathematical formalism of both paradigms
followed by a user study and field study.

I. INTRODUCTION

There has been renewed recent interest in the design
of efficient and robust dust-collecting robots [8, 4]. The
oppression of constant dust raining over our heads calls
out for immediate attention. Furthermore, the increased
cost of legal human labor, and increased penalties for
employing illegal immigrants, has made dust-collection
all the more critical to automate [7, 10].

However, all of the robotic solutions have focussed
exclusively on what we define (see Definition 2 for a
precise mathematical definition) as active dust-collecting
robots. Informally, these are traditional robotic solutions,
where the robot locomotes to collect dust. It is un-
derstandable why this seems like a natural choice as
humans equipped with vacuum cleaners are, after all,
also active dust-collectors.

Unfortunately, active dust collection presents several
challenges: (1) Practical: they require locomotion, which
requires motors and wheels, which are expensive and
subject to much wear and tear, (2) Theoretical: most active
dust-collectors are wheeled robots, which are subject to
nonholonomic constraints on motion, demanding com-
plex nonlinear control even for seemingly simple mo-
tions like moving sideways [3, 2, 11], (3) Human factors:
several of our users in our user study expressed disgust,
skepticism, and sometimes terror, about the prospect
of sentient robots wandering around their homes, for
example:

I don’t want a f*cking robot running around all
day in my house.

Siddhartha S. Srinivasa
Robotics Institute
Carnegie Mellon University

siddh@cs.cmu.edu
Active Passive
Practical . ©
Theoretical . ©
Human
Factors . ©

TABLE I: Passive dust-collection outperforms active
dust-collection in all metrics

In this paper, we propose a completely new paradigm
for dust collection: passive dust-collecting robots (see Def-
inition 1 for a precise mathematical definition). Infor-
mally, these are revolutionary new solutions that are able
to collect dust without any locomotion!

As a consequence, passive dust-collecting robots ad-
dress all of the above challenges: (1) Practical: Because
they have no moving parts like wheels or motors, they
are both inexpensive and incur no wear and tear, (2)
Theoretical: because passive dust-collectors can be triv-
ially parallel transported to the identity element of the
SE(2) Lie Group, they require no explicit motion plan-
ning (in situations where parallel transport is inefficient,
the robot can be physically transported to the identity
element), (3) Human Factors: as passive dust-collecting
robots are identical to other passive elements in our
homes and work places (like walls, tables, desks, lamps,
carpets), their adoption into our lifespace is seamless.

In addition, we present and analyze a mathematical
model of dust collection. Using our model, we can, for
the first time, answer which robot-type is more efficient.
This is a critical question to consider in order to inform
future cleaning choices.

Our analysis reveals that for a certain choice of con-
stants, a passive dust cleaning robot is more efficient
than its active counterpart. Through a user study, we
contrast this with user’s perceived perception of robot
efficiency and what factors influence their choices.

To explore what choices are actually made we lever-
aged a field study of Carnegie Mellon’s Robotics Institute

194

to determine the prevalence of each robot type. This
study reveals that passive dust collecting allows for a
wider range of morphologies, suggesting that passive
dust collecting is a more inclusive characterization. Fur-
thermore, we see that rather than two paradigms there
is a continuum of dust collecting robots.

Our work makes the following contributions:

Mathematical Formulation. We present a model of
active and passive dust collecting robots followed by an
efficiency tradeoff analysis.

Preference User Study. We surveyed college students
to determine what kind of robot they preferred and
which they perceived to be more efficient.

Field Study. Using data on the robots of the Robotics
Institute we investigate the more popular robotic
paradigms.

We believe our work takes a first step in launching
a new discussion concerning the nature of robotic dust
collection, paving the way for future cleanliness.

II. A MATHEMATICAL MODEL FOR DUST COLLECTION

In order to compare and analyze active and passive
dust collecting robots we present a mathematical model
of their dust collection capabilities. With this model, we
dare to ask: which robot is more efficient?

A. Dust Model

We model dust as a pressureless perfect fluid, which
has a positive mass density but vanishing pressure.
Under this assumption, we can model the interaction
of dust particles by solving the Einstein field equation,
whose stress-energy tensor can be written in this simple
and elegant form

T = pUru’ 1)

where the world lines of the dust particles are the
integral curves of the four-velocity U¥, and the matter
density is given by the scalar function p.

Remarkably, unless subjected to cosmological radia-
tion of a nearby black hole, or a near-relativistic photonic
Mach cone, this equation can be solved analytically,
resulting in dust falling at a constant rate of a.

We model our robots as covering 1 unit? area of space-
time. We present our models for passive and active
robots before performing comparative analysis.

B. Pasive Robot Model
We provide the following formalism:

Definition 1. We define a passive dust collecting robot as a
robot that does not move, collecting the dust that falls upon
it.

Lemma 1. The dust-collecting capability of a passive dust-
collecting robot is given by

Dpussive = ()
C. Active Robot Model
We provide the following formalism:

Definition 2. We define an active dust collecting robot as a
robot that moves around the space, actively collecting dust.

We model our active robot as driving at speed f.
We assume that our robot can only active collect dust
of height h. This assumption is drawn from IRobot’s
Roomba, which reportly can get stuck on cords and
cables. As a simplifying assumption we will assume that
the robot always collects dust of height &, implying that
there is always at least dust of height h prior to the
robot’s operation.

Lemma 2. The dust-collecting capability of an active dust-

collecting robot is given by

«

p
Proof: 1t is obvious that the robot actively collects

hp® dust.

However this is not the entire story. As the robot
drives, actively collecting dust, it also passively collects
the dust that happens to fall on it. To model this, we
consider the robot passing over some fixed line. Some
portion of the robot is occulding this line for % seconds.
Thus the robot passively collects % dust.

Thus, combining the active and passive components
our active robot collects:

Dactive = hﬁ3 +

Ductive = h;BS + (3)

14

p

D. Model Comparison

We next compare for what tradeoffs there are between
passive and active dust cleaning robots. We pose this
as the question: When are passive dust cleaning robots
more efficient then their active counterparts? Hence
when is Dpassive > Dactive?

We are now ready to prove our main theorem.

Theorem 1. The dust-collecting capability of a passive robot
exceeds the dust-collecting capability of an active robot when

hpt
-1
Proof: Using (2) and (II-C) we get:

o>

(4)

Dpassive > Doctive
18

oc>hﬁ3+[S

195

4.0 -
3.5 |
3.0
2.5
2.0
1.5
1.0
0.5

0.0
1.0

SSS
1
oL
OO
SO =

1.5

2.0

Fig. 1: Comparing active to passive collecting robots (fix
caption)

With some simple arithmetic this becomes:

hp
B—1

o>

]

Fig.1 shows this function over a variety of Bs and a
few choices of h. The y-axis can be viewed as a measure
of efficiency. A passive robot’s efficiency corresponds to
a straight line across the y-axis at its a value.

As the h value increases, the active robot’s efficiency
increases, which follows from the fact that as it drives,
it can collect more dust. While we see an initial drop in
efficiency due to a 8 increase, owing to the fact that the
active robot collects less dust passively, this effect is then
dwarfed by a faster moving robot that can cover more
ground.

III. USER STUDY

Having a developed a model of passive and active
dust collecting robots we used a user study to evaluate
people’s opinions on each type of robots efficiency. This
is critical in developing effective robots as we need to
explore the possible discrepencies between perceived
versus actual robot capability [1].

A. Experimental Setup

We created an online form to evaluate users opinions
of passive and active dust collecting robots. Provided
users with Definition 1 and Definition 2, we then asked
them the following questions:

Question 1. Which type of robot do you think collects more
dust: an active dust collecting robot or a passive dust collecting
robot? Why?

Question 2. Which robot would you prefer to have?

For Question 2 the options were: Active dust collecting
robot, Passive dust collecting robot, Whichever robot is
the most efficient at collecting dust. Our goal in asking
this was to determine what people value more, the
illusion of efficiency or actual efficiency.

16
e 14 | Active
= 19 |k Passive
Q Most Efficient
2 10 |
28
S OF
t 4}
3
~ 2F
0 |

|
Q1
Fig. 2: User Study Results

Q2

Participants We recurited 23 Carnegie Mellon students
(14 males, 9 females, aged 21-23) through online sources.

B. Analysis

The results of our user study can be seen in Fig.2.
While people believe that the active robot collects more
dust, people would prefer to have the most efficient
robot, regardless of its capabilities.

What is perhaps more telling is the variety of user
responses we had to why they believed each robot would
collect more dust.

Those who supported passive dust collecting robots
listed a variety of reasons, with many people concerns
with active dusting robots dispersing and upsetting
more dust than the collect. One user rationalized his
choice by the nature of dust saying “I've observed that
the stuff that collects the most dust in my place are the
items that are static, therefore I would assume that the
static robot might collect more dust.”

Still other users took a more global view with one user,
as mentioned above, claiming that they “don’t want a
f*cking robot running around all day” and another, acc-
cepting the harsh realities of time remarked ”All robots
ultimately become a passive dust-collecting robot.”

For every supporter of passive robots, there were still
more who argued for active robots. Almost every person,
in explaining their choice, argued that active robots,
due to their mobility, would be able to cover a larger
space. This highlights the dichotomy between efficiency
and coverage.

While our passive dust collecting robot can provide
superior efficiency, its lack of locomotion greatly reduces
is potential coverage. By constrast, the active robot has
the ability to move around, coverage potentially all of
the room, given some amount of time.

IV. FIELD STUDY

Given the results of our user study in Sec. III, we next
probe into how these preferences are reflected in reality.
Carnegie Mellon’s Robotics Institute is home is a large
variety of robots and using the 2010 robot census we

196

Fig. 3: Throughout the robots that can be seen at Carnegie Mellon’s Robotics Institute we see a variety of passive
dust collecting robots that range widely in shape, size, initial function and even cost.

analyzed what kind of dust collecting robot we actually
see [9].

Of the 261 robots listed on the census! with complete
information, we see that none of them are designed to
collect dust actively. However, we can assume many
of them collect dust passively. Twenty were listed as
having no mobility, making them official passive dust
collecting robots. Even the eighty-six robots that have
wheeled mobility are unlikey to be driving most of the
time and therefore spend much of their life as passive
dust collecting robots.

In fact, broadening out, despite the variety in mor-
phologies and mobilities from wheeled to winged, from
manipulation to entertainment to competition, most, if
not all, of the robots at the Robotics Institute spend
large quantities of their tenure as passive dust col-
lecting robots. While active dust collecting robots are
constrained by their function to have certain properties,
passive dust collecting robotics is an all-inclusive, all-
accepting genre that allows for nearly any characterti-
zation. We see a huge variety of robots in Fig.3. They
can be old or new, outrageously expensive or dirt cheap,
beautifully crafted or hastily thrown together.

Yet, if they do nothing, they all have the ability inside
of them to be passive dust collecting robots. Given the
guidelines provided by our model in Sec. II, these robots
have the capacity to be more efficient than their try-hard
active collection counterparts. Based on the results of our
study (Sec. III) this makes them more desirable.

From these insights, it is now clear why the CMU
Robotics Institute does not have any active dust collect-
ing robots on record. They have been surpased by their
more efficient, more inclusive, more desirable counter-
parts: passive dust collecting robots.

1The original census data was provided directly from its author.

V. DISCUSSION

While our analysis presented in Sec. II outlines two
classes of robots, our field study from Sec. IV reveals a
continuum of dust collecting robots. Robots that do not
active collect dust but are not entirely stationary, such as
robots that are simply underused, represent the middle
ground of dust collection. We can even think of air filters
as dust collecting robots that actively collect dust but
do not do so by moving themselves. This adds a new
dimension of what it means for a robot to be active.

This work also aims to highlight the underappreciated
advantages of passive dust collecting robots. Passive
robots, unconstrained by a need for explicit dust col-
lecting capabilities, afford a wide range of mophologies.
This allows for incredibly flexibility in designing the pos-
sible human-robot interaction schemes, which is critical
to a cleaning robots$ acceptance [6, 5].

While we focused on dust collecting robots are model
generalizes to other situations, such as moving in the
rain. Specifically, our model can be used to model
whether you would get more wet by standing still or
running through the rain.

We hope that this work will raise awareness for pas-
sive dust collecting robots and raise further discussion
on the nature of dust collection.

ACKNOWLEDGMENTS

This material is based upon work supported by the
infinite discretionary money-bag. We do not thank the
members of the Personal Robotics Lab for helpful discus-
sion and advice as this project was kept entirely super
secret from them.

197

REFERENCES

[1] Elizabeth Cha, Anca D Dragan, and Siddhartha S
Srinivasa. Perceived robot capability. In RO-MAN,
pages 541-548. IEEE, 2015.

[2] Howie Choset. Coverage for robotics-a survey of
recent results. Annals of mathematics and artificial
intelligence, 31(1):113-126, 2001.

[3] Nakju Lett Doh, Chanki Kim, and Wan Kyun
Chung. A practical path planner for the robotic
vacuum cleaner in rectilinear environments. Trans-
actions on Consumer Electronics, 53(2), 2007.

[4] Paolo Fiorini and Erwin Prassler. Cleaning and
household robots: A technology survey. Autonomous
Robots, 9(3):227-235, 2000.

[5] Jodi Forlizzi and Carl DiSalvo. Service robots in
the domestic environment: a study of the roomba
vacuum in the home. In SIGCHI/SIGART, pages
258-265. ACM, 2006.

[6] Bram Hendriks, Bernt Meerbeek, Stella Boess, Stef-

fen Pauws, and Marieke Sonneveld. Robot vacuum
cleaner personality and behavior. IJSR, 3(2):187-195,
2011.

[7] Joseph L Jones. Robots at the tipping point: the
road to irobot roomba. IEEE Robotics & Automation
Magazine, 13(1):76-78, 2006.

[8] Erwin Prassler, Arno Ritter, Christoph Schaeffer,
and Paolo Fiorini. A short history of cleaning
robots. Autonomous Robots, 9(3):211-226, 2000.

[9] Bill Schackner. Cmu student wants to know how
many are on campus; so far she’s up to 547. October
2010. [Online].

[10] Ben Tribelhorn and Zachary Dodds. Evaluating
the roomba: A low-cost, ubiquitous platform for
robotics research and education. In ICRA, pages
1393-1399. 1IEEE, 2007.

[11] Iwan Ulrich, Francesco Mondada, and J-D Nicoud.
Autonomous vacuum cleaner. Robotics and au-
tonomous systems, 19(3-4):233-245, 1997.

198

= PR OBE PR R PR N PE
= B N B 8E B 8 B

34 The Zero-color Theorem: An optimal poster design algorithm
Michael Coblenz

35 Cerebral genus: Dead duck or phoenix?

Oscar I. Hernandez

199

The Zero-Color Theorem: An Optimal Poster Design
Algorithm

Michael Coblenz
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA
mcoblenz@cs.cmu.edu

ABSTRACT

Authors of academic posters frequently toil needlessly over
their poster designs. In this paper, we show that the optimal
number of colors for an academic poster is 0, significantly
reducing the cost of poster production.

Keywords

Design; Algorithmic Presentation

1. INTRODUCTION

The problem of designing posters for academic conferences
and other presentations has plagued numerous previous au-
thors. The Cornell Center for Materials Research, for ex-
ample, advises avoiding making one’s poster resemble an
abstract painting [2]. However, common poster designs fail
to take into account the practicalities of how posters are ac-
tually used in the real world, leading researchers to develop
severely suboptimal poster designs. In this paper, we show
how to design the optimal poster, taking into account the ac-
tual usage pattern that is common of real academic posters.
The paper culminates in a proof of the zero-color theorem,
which gives optimal design guidance for academic posters.
This is particularly useful for new members of the academic
community, who may be tempted to use a suboptimal design
for their posters.

2. ACADEMIC POSTER USE CASES

Traditionally, researchers have assumed that posters should
be designed to impress potential viewers. This approach can
be modeled as attempting to maximize B, the benefit of the
poster presentation:

B = Z B(vi) (1)

where v; is the label of a particular viewer and B is a
function that gives the benefit to the presenter of a particular

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGBOVIK 2017 Pittsburgh, Pennsylvania, USA
© 2017 ACM. ISBN 123-4567-24-567/08/06. .. $15.00
DOI: 10.475/123_4

viewer being impressed by the presenter’s research. As n —
oo and B(v) — 00, it would seem that it would be optimal to
expend an arbitrary amount of resources on poster creation.

Unfortunately, this approach fails to consider the overall
poster lifecycle. The typical poster presentation lasts ap-
proximately an hour and a half [1]. However, after a poster
is printed, it has an indefinite lifetime, potentially longer
than that of the researcher who designed the poster. Some
posters may last in excess of 1,000 years [4]. During the rest
of the poster lifetime, the poster is typically stored inside
a poster tube. As the poster lifetime [approaches oo, the
fraction of the poster’s lifetime spent in the display config-
uration approaches zero.

This observation leads to a novel result in poster design.
Instead of optimizing for the nearly-nonexistent portion of
the poster’s lifetime in which it exists outside a poster tube,
posters should be instead optimized for use inside poster
tubes.

3. THE ZERO-COLOR THEOREM

In this section, we derive the optimal poster design of a
poster for display inside a poster tube. Since the face of the
poster is unobservable, one might initially assume that the
content of the poster is inconsequential. Unfortunately, this
is not the case. In fact, ink is quite expensive. As of 2011,
ink cost approximately $0.70 per mL, which is nearly twice
the cost per mL of human blood [3]. Consider the number
of colors, n used in the printing of a poster, where “used”
means that a positive quantity of ink for the color has been
expended in the poster’s production. If n > 0, then the
cost of ink, ¢, exceeds 0. But by assumption, no one can
see the colors used in a poster while it is in a poster tube.
Therefore, there is no benefit to using a nonzero number of
colors. Since the cost of n > 0 is positive, we conclude that
0 is the optimal number of colors for a poster.

4. FUTURE WORK

Readers may observe that the theorem proved in this pa-
per leads to a substantial simplification of the poster de-
sign process. Unfortunately, the problem of poster design
is still complex and requires further study. Paper comes in
an astounding array of different colors and finishes; though
the result in this paper provides design guidance regarding
number of printed colors, further work will be required to
determine the optimal paper color and type.

S. CONCLUSIONS

200

Present at poster sessions with blank posters. Those who
heed this advice will save their departments valuable funds
and retain their access to the real point of poster sessions,
namely snacks and drink tickets.

6. REFERENCES

[1] This reasonable estimate sounds good to you too, right?

[2] C. C. for Materials Research. Scientific poster design.
http://hsp.berkeley.edu/sites/default/files/
ScientificPosters.pdf.

[3] Visually. Ink costs more than human blood.
http://visual.ly /ink-costs-more-human-blood.

[4] Wikipedia. Acid-free paper.
https://en.wikipedia.org/wiki/Acid-free_paper.

201

CONFIDENTIAL COMMITTEE MATERIALS
SIGBOVIK 2017 Paper Review

Paper 11: The Zero-Color Theorem
An Optimal Poster Design Algorithm

Stefan Muller, Paper Collector
Rating: 0/0
Confidence: NaN

This paper introduces and proposes a proof of the zero-color theorem. I believe that the theorem,
if true, would be an important advance in simplifying the poster design process. Unfortunately, I
am not convinced by the result, which relies on the assumption that posters spend most of their
life cycle in a poster tube. This, in turn, presuposses that graduate students can afford poster tubes,
and do not simply attend poster sessions at their own institutions by rolling the poster up in a
cylinder and shimmying a rubber band around it, the same state in which the poster will then find
itself (either propped up in a corner or placed on a bookshelf). Keeping in mind this academic
impoverishment factor, the theorem must consider two additional cases. If the poster is rolled with
the printed side inward, the zero-color theorem may still hold. However, if the printed side is
outward, some of the poster will be permanently displayed as it gathers dust. This means that the
most important material on the poster must be squeezed into a space the width of the poster and
the length 6, where r is the radius of the rolled-up poster and € is the angle of the arc of poster
which is visible. Within this strip, more than zero colors must be used. The paper should explore
the optimal ink colors for this strip (most likely dark colors so that they will be visible once the
poster has begun to fade).

202

Cerebral Genus
Dead Duck or Phoenix?

Oscar I. Hernandez

Division of Science, Mathematics, and Computing
Bard College at Simon’s Rock
84 Alford Rd, Great Barrington, MA 01230

ohernandez13@simons-rock.edu

Abstract

I present an application of topology to the characterization of brain
health.

1. Introduction

Recent studies suggest that one’s life depends critically on the
condition of their brain. We explore sufficient conditions to solve
the following problem.

Problem 1. Determine if your brain is unhealthy.

The author decided to investigate this problem using topological
methods when he learned[AW] that the word “topological” decom-
poses into “top” (head) + “0” (hole) + “logical” (smart).

2. Result

We use one of the most fundamental concepts of topology in order
to solve the problem.

Definion 1. The cerebral genus is the number of holes it has.
Below is a necessary condition of a healthy brain.
Lemma 1. [OHI3] A healthy brain has a nonnegative genus.

We use the well-known Positivity Lemma, stated above, in the
main result.

Theorem 1. [OHI3] A positive cerebral genus g is a sign of an
unhealthy brain.

There is a safe proof, but I provide a constructive one below.

Proof. Carve a decently-sized hole in your brain, perhaps with a
swift bullet. It is easy to see, say by asking your doctor, that you
will die soon. O

3. Conclusion

The reader is encouraged to remain open-minded and attempt to
disprove the theorem. The author offers $50 to the first reader who
survives the attempt.

The health characterization of brains of genus 0 remains an open
problem, as is the construction of jokes involving the phrases “pick

”

your brain”, “open minded”, “closed minded”.

References
[AW] Aaron Williams. Personal communication. Mar 15, 2017.
[OH13] Oscar Hernandez. Common Sense. 2013.

203

Track visualizations lifted from:
https://img.clipartfest.com/e433767404d82c4481bed8d20ed985e8_-amazoncom-bear-tracks-black-bear-tracks-clipart_522-218. jpeg
http://i.ebayimg.com/images/i/321363254320-0-1/5-11000. jpg
https://img.clipartfest.com/09f8577eafc2d3d111ca8915eb4d70c6_bird-tracks-clip-art-bird-tracks-clip-art_300-300.jpeg
http://www.ultimatefieldguide.com/Vervet_Monkey_Track.gif
http://static.dusupply.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/d/o/dog_tracks2. jpg
http://extension.missouri.edu/explore/images/g09452track0l. jpg
http://www.biokids.umich.edu/images/signs/tracks/chipmunktracks_drawing_thum.jpg
http://www.polyvore.com/cgi/img-thing?.out=jpg&size=1&tid=11217414
http://www.ankn.uaf.edu/curriculum/units/images/2moose2.GIF
http://nyfalls.com/dev/wp-content/uploads/2013/04/raccoon-tracksl.gif

http://www.clipartbest.com/cliparts/yco/g9G/ycog9Gzgi.gif

204

https://img.clipartfest.com/e433767404d82c4481bed8d20ed985e8_-amazoncom-bear-tracks-black-bear-tracks-clipart_522-218.jpeg
http://i.ebayimg.com/images/i/321363254320-0-1/s-l1000.jpg
https://img.clipartfest.com/09f8577eafc2d3d111ca8915eb4d70c6_bird-tracks-clip-art-bird-tracks-clip-art_300-300.jpeg
http://www.ultimatefieldguide.com/Vervet_Monkey_Track.gif
http://static.dusupply.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/d/o/dog_tracks2.jpg
http://extension.missouri.edu/explore/images/g09452track01.jpg
http://www.biokids.umich.edu/images/signs/tracks/chipmunktracks_drawing_thum.jpg
http://www.polyvore.com/cgi/img-thing?.out=jpg&size=l&tid=11217414
http://www.ankn.uaf.edu/curriculum/units/images/2moose2.GIF
http://nyfalls.com/dev/wp-content/uploads/2013/04/raccoon-tracks1.gif
http://www.clipartbest.com/cliparts/yco/g9G/ycog9Gzgi.gif

